Ian Jauslin
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorIan Jauslin <ian.jauslin@roma1.infn.it>2015-06-14 00:52:45 +0000
committerIan Jauslin <ian.jauslin@roma1.infn.it>2015-06-14 00:52:45 +0000
commitaa0f3ae2988d372b190b9bde2e75a6d17e744e93 (patch)
tree14482245c2fca27fcdad3078e97d0871352d52a7 /src/polynomial.c
Initial commitv1.2
Diffstat (limited to 'src/polynomial.c')
-rw-r--r--src/polynomial.c1263
1 files changed, 1263 insertions, 0 deletions
diff --git a/src/polynomial.c b/src/polynomial.c
new file mode 100644
index 0000000..639728a
--- /dev/null
+++ b/src/polynomial.c
@@ -0,0 +1,1263 @@
+/*
+Copyright 2015 Ian Jauslin
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "polynomial.h"
+
+#include <stdio.h>
+#include <stdlib.h>
+#include "definitions.cpp"
+#include "rational.h"
+#include "tools.h"
+#include "mean.h"
+#include "coefficient.h"
+#include "istring.h"
+#include "array.h"
+#include "number.h"
+#include "fields.h"
+
+
+// allocate memory
+int init_Polynomial(Polynomial* polynomial,int size){
+ (*polynomial).monomials=calloc(size,sizeof(Int_Array));
+ (*polynomial).factors=calloc(size,sizeof(Int_Array));
+ (*polynomial).nums=calloc(size,sizeof(Number));
+ (*polynomial).length=0;
+ (*polynomial).memory=size;
+ return(0);
+}
+
+// free memory
+int free_Polynomial(Polynomial polynomial){
+ int i;
+ for(i=0;i<polynomial.length;i++){
+ free_Int_Array(polynomial.monomials[i]);
+ free_Int_Array(polynomial.factors[i]);
+ free_Number(polynomial.nums[i]);
+ }
+ free(polynomial.monomials);
+ free(polynomial.factors);
+ free(polynomial.nums);
+
+ return(0);
+}
+
+// resize the memory allocated to a polynomial
+int resize_polynomial(Polynomial* polynomial,int new_size){
+ Polynomial new_poly;
+ int i;
+
+ init_Polynomial(&new_poly,new_size);
+ for(i=0;i<(*polynomial).length;i++){
+ new_poly.monomials[i]=(*polynomial).monomials[i];
+ new_poly.factors[i]=(*polynomial).factors[i];
+ new_poly.nums[i]=(*polynomial).nums[i];
+ }
+ new_poly.length=(*polynomial).length;
+
+ free((*polynomial).monomials);
+ free((*polynomial).factors);
+ free((*polynomial).nums);
+
+ *polynomial=new_poly;
+ return(0);
+}
+
+// copy a polynomial
+int polynomial_cpy(Polynomial input, Polynomial* output){
+ init_Polynomial(output,input.length);
+ polynomial_cpy_noinit(input,output);
+ return(0);
+}
+int polynomial_cpy_noinit(Polynomial input, Polynomial* output){
+ int i;
+ if((*output).memory<input.length){
+ fprintf(stderr,"error: trying to copy a polynomial of length %d to another with memory %d\n",input.length,(*output).memory);
+ exit(-1);
+ }
+ for(i=0;i<input.length;i++){
+ int_array_cpy(input.monomials[i],(*output).monomials+i);
+ int_array_cpy(input.factors[i],(*output).factors+i);
+ number_cpy(input.nums[i],(*output).nums+i);
+ }
+ (*output).length=input.length;
+
+ return(0);
+}
+
+// append an element to a polynomial
+int polynomial_append(Int_Array monomial, Int_Array factor, Number num, Polynomial* output){
+ int offset=(*output).length;
+
+ if((*output).length>=(*output).memory){
+ resize_polynomial(output,2*(*output).memory+1);
+ }
+
+ // copy and allocate
+ int_array_cpy(monomial,(*output).monomials+offset);
+ int_array_cpy(factor,(*output).factors+offset);
+ number_cpy(num,(*output).nums+offset);
+ //increment length
+ (*output).length++;
+
+ return(0);
+}
+// append an element to a polynomial without allocating memory
+int polynomial_append_noinit(Int_Array monomial, Int_Array factor, Number num, Polynomial* output){
+ int offset=(*output).length;
+
+ if((*output).length>=(*output).memory){
+ resize_polynomial(output,2*(*output).memory+1);
+ }
+
+ // copy without allocating
+ (*output).monomials[offset]=monomial;
+ (*output).factors[offset]=factor;
+ (*output).nums[offset]=num;
+ // increment length
+ (*output).length++;
+ return(0);
+}
