Ian Jauslin
summaryrefslogtreecommitdiff
blob: 1b221f2c9700724c8a2dcf15ab2a9bc0d904ea00 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
/*
Copyright 2015 Ian Jauslin

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

#include "fields.h"
#include "definitions.cpp"
#include <stdio.h>
#include <stdlib.h>
#include "number.h"
#include "tools.h"
#include "polynomial.h"
#include "array.h"
#include "rational.h"

// init and free for Fields_Table
int init_Fields_Table(Fields_Table* fields){
  init_Int_Array(&((*fields).parameter),FIELDS_SIZE);
  init_Int_Array(&((*fields).external),FIELDS_SIZE);
  init_Int_Array(&((*fields).internal),FIELDS_SIZE);
  init_Identities(&((*fields).ids), FIELDS_SIZE);
  init_Symbols(&((*fields).symbols), FIELDS_SIZE);
  init_Int_Array(&((*fields).fermions),FIELDS_SIZE);
  return(0);
}
int free_Fields_Table(Fields_Table fields){
  free_Int_Array(fields.parameter);
  free_Int_Array(fields.external);
  free_Int_Array(fields.internal);
  free_Identities(fields.ids);
  free_Symbols(fields.symbols);
  free_Int_Array(fields.fermions);
  return(0);
}

// determine field type
int field_type(int index, Fields_Table fields){
  if(int_array_find(abs(index), fields.parameter)>=0){
    return(FIELD_PARAMETER);
  }
  else if(int_array_find(abs(index), fields.external)>=0){
    return(FIELD_EXTERNAL);
  }
  else if(int_array_find(abs(index), fields.internal)>=0){
    return(FIELD_INTERNAL);
  }
  else if(intlist_find(fields.symbols.indices, fields.symbols.length, index)>=0){
    return(FIELD_SYMBOL);
  }

  fprintf(stderr,"error: index %d is neither a parameter nor an external or an internal field, nor a symbol\n",index);
  exit(-1);
}

// check whether a field anticommutes
int is_fermion(int index, Fields_Table fields){
  if(int_array_find(abs(index), fields.fermions)>=0){
    return(1);
  }
  else{
    return(0);
  }
}


// ------------------ Identities --------------------

// allocate memory
int init_Identities(Identities* identities,int size){
  (*identities).lhs=calloc(size,sizeof(Int_Array));
  (*identities).rhs=calloc(size,sizeof(Polynomial));
  (*identities).length=0;
  (*identities).memory=size;
  return(0);
}

// free memory
int free_Identities(Identities identities){
  int i;
  for(i=0;i<identities.length;i++){
    free_Int_Array(identities.lhs[i]);
    free_Polynomial(identities.rhs[i]);
  }
  free(identities.lhs);
  free(identities.rhs);
  return(0);
}

// resize
int resize_identities(Identities* identities,int new_size){
  Identities new_identities;
  int i;

  init_Identities(&new_identities,new_size);
  for(i=0;i<(*identities).length;i++){
    new_identities.lhs[i]=(*identities).lhs[i];
    new_identities.rhs[i]=(*identities).rhs[i];
  }
  new_identities.length=(*identities).length;

  free((*identities).lhs);
  free((*identities).rhs);

  *identities=new_identities;
  return(0);
}

// copy
int identities_cpy(Identities input, Identities* output){
  init_Identities(output,input.length);
  identities_cpy_noinit(input,output);
  return(0);
}
int identities_cpy_noinit(Identities input, Identities* output){
  int i;
  if((*output).memory<input.length){
    fprintf(stderr,"error: trying to copy an identities collection of length %d to another with memory %d\n",input.length,(*output).memory);
    exit(-1);
  }
  for(i=0;i<input.length;i++){
    int_array_cpy(input.lhs[i],(*output).lhs+i);
    polynomial_cpy(input.rhs[i],(*output).rhs+i);
  }
  (*output).length=input.length;
  
  return(0);
}

// append an element to a identities
int identities_append(Int_Array lhs, Polynomial rhs, Identities* output){
  int offset=(*output).length;

  if((*output).length>=(*output).memory){
    resize_identities(output,2*(*output).memory+1);
  }

  // copy and allocate
  int_array_cpy(lhs,(*output).lhs+offset);
  polynomial_cpy(rhs,(*output).rhs+offset);
  // increment length
  (*output).length++;
  return(0);
}
// append an element to a identities without allocating memory
int identities_append_noinit(Int_Array lhs, Polynomial rhs, Identities* output){
  int offset=(*output).length;

  if((*output).length>=(*output).memory){
    resize_identities(output,2*(*output).memory+1);
  }

  // copy without allocating
  (*output).lhs[offset]=lhs;
  (*output).rhs[offset]=rhs;
  // increment length
  (*output).length++;
  return(0);
}

