1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
/*
Copyright 2015 Ian Jauslin
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
/*
numkondo
Compute the flow of a flow equation numerically
*/
#include <stdio.h>
#include <stdlib.h>
// pre-compiler definitions
#include "definitions.cpp"
// rccs
#include "rcc.h"
// grouped representation of polynomials
#include "grouped_polynomial.h"
// command line parser
#include "cli_parser.h"
// parse input file
#include "parse_file.h"
// numerical flow
#include "flow.h"
// arrays
#include "array.h"
// read cli arguments
int read_args_numkondo(int argc,const char* argv[], Str_Array* str_args, Numkondo_Options* opts);
// print usage message
int print_usage_numkondo();
// compute flow
int numflow(Str_Array str_args, Numkondo_Options opts);
int main (int argc, const char* argv[]){
// string arguments
Str_Array str_args;
// options
Numkondo_Options opts;
// read command-line arguments
read_args_numkondo(argc,argv,&str_args,&opts);
numflow(str_args, opts);
//free memory
free_Str_Array(str_args);
return(0);
}
// parse command-line arguments
#define CP_FLAG_NITER 1
#define CP_FLAG_TOL 2
#define CP_FLAG_RCCS 3
int read_args_numkondo(int argc,const char* argv[], Str_Array* str_args, Numkondo_Options* opts){
int i;
// pointers
char* ptr;
// file to read the polynomial from in flow mode
const char* file="";
// flag that indicates what argument is being read
int flag=0;
// whether a file was specified on the command-line
int exists_file=0;
// if there are no arguments
if(argc==1){
print_usage_numkondo();
exit(-1);
}
// defaults
// display entire flow
(*opts).display_mode=DISPLAY_NUMERICAL;
// default niter
(*opts).niter=100;
// default to 0 tolerance
(*opts).tol=0;
// mark rccstring so that it can be recognized whether it has been set or not
(*opts).eval_rccstring.length=-1;
// loop over arguments
for(i=1;i<argc;i++){
// flag
if(argv[i][0]=='-'){
for(ptr=((char*)argv[i])+1;*ptr!='\0';ptr++){
switch(*ptr){
// final step: display the final step of the integration with maximal precision
case 'F':
(*opts).display_mode=DISPLAY_FINAL;
break;
// niter
case 'N':
flag=CP_FLAG_NITER;
break;
// tolerance
case 'D':
flag=CP_FLAG_TOL;
break;
// initial condition
case 'I':
flag=CP_FLAG_RCCS;
break;
// print version
case 'v':
printf("numkondo " VERSION "\n");
exit(1);
break;
}
}
}
// if the niter flag is up
else if (flag==CP_FLAG_NITER){
// read niter
sscanf(argv[i],"%d",&((*opts).niter));
// reset flag
flag=0;
}
// tolerance
else if (flag==CP_FLAG_TOL){
sscanf(argv[i],"%Lf",&((*opts).tol));
flag=0;
}
// init condition
else if(flag==CP_FLAG_RCCS){
str_to_char_array((char*)argv[i], &((*opts).eval_rccstring));
flag=0;
}
// read file name from command-line
else{
file=argv[i];
exists_file=1;
}
}
read_config_file(str_args, file, 1-exists_file);
return(0);
}
// print usage message
int print_usage_numkondo(){
printf("\nusage:\n numkondo [-F] [-N niter] [-D tolerance] [-I initial_condition] <filename>\n\n");
return(0);
}
// numerical computation of the flow
int numflow(Str_Array str_args, Numkondo_Options opts){
// index of the entry in the input file
int arg_index;
// list of rccs
Labels labels;
// initial condition
RCC init_cd;
// flow equation
Grouped_Polynomial flow_equation;
// parse id table
arg_index=find_str_arg("labels", str_args);
if(arg_index<0){
fprintf(stderr,"error: no labels entry in the configuration file\n");
exit(-1);
}
else{
parse_labels(str_args.strs[arg_index], &labels);
}
// parse flow equation
arg_index=find_str_arg("flow_equation", str_args);
if(arg_index<0){
fprintf(stderr,"error: no flow equation entry in the configuration file\n");
exit(-1);
}
else{
char_array_to_Grouped_Polynomial(str_args.strs[arg_index], &flow_equation);
}
// initial conditions
// check they were not specified on the command line
if(opts.eval_rccstring.length==-1){
arg_index=find_str_arg("initial_condition", str_args);
if(arg_index<0){
fprintf(stderr,"error: no initial condition in the configuration file or on the command line\n");
exit(-1);
}
else{
char_array_cpy(str_args.strs[arg_index],&(opts.eval_rccstring));
}
}
// initialize the rccs
prepare_init(flow_equation.indices,flow_equation.length,&init_cd);
// read rccs from string
if(opts.eval_rccstring.length!=-1){
parse_init_cd(opts.eval_rccstring, &init_cd);
free_Char_Array(opts.eval_rccstring);
}
numerical_flow(flow_equation, init_cd, labels, opts.niter, opts.tol, opts.display_mode);
free_RCC(init_cd);
// free memory
free_Labels(labels);
free_Grouped_Polynomial(flow_equation);
return(0);
}
|