+// noinit, and if there already exists an element with the same monomial and factor, then just add numbers
+int polynomial_append_noinit_inplace(Int_Array monomial, Int_Array factor, Number num, Polynomial* output){
+ int i;
+ int foundit=0;
+ for(i=0;i<(*output).length;i++){
+ if(int_array_cmp(monomial, (*output).monomials[i])==0 && int_array_cmp(factor, (*output).factors[i])==0){
+ number_add_chain(num,(*output).nums+i);
+ foundit=1;
+ free_Number(num);
+ free_Int_Array(monomial);
+ free_Int_Array(factor);
+ break;
+ }
+ }
+ if(foundit==0){
+ polynomial_append_noinit(monomial, factor, num, output);
+ }
+ return(0);
+}
+
+// concatenate two polynomials
+int polynomial_concat(Polynomial input, Polynomial* output){
+ int i;
+ for(i=0;i<input.length;i++){
+ polynomial_append(input.monomials[i],input.factors[i],input.nums[i],output);
+ }
+ return(0);
+}
+// noinit
+int polynomial_concat_noinit(Polynomial input, Polynomial* output){
+ int i;
+ for(i=0;i<input.length;i++){
+ polynomial_append_noinit(input.monomials[i],input.factors[i],input.nums[i],output);
+ }
+
+ // free input arrays
+ free(input.monomials);
+ free(input.factors);
+ free(input.nums);
+ return(0);
+}
+// noinit, inplace
+int polynomial_concat_noinit_inplace(Polynomial input, Polynomial* output){
+ int i;
+ for(i=0;i<input.length;i++){
+ polynomial_append_noinit_inplace(input.monomials[i],input.factors[i],input.nums[i],output);
+ }
+
+ // free input arrays
+ free(input.monomials);
+ free(input.factors);
+ free(input.nums);
+ return(0);
+}
+
+// add polynomials
+int polynomial_add_chain(Polynomial input, Polynomial* inout, Fields_Table fields){
+ polynomial_concat(input,inout);
+ polynomial_simplify(inout, fields);
+ return(0);
+}
+// add polynomials (noinit)
+int polynomial_add_chain_noinit(Polynomial input, Polynomial* inout, Fields_Table fields){
+ polynomial_concat_noinit(input,inout);
+ polynomial_simplify(inout, fields);
+ return(0);
+}
+
+// multiply a polynomial by a scalar
+int polynomial_multiply_scalar(Polynomial polynomial, Number num){
+ int i;
+ for(i=0;i<polynomial.length;i++){
+ number_prod_chain(num,polynomial.nums+i);
+ }
+ return(0);
+}
+// multiply a polynomial by a rational number
+int polynomial_multiply_Qscalar(Polynomial polynomial, Q q){
+ int i;
+ for(i=0;i<polynomial.length;i++){
+ number_Qprod_chain(q,polynomial.nums+i);
+ }
+ return(0);
+}
+
+// change the sign of the monomials in a polynomial
+int polynomial_conjugate(Polynomial polynomial){
+ int i,j;
+ for(i=0;i<polynomial.length;i++){
+ for(j=0;j<polynomial.monomials[i].length;j++){
+ polynomial.monomials[i].values[j]*=-1;
+ }
+ }
+ return(0);
+}
+
+
+// returns an initialized polynomial, equal to 1
+Polynomial polynomial_one(){
+ Polynomial ret;
+ Int_Array dummy_monomial;
+ Int_Array dummy_factor;
+
+ init_Polynomial(&ret,1);
+ init_Int_Array(&dummy_monomial,1);
+ init_Int_Array(&dummy_factor,1);
+ polynomial_append_noinit(dummy_monomial,dummy_factor,number_one(),&ret);
+
+ return(ret);
+}
+
+// returns an initialized polynomial, equal to 0
+Polynomial polynomial_zero(){
+ Polynomial ret;
+ Int_Array dummy_monomial;
+ Int_Array dummy_factor;
+
+ init_Polynomial(&ret,1);
+ init_Int_Array(&dummy_monomial,1);
+ init_Int_Array(&dummy_factor,1);
+ polynomial_append_noinit(dummy_monomial,dummy_factor,number_zero(),&ret);
+
+ return(ret);
+}
+
+// check whether a polynomial is 0
+int polynomial_is_zero(Polynomial poly){
+ int i;
+ for(i=0;i<poly.length;i++){
+ if(number_is_zero(poly.nums[i])==0){
+ return(0);
+ }
+ }
+ return(1);
+}
+
+// compute V^p
+int polynomial_power(Polynomial input_polynomial, Polynomial* output, int power, Fields_Table fields){
+ int i,j;
+ int* current_term;
+ // out buffers: since we first check whether the monomial vanishes before adding it to the output,
+ // it is more efficient to concatenate the monomials in a separate variable, and then add it to the ouput