// concatenate two identitiess
int identities_concat(Identities input, Identities* output){
  int i;
  for(i=0;i<input.length;i++){
    identities_append(input.lhs[i],input.rhs[i],output);
  }
  return(0);
}


// resolve the identities
// requires both the monomials in polynomial and the ids in fields to be sorted
int resolve_ids(Polynomial* polynomial, Fields_Table fields){
  int i,j,k,l;
  int sign;
  int fermion_count;
  int at_least_one;
  int security;
  Int_Array monomial;
  Number num;
  Number tmp_num;

  // loop over monomials
  for(i=0;i<(*polynomial).length;i++){
    at_least_one=1;
    security=0;
    // repeat the simplification until the monomial is fully simplified
    while(at_least_one>0){
      at_least_one=0;

      // prevent infinite loops
      security++;
      if(security>1000000){
	fprintf(stderr,"error: 1000000 iterations reached when trying to simplify a monomial\n");
	exit(-1);
      }

      // loop over ids
      for(j=0;j<fields.ids.length;j++){
	// check whether the monomial matches the id
	if(int_array_is_subarray_ordered(fields.ids.lhs[j],(*polynomial).monomials[i])==1){
	  init_Int_Array(&monomial, (*polynomial).monomials[i].length);
	  
	  // remove lhs from monomial
	  // sign from moving the fields out of the monomial
	  sign=1;
	  // number of Fermions to remove from the monomial
	  fermion_count=0;
	  for(k=0,l=0;k<(*polynomial).monomials[i].length;k++){
	    // check whether the field is identical to the "current" one in the id
	    // if l is too large, then keep the field
	    if(l>=fields.ids.lhs[j].length || (*polynomial).monomials[i].values[k]!=fields.ids.lhs[j].values[l]){
	      int_array_append((*polynomial).monomials[i].values[k],&monomial);
	      // sign correction
	      if(fermion_count % 2 ==1 && is_fermion((*polynomial).monomials[i].values[k], fields)){
		sign*=-1;
	      }
	    }
	    else{
	      // increment fermion_count
	      if(is_fermion(fields.ids.lhs[j].values[l],fields)){
		fermion_count++;
	      }
	      // increment "current" field in the id
	      l++;
	    }
	  }

	  num=number_Qprod_ret(quot(sign,1),(*polynomial).nums[i]);
	  // add extra monomials (if there are more than 1)
	  for(k=1;k<fields.ids.rhs[j].length;k++){
	    number_prod(num, fields.ids.rhs[j].nums[k], &tmp_num);
	    polynomial_append(monomial, (*polynomial).factors[i], tmp_num, polynomial);
	    free_Number(tmp_num);
	    int_array_concat(fields.ids.rhs[j].monomials[k],(*polynomial).monomials+(*polynomial).length-1);
	    // re-sort monomial
	    sign=1;
	    monomial_sort((*polynomial).monomials[(*polynomial).length-1],0,(*polynomial).monomials[(*polynomial).length-1].length-1,fields,&sign);
	    number_Qprod_chain(quot(sign,1),(*polynomial).nums+(*polynomial).length-1);
	  } 
	  // correct i-th monomial
	  free_Number((*polynomial).nums[i]);
	  (*polynomial).nums[i]=number_prod_ret(num,fields.ids.rhs[j].nums[0]);
	  free_Int_Array((*polynomial).monomials[i]);
	  (*polynomial).monomials[i]=monomial;
	  int_array_concat(fields.ids.rhs[j].monomials[0],(*polynomial).monomials+i);
	  // re-sort monomial
	  sign=1;
	  monomial_sort((*polynomial).monomials[i],0,(*polynomial).monomials[i].length-1,fields,&sign);
	  number_Qprod_chain(quot(sign,1),(*polynomial).nums+i);

	  // free num
	  free_Number(num);

	  // repeat the step (in order to perform all of the replacements if several are necessary)
	  j--;
	  if(at_least_one==0){
	    at_least_one=1;
	  }
	}
      }
    }
  }

  return(0);
}


// ------------------ Symbols --------------------

// allocate memory
int init_Symbols(Symbols* symbols,int size){
  (*symbols).indices=calloc(size,sizeof(int));
  (*symbols).expr=calloc(size,sizeof(Polynomial));
  (*symbols).length=0;
  (*symbols).memory=size;
  return(0);
}

// free memory
int free_Symbols(Symbols symbols){
  int i;
  for(i=0;i<symbols.length;i++){
    free_Polynomial(symbols.expr[i]);
  }
  free(symbols.indices);
  free(symbols.expr);
  return(0);
}