+ // instead of incrementally adding terms to the output
+ Int_Array out_monomial;
+ int monomial_size;
+ Int_Array out_factor;
+ int factor_size;
+ Number out_num;
+
+ init_Polynomial(output, POLY_SIZE);
+
+ // trivial case
+ if(power==0){
+ init_Int_Array(&out_monomial, 1);
+ init_Int_Array(&out_factor, 1);
+ polynomial_append_noinit(out_monomial, out_factor, number_one(), output);
+ return(0);
+ }
+
+ // initialize current term
+ current_term=calloc(power,sizeof(int));
+ for(i=0;i<power;i++){
+ current_term[i]=0;
+ }
+
+ // loop over terms; the loop stops when all the pointers in the list
+ // mentioned above are at the end of the input polynomial
+ while(current_term[0]<input_polynomial.length){
+ // compute the amount of memory to allocate
+ for(i=0,monomial_size=0,factor_size=0;i<power;i++){
+ monomial_size+=input_polynomial.monomials[current_term[i]].length;
+ factor_size+=input_polynomial.factors[current_term[i]].length;
+ }
+ // allocate
+ init_Int_Array(&out_monomial, monomial_size);
+ init_Int_Array(&out_factor, factor_size);
+ out_num=number_one();
+
+ // concatenate monomial and factor
+ for(i=0;i<power;i++){
+ int_array_concat(input_polynomial.monomials[current_term[i]],&out_monomial);
+ int_array_concat(input_polynomial.factors[current_term[i]],&out_factor);
+ number_prod_chain(input_polynomial.nums[current_term[i]], &out_num);
+ }
+
+ // check whether the monomial vanishes
+ if(check_monomial(out_monomial, fields)==1){
+ // multinomial combinatorial factor n!/(m1!m2!m3!...)
+ number_Qprod_chain(quot(factorial(power),multinomial(power,current_term)),&out_num);
+ // write monomials and factors
+ polynomial_append_noinit(out_monomial, out_factor, out_num, output);
+ }
+ else{
+ free_Int_Array(out_monomial);
+ free_Int_Array(out_factor);
+ free_Number(out_num);
+ }
+
+ // move to the next term of V^p by advancing the last pointer if possible,
+ // the next to last if not, and so forth, until all the pointers have
+ // reached the end of the input polynomial
+ (current_term[power-1])++;
+ // loop until the last pointer is in an adequate place or the first
+ // pointer has reached the end
+ for(i=power-2;current_term[0]<input_polynomial.length && current_term[power-1]>=input_polynomial.length;i--){
+ // try to advance pointer
+ (current_term[i])++;
+ // if the step fails, keep on looping, if not, set all the following
+ // pointers to the latest position
+ if(current_term[i]<input_polynomial.length){
+ for(j=i+1;j<power;j++){
+ current_term[j]=current_term[i];
+ }
+ }
+ }
+ }
+
+ polynomial_simplify(output, fields);
+
+ // free memory
+ free(current_term);
+ return(0);
+}
+
+
+// compute V*W
+int polynomial_prod(Polynomial input1, Polynomial input2, Polynomial* output, Fields_Table fields){
+ polynomial_cpy(input2,output);
+ polynomial_prod_chain(input1,output, fields);
+ return(0);
+}
+// chain
+int polynomial_prod_chain_nosimplify(Polynomial input, Polynomial* inout, Fields_Table fields){
+ // position in V and W
+ int pos1, pos2;
+ Int_Array out_monomial;
+ Int_Array out_factor;
+ Number out_num;
+ // save length of inout (which changes during the loop
+ int inout_length=(*inout).length;
+ // first position in input which can multiply a term of inout without vanishing
+ int firstpos;
+
+ // loop over terms
+ for(pos1=0;pos1<inout_length;pos1++){
+ // multiply first term of input to inout[pos1]
+ // search for the first possible product
+ firstpos=-1;
+ for(pos2=0; pos2<input.length; pos2++){
+ if(check_monomial_willnot_vanish((*inout).monomials[pos1],input.monomials[pos2],fields)==1){
+ firstpos=pos2;
+ pos2++;
+ break;
+ }
+ }
+
+ // if there was no possible product
+ if(firstpos==-1){
+ number_Qprod_chain(quot(0,1),(*inout).nums+pos1);
+ }
+ else{
+ // add other terms at the end of inout
+ for(;pos2<input.length;pos2++){
+ // check whether the term will vanish
+ if(check_monomial_willnot_vanish((*inout).monomials[pos1],input.monomials[pos2],fields)==1){
+ // allocate
+ init_Int_Array(&out_monomial, (*inout).monomials[pos1].length+input.monomials[pos2].length);
+ init_Int_Array(&out_factor, (*inout).factors[pos1].length+input.factors[pos2].length);
+
+ // concatenate monomial and factor
+ int_array_concat((*inout).monomials[pos1],&out_monomial);
+ int_array_concat(input.monomials[pos2],&out_monomial);
+ int_array_concat((*inout).factors[pos1],&out_factor);
+ int_array_concat(input.factors[pos2],&out_factor);
+ number_prod((*inout).nums[pos1],input.nums[pos2],&out_num);
+
+ // write monomials and factors
+ polynomial_append_noinit(out_monomial, out_factor, out_num, inout);
+ }
+ }
+ // first term
+ int_array_concat(input.monomials[firstpos],(*inout).monomials+pos1);
+ int_array_concat(input.factors[firstpos],(*inout).factors+pos1);
+ number_prod_chain(input.nums[firstpos],(*inout).nums+pos1);
+ }
+ }
+
+ return(0);
+}
+// simplify
+int polynomial_prod_chain(Polynomial input, Polynomial* inout, Fields_Table fields){
+ polynomial_prod_chain_nosimplify(input, inout, fields);
+ polynomial_simplify(inout, fields);
+ return(0);
+}
+
+// exp(V)
+int polynomial_exponential(Polynomial input_polynomial, Polynomial* output, Fields_Table fields){
+ // a buffer for the result of a given power
+ Polynomial tmp_poly;
+ // a buffer for the previous power
+ Polynomial previous_power;
+ // power
+ int power=1;
+ Int_Array out_monomial;
+ Int_Array out_factor;
+
+ // allocate memory
+ init_Polynomial(output,POLY_SIZE);
+
+ // 1
+ init_Int_Array(&out_monomial, 1);
+ init_Int_Array(&out_factor, 1);
+ polynomial_append_noinit(out_monomial, out_factor, number_one(), output);
+
+ while(1){
+ if(power>1){
+ if(power>33){
+ fprintf(stderr,"error: trying to take a power of a polynomial that is too high (>33)\n");
+ exit(-1);
+ }
+ // next power
+ polynomial_prod(input_polynomial,previous_power,&tmp_poly, fields);
+
+ // free
+ free_Polynomial(previous_power);
+ }
+ else{
+ polynomial_cpy(input_polynomial,&tmp_poly);
+ }
+
+ // if the power is high enough that V^p=0, then stop
+ if(tmp_poly.length==0){
+ free_Polynomial(tmp_poly);
+ break;
+ }
+
+ // copy for next power
+ polynomial_cpy(tmp_poly,&previous_power);
+
+ // 1/p!
+ polynomial_multiply_Qscalar(tmp_poly,quot(1,factorial(power)));
+ // append tmp to the output
+ polynomial_concat_noinit(tmp_poly,output);
+
+ // increase power
+ power++;
+ }
+
+ return(0);
+}
+
+
+// log(1+W)
+int polynomial_logarithm(Polynomial input_polynomial,Polynomial* output, Fields_Table fields){
+ // a buffer for the result of a given power
+ Polynomial tmp_poly;
+ // a buffer for the previous power
+ Polynomial previous_power;
+ // power
+ int power=1;
+
+ // allocate memory
+ init_Polynomial(output,POLY_SIZE);
+
+ while(1){
+ if(power>1){
+ // next power
+ polynomial_prod(input_polynomial,previous_power,&tmp_poly, fields);
+
+ // free
+ free_Polynomial(previous_power);
+ }
+ else{
+ polynomial_cpy(input_polynomial,&tmp_poly);
+ }
+
+ // if the power is high enough that V^p=0, then stop
+ if(tmp_poly.length==0){
+ free_Polynomial(tmp_poly);
+ break;
+ }
+
+ // copy for next power
+ polynomial_cpy(tmp_poly,&previous_power);
+
+ // (-1)^{p-1}/p
+ polynomial_multiply_Qscalar(tmp_poly,quot(ipower(-1,power-1),power));
+ // append tmp to the output
+ polynomial_concat_noinit(tmp_poly,output);
+
+ // increase power
+ power++;
+ }
+
+ return(0);
+}
+
+// check whether a monomial vanishes
+int check_monomial(Int_Array monomial, Fields_Table fields){
+ int i,j;
+ for(i=0;i<monomial.length;i++){
+ // check for repetitions
+ if(is_fermion(monomial.values[i], fields)==1){
+ for(j=i+1;j<monomial.length;j++){
+ if(monomial.values[j]==monomial.values[i]){
+ return(0);
+ }
+ }
+ }
+ }
+ return(1);
+}
+// check whether the product of two monomials will vanish