// resize
int resize_symbols(Symbols* symbols,int new_size){
  Symbols new_symbols;
  int i;

  init_Symbols(&new_symbols,new_size);
  for(i=0;i<(*symbols).length;i++){
    new_symbols.indices[i]=(*symbols).indices[i];
    new_symbols.expr[i]=(*symbols).expr[i];
  }
  new_symbols.length=(*symbols).length;

  free((*symbols).indices);
  free((*symbols).expr);

  *symbols=new_symbols;
  return(0);
}

// copy
int symbols_cpy(Symbols input, Symbols* output){
  init_Symbols(output,input.length);
  symbols_cpy_noinit(input,output);
  return(0);
}
int symbols_cpy_noinit(Symbols input, Symbols* output){
  int i;
  if((*output).memory<input.length){
    fprintf(stderr,"error: trying to copy a symbols collection of length %d to another with memory %d\n",input.length,(*output).memory);
    exit(-1);
  }
  for(i=0;i<input.length;i++){
    (*output).indices[i]=input.indices[i];
    polynomial_cpy(input.expr[i],(*output).expr+i);
  }
  (*output).length=input.length;
  
  return(0);
}

// append an element to a symbols
int symbols_append(int index, Polynomial expr, Symbols* output){
  int offset=(*output).length;

  if((*output).length>=(*output).memory){
    resize_symbols(output,2*(*output).memory+1);
  }

  // copy and allocate
  (*output).indices[offset]=index;
  polynomial_cpy(expr,(*output).expr+offset);
  // increment length
  (*output).length++;
  return(0);
}
// append an element to a symbols without allocating memory
int symbols_append_noinit(int index, Polynomial expr, Symbols* output){
  int offset=(*output).length;

  if((*output).length>=(*output).memory){
    resize_symbols(output,2*(*output).memory+1);
  }

  // copy without allocating
  (*output).indices[offset]=index;
  (*output).expr[offset]=expr;
  // increment length
  (*output).length++;
  return(0);
}

// concatenate two symbolss
int symbols_concat(Symbols input, Symbols* output){
  int i;
  for(i=0;i<input.length;i++){
    symbols_append(input.indices[i],input.expr[i],output);
  }
  return(0);
}



// ------------------ Groups --------------------

// allocate memory
int init_Groups(Groups* groups,int size){
  (*groups).indices=calloc(size,sizeof(Int_Array));
  (*groups).length=0;
  (*groups).memory=size;
  return(0);
}

// free memory
int free_Groups(Groups groups){
  int i;
  for(i=0;i<groups.length;i++){
    free_Int_Array(groups.indices[i]);
  }
  free(groups.indices);
  return(0);
}

// resize
int resize_groups(Groups* groups,int new_size){
  Groups new_groups;
  int i;

  init_Groups(&new_groups,new_size);
  for(i=0;i<(*groups).length;i++){
    new_groups.indices[i]=(*groups).indices[i];
  }
  new_groups.length=(*groups).length;

  free((*groups).indices);

  *groups=new_groups;
  return(0);
}

// copy
int groups_cpy(Groups input, Groups* output){
  init_Groups(output,input.length);
  groups_cpy_noinit(input,output);
  return(0);
}
int groups_cpy_noinit(Groups input, Groups* output){
  int i;
  if((*output).memory<input.length){
    fprintf(stderr,"error: trying to copy a groups collection of length %d to another with memory %d\n",input.length,(*output).memory);
    exit(-1);
  }
  for(i=0;i<input.length;i++){
    int_array_cpy(input.indices[i],(*output).indices+i);
  }
  (*output).length=input.length;
  
  return(0);
}

// append an element to a groups
int groups_append(Int_Array indices, Groups* output){
  int offset=(*output).length;

  if((*output).length>=(*output).memory){
    resize_groups(output,2*(*output).memory+1);
  }

  // copy and allocate
  int_array_cpy(indices,(*output).indices+offset);
  // increment length
  (*output).length++;
  return(0);
}
// append an element to a groups without allocating memory
int groups_append_noinit(Int_Array indices, Groups* output){
  int offset=(*output).length;

  if((*output).length>=(*output).memory){
    resize_groups(output,2*(*output).memory+1);
  }

  // copy without allocating
  (*output).indices[offset]=indices;
  // increment length
  (*output).length++;
  return(0);
}

// concatenate two groupss
int groups_concat(Groups input, Groups* output){
  int i;
  for(i=0;i<input.length;i++){
    groups_append(input.indices[i],output);
  }
  return(0);
}

// find which group an index belongs to
int find_group(int index, Groups groups){
  int i,j;
  for(i=0;i<groups.length;i++){
    for(j=0;j<groups.indices[i].length;j++){
      if(groups.indices[i].values[j]==index){
	return(i);
      }
    }
  }
  return(-1);
}