+int check_monomial_willnot_vanish(Int_Array monomial1, Int_Array monomial2, Fields_Table fields){
+ int i,j;
+ for(i=0;i<monomial1.length;i++){
+ // check for repetitions
+ if(is_fermion(monomial1.values[i], fields)==1){
+ for(j=0;j<monomial2.length;j++){
+ if(monomial2.values[j]==monomial1.values[i]){
+ return(0);
+ }
+ }
+ }
+ }
+ return(1);
+}
+
+// check whether one can add a term to a monomial without creating repetitions
+int check_monomial_addterm(Int_Array monomial, Int_Array term, Fields_Table fields){
+ int i,j;
+ for(i=0;i<term.length;i++){
+ // check for repetitions
+ if(is_fermion(term.values[i], fields)==1){
+ for(j=0;j<monomial.length;j++){
+ if(monomial.values[j]==term.values[i]){
+ return(0);
+ }
+ }
+ }
+ }
+ return(1);
+}
+
+// check whether a monomial vanishes or has unmatched +/- fields
+int check_monomial_match(Int_Array monomial, Fields_Table fields){
+ int i,j;
+ int match=0;
+ for(i=0;i<monomial.length;i++){
+ // count match
+ if(field_type(monomial.values[i], fields)==FIELD_INTERNAL){
+ if(monomial.values[i]>0){
+ match++;
+ }
+ else if(monomial.values[i]<0){
+ match--;
+ }
+ }
+
+ // check for repetitions
+ if(is_fermion(monomial.values[i], fields)==1){
+ for(j=i+1;j<monomial.length;j++){
+ if(monomial.values[j]==monomial.values[i]){
+ return(0);
+ }
+ }
+ }
+ }
+ if(match==0){
+ return(1);
+ }
+ else{
+ // different return codes depending on why the monomial was rejected
+ return(-1);
+ }
+}
+
+// remove terms with more plus internal fields than minus ones
+int remove_unmatched_plusminus(Polynomial* polynomial, Fields_Table fields){
+ int i,j;
+ int match_internals;
+ int type;
+ Polynomial output;
+
+ init_Polynomial(&output, (*polynomial).length);
+
+ for(i=0;i<(*polynomial).length;i++){
+ match_internals=0;
+ for(j=0;j<(*polynomial).monomials[i].length;j++){
+ // check for unmatched internal fields
+ type=field_type((*polynomial).monomials[i].values[j],fields);
+ if(type==FIELD_INTERNAL){
+ if((*polynomial).monomials[i].values[j]>0){
+ match_internals++;
+ }
+ else if((*polynomial).monomials[i].values[j]<0){
+ match_internals--;
+ }
+ }
+ // don't remove a term containing symbols
+ else if(type==FIELD_SYMBOL){
+ match_internals=0;
+ break;
+ }
+ }
+ if(match_internals==0){
+ polynomial_append((*polynomial).monomials[i], (*polynomial).factors[i], (*polynomial).nums[i], &output);
+ }
+ }
+
+ free_Polynomial(*polynomial);
+ *polynomial=output;
+ return(0);
+}
+
+
+// denominator of a multinomal factor: m1!m2!...
+// requires terms to be sorted
+int multinomial(int power,int* terms){
+ int multiple=1;
+ int ret=1;
+ int i;
+ // the number of numbers to be multiplied in the multinomial is
+ // equal to power-1 (the first is 1)
+ for(i=1;i<power;i++){
+ // if there is a degeneracy, then increment the multiple by
+ // which the multinomial is multiplied
+ if(terms[i-1]==terms[i]){
+ multiple++;
+ }
+ // if there is no degeneracy, reset it to 1
+ else{
+ multiple=1;
+ }
+ // multiply the result by the multiple
+ ret*=multiple;
+ }
+ return(ret);
+}
+
+
+// simplify a Polynomial
+// the fields table is there to compute the sign coming from re-arranging monomials
+int polynomial_simplify(Polynomial* polynomial, Fields_Table fields){
+ int i;
+ int monomial_cmp;
+ int factor_cmp;
+ int sign;
+ Polynomial output;
+ init_Polynomial(&output,(*polynomial).length);
+ // the combination of numerical factors
+ Number new_num;
+ init_Number(&new_num,NUMBER_SIZE);
+
+ // sort monomials and factors
+ for(i=0;i<(*polynomial).length;i++){
+ sign=1;
+ monomial_sort((*polynomial).monomials[i],0,(*polynomial).monomials[i].length-1,fields,&sign);
+ number_Qprod_chain(quot(sign,1),(*polynomial).nums+i);
+ int_array_sort((*polynomial).factors[i],0,(*polynomial).factors[i].length-1);
+ }
+
+ // resolve the identities specified in the fields table
+ resolve_ids(polynomial, fields);
+
+ // in order to perform a simplification, the list of terms must be
+ // sorted (so that terms that are proportional are next to each other)
+ polynomial_sort(polynomial,0,(*polynomial).length-1);
+
+ for(i=0;i<(*polynomial).length;i++){
+ // if the term actually exists
+ if(number_is_zero((*polynomial).nums[i])!=1){
+ // combine numerical factors
+ number_add_chain((*polynomial).nums[i], &new_num);
+ }
+ // if the numerator is 0, the previous terms that may have the same factors should still be added, hence the 'if' ends here
+
+ // if either the monomial or the factor is different from the next then add term
+ if(i<(*polynomial).length-1){
+ monomial_cmp=int_array_cmp((*polynomial).monomials[i],(*polynomial).monomials[i+1]);
+ factor_cmp=int_array_cmp((*polynomial).factors[i],(*polynomial).factors[i+1]);
+ }
+ if(i>=(*polynomial).length-1 || monomial_cmp!=0 || factor_cmp!=0 ){
+ // check that the polynomial is not trivial
+ if(number_is_zero(new_num)!=1){
+ polynomial_append((*polynomial).monomials[i],(*polynomial).factors[i],new_num,&output);
+ }
+
+ // reset new numerical factor
+ free_Number(new_num);
+ init_Number(&new_num,NUMBER_SIZE);
+ }
+ }
+
+ free_Number(new_num);
+ free_Polynomial(*polynomial);
+ *polynomial=output;
+ return(0);
+}
+
+// sort a polynomial
+// requires the monomials and factors to be sorted
+int polynomial_sort(Polynomial* polynomial, int begin, int end){
+ int i;
+ int index;
+ int monomial_cmp;
+ int factor_cmp;
+
+ // the pivot: middle of the array
+ int pivot=(begin+end)/2;
+ // if the array is non trivial
+ if(begin<end){
+ // send pivot to the end
+ exchange_polynomial_terms(pivot,end,polynomial);
+ // loop over the others
+ for(i=begin, index=begin;i<end;i++){
+ // compare with pivot
+ monomial_cmp=int_array_cmp((*polynomial).monomials[i],(*polynomial).monomials[end]);
+ factor_cmp=int_array_cmp((*polynomial).factors[i],(*polynomial).factors[end]);
+ if(monomial_cmp<0 || (monomial_cmp==0 && factor_cmp<0)){
+ // if smaller, exchange with reference index
+ exchange_polynomial_terms(i,index,polynomial);
+ // move reference index
+ index++;
+ }
+ }
+ // put pivot (which we had sent to the end) in the right place
+ exchange_polynomial_terms(index,end,polynomial);
+ // recurse
+ polynomial_sort(polynomial, begin, index-1);
+ polynomial_sort(polynomial, index+1, end);
+ }
+ return(0);
+}
+
+// exchange two terms (for the sorting algorithm)
+int exchange_polynomial_terms(int i, int j, Polynomial* polynomial){
+ Int_Array ptmp;
+ Number tmp;
+
+ ptmp=(*polynomial).monomials[j];
+ (*polynomial).monomials[j]=(*polynomial).monomials[i];
+ (*polynomial).monomials[i]=ptmp;
+
+ ptmp=(*polynomial).factors[j];
+ (*polynomial).factors[j]=(*polynomial).factors[i];
+ (*polynomial).factors[i]=ptmp;
+
+ tmp=(*polynomial).nums[j];
+ (*polynomial).nums[j]=(*polynomial).nums[i];
+ (*polynomial).nums[i]=tmp;
+
+ return(0);
+}
+
+// sort a monomial (with sign coming from exchanging two Fermions)
+int monomial_sort(Int_Array monomial, int begin, int end, Fields_Table fields, int* sign){
+ int i;
+ int index;
+ // the pivot: middle of the monomial
+ int pivot=(begin+end)/2;
+
+ // if the monomial is non trivial
+ if(begin<end){
+ // send pivot to the end
+ exchange_monomial_terms(monomial, pivot, end, fields, sign);
+
+ // loop over the others
+ for(i=begin, index=begin;i<end;i++){
+ // compare with pivot
+ if(compare_monomial_terms(monomial, i, end, fields)<0){
+ // if smaller, exchange with reference index
+ exchange_monomial_terms(monomial, index, i, fields, sign);
+ // move reference index
+ index++;
+ }
+ }
+ // put pivot (which we had sent to the end) in the right place
+ exchange_monomial_terms(monomial, index, end, fields, sign);
+
+ // recurse
+ monomial_sort(monomial, begin, index-1, fields, sign);
+ monomial_sort(monomial, index+1, end, fields, sign);
+ }
+ return(0);
+}
+
+// order fields: parameter, external, internal
+int compare_monomial_terms(Int_Array monomial, int pos1, int pos2, Fields_Table fields){
+ int type1=field_type(monomial.values[pos1], fields);
+ int type2=field_type(monomial.values[pos2],fields);
+
+ if(type1 < type2){
+ return(-1);
+ }
+ else if(type1 > type2){
+ return(1);
+ }
+
+ if(monomial.values[pos1] < monomial.values[pos2]){
+ return(-1);
+ }
+ else if (monomial.values[pos1] > monomial.values[pos2]){
+ return(1);
+ }
+
+ return(0);
+}
+
+// exchange two fields (with sign)
+int exchange_monomial_terms(Int_Array monomial, int pos1, int pos2, Fields_Table fields, int* sign){
+ int tmp=monomial.values[pos1];
+ int f1,f2;
+ int i;
+
+ monomial.values[pos1]=monomial.values[pos2];
+ monomial.values[pos2]=tmp;
+
+ // sign change
+ // only if the exchange is not trivial
+ if(pos1!=pos2){
+ f1=is_fermion(monomial.values[pos1],fields);
+ f2=is_fermion(monomial.values[pos2],fields);
+ // if both Fermions then sign
+ if(f1==1 && f2==1){
+ *sign*=-1;
+ }
+ // if only one of them is a Fermion, then count the number of Fermions between them
+ else if(f1==1 || f2==1){
+ for(i=min(pos1,pos2)+1;i<max(pos1,pos2);i++){
+ if(is_fermion(monomial.values[i],fields)==1){
+ *sign*=-1;
+ }
+ }
+ }
+ }
+ return(0);
+}
+
+
+// sort a monomial by putting each group together
+int monomial_sort_groups(Int_Array monomial, int begin, int end, Fields_Table fields, Groups groups, int* sign){
+ int i;
+ int index;
+ // the pivot: middle of the monomial
+ int pivot=(begin+end)/2;
+
+ // if the monomial is non trivial
+ if(begin<end){
+ // send pivot to the end
+ exchange_monomial_terms(monomial, pivot, end, fields, sign);
+
+ // loop over the others
+ for(i=begin, index=begin;i<end;i++){
+ // compare with pivot
+ if(compare_monomial_terms_groups(monomial, i, end, fields, groups)<0){
+ // if smaller, exchange with reference index
+ exchange_monomial_terms(monomial, index, i, fields, sign);
+ // move reference index
+ index++;
+ }
+ }
+ // put pivot (which we had sent to the end) in the right place
+ exchange_monomial_terms(monomial, index, end, fields, sign);
+
+ // recurse
+ monomial_sort(monomial, begin, index-1, fields, sign);
+ monomial_sort(monomial, index+1, end, fields, sign);
+ }
+ return(0);
+}
+
+// order fields: group, then parameter, external, internal
+int compare_monomial_terms_groups(Int_Array monomial, int pos1, int pos2, Fields_Table fields, Groups groups){
+ int group1=find_group(monomial.values[pos1], groups);
+ int group2=find_group(monomial.values[pos2], groups);
+
+ if(group1 < group2){
+ return(-1);
+ }
+ else if(group1 > group2){
+ return(1);
+ }
+
+ int type1=field_type(monomial.values[pos1], fields);
+ int type2=field_type(monomial.values[pos2],fields);
+
+ if(type1 < type2){
+ return(-1);
+ }
+ else if(type1 > type2){
+ return(1);
+ }
+
+ if(monomial.values[pos1] < monomial.values[pos2]){
+ return(-1);
+ }
+ else if (monomial.values[pos1] > monomial.values[pos2]){
+ return(1);
+ }
+
+ return(0);
+}
+
+
+// convert and idtable to a polynomial
+int idtable_to_polynomial(Id_Table idtable, Polynomial* polynomial){
+ int i,j;
+ int start=0;
+
+ // allocate memory
+ init_Polynomial(polynomial,POLY_SIZE);
+
+ for(i=0;i<idtable.length;i++){
+ polynomial_concat(idtable.polynomials[i],polynomial);
+ // set factors
+ for(j=start;j<(*polynomial).length;j++){
+ int_array_append(idtable.indices[i],(*polynomial).factors+j);
+ }
+ // shift start point
+ start+=idtable.polynomials[i].length;
+ }
+
+ return(0);
+}
+
+
+// replace the factors in a polynomial as prescribed by an equation in the form of a Grouped_Polynomial
+int replace_factors(Grouped_Polynomial equations, Polynomial* polynomial){
+ int i,j;
+ int index;
+ Polynomial output;
+ Coefficient coef;
+
+ init_Polynomial(&output, POLY_SIZE);
+
+ // loop over monomials
+ for(i=0;i<(*polynomial).length;i++){
+ if((*polynomial).factors[i].length>0){
+ // initialize coef to store the product of factors
+ init_Coefficient(&coef, POLY_SIZE);
+
+ // first term
+ index=intlist_find_err(equations.indices, equations.length, (*polynomial).factors[i].values[0]);
+ if(index>=0){
+ coefficient_cpy_noinit(equations.coefs[index],&coef);
+ }
+
+ // other terms
+ for(j=1;j<(*polynomial).factors[i].length;j++){
+ index=intlist_find_err(equations.indices, equations.length, (*polynomial).factors[i].values[j]);
+ if(index>=0){
+ coefficient_prod_chain(equations.coefs[index],&coef);
+ }
+ }
+
+ // new polynomial terms
+ for(j=0;j<coef.length;j++){
+ // add to output
+ polynomial_append((*polynomial).monomials[i], coef.factors[j], number_prod_ret((*polynomial).nums[i],coef.nums[j]), &output);
+ }
+
+ // free memory
+ free_Coefficient(coef);
+ }
+ // if no factors
+ else{
+ polynomial_append((*polynomial).monomials[i], (*polynomial).factors[i], (*polynomial).nums[i], &output);
+ }
+ }
+
+ // replace output
+ free_Polynomial(*polynomial);
+ *polynomial=output;
+
+ return(0);
+}
+
+
+// print a polynomial to a string
+int polynomial_sprint(Polynomial polynomial, Char_Array* output){
+ int i,j;
+
+ // for each monomial
+ for(i=0;i<polynomial.length;i++){
+ if(i==0){
+ char_array_snprintf(output, " ");
+ }
+ else{
+ char_array_snprintf(output, "+ ",i);
+ }
+
+ // print num
+ char_array_append('(',output);
+ number_sprint(polynomial.nums[i],output);
+ char_array_append(')',output);
+
+ // print factors
+ for(j=0;j<polynomial.factors[i].length;j++){
+ char_array_snprintf(output,"[l%d]",polynomial.factors[i].values[j]);
+ }
+
+ // print monomials
+ for(j=0;j<polynomial.monomials[i].length;j++){
+ char_array_snprintf(output,"[f%d]",polynomial.monomials[i].values[j]);
+ }
+
+ char_array_append('\n',output);
+ }
+ return(0);
+}
+// print
+int polynomial_print(Polynomial polynomial){
+ Char_Array buffer;
+ init_Char_Array(&buffer, STR_SIZE);
+ polynomial_sprint(polynomial, &buffer);
+ printf("%s",buffer.str);
+ free_Char_Array(buffer);
+ return(0);
+}
+
+// read a polynomial from a Char_Array
+#define PP_NULL_MODE 0
+#define PP_BRACKET_MODE 1
+#define PP_MONOMIAL_MODE 2
+#define PP_FACTOR_MODE 3
+#define PP_NUMBER_MODE 4
+int Char_Array_to_Polynomial(Char_Array str_polynomial,Polynomial* output){
+ // buffer
+ char* buffer=calloc(str_polynomial.length+1,sizeof(char));
+ char* buffer_ptr=buffer;
+ Int_Array monomial;
+ Int_Array factor;
+ Number num, tmp1_num;
+ int mode;
+ int comment=0;
+ int i,j;
+ int parenthesis_count=0;
+
+ // allocate memory
+ init_Polynomial(output,POLY_SIZE);
+
+ // init
+ init_Int_Array(&monomial, MONOMIAL_SIZE);
+ init_Int_Array(&factor, MONOMIAL_SIZE);
+ num=number_one();
+
+ // if the string contains no '[', then read a number
+ for(j=0;j<str_polynomial.length;j++){
+ // ignore comments
+ if(comment==1){
+ if(str_polynomial.str[j]=='\n'){
+ comment=0;
+ }
+ }
+ else{
+ if(str_polynomial.str[j]=='['){
+ break;
+ }
+ if(str_polynomial.str[j]=='#'){
+ comment=1;
+ }
+ }
+ }
+ // no '[': read a number
+ if(j==str_polynomial.length){
+ free_Number(num);
+ char_array_to_Number(str_polynomial,&num);
+ polynomial_append_noinit(monomial, factor, num, output);
+ free(buffer);
+ return(0);
+ }
+
+ // reset comment flag
+ comment=0;
+
+ *buffer_ptr='\0';
+ // loop over the input polynomial
+ // start in null mode
+ mode=PP_NULL_MODE;
+ for(j=0;j<str_polynomial.length;j++){
+ if(comment==1){
+ if(str_polynomial.str[j]=='\n'){
+ comment=0;
+ }
+ }
+ else{
+ switch(str_polynomial.str[j]){
+ // new monomial
+ case '+':
+ if(mode==PP_NULL_MODE){
+ polynomial_append_noinit(monomial, factor, num, output);
+ // reset monomial, factor, num
+ init_Int_Array(&monomial, MONOMIAL_SIZE);
+ init_Int_Array(&factor, MONOMIAL_SIZE);
+ num=number_one();
+ }
+ break;
+
+ // enter monomial or factor mode
+ case '[':
+ if(mode==PP_NULL_MODE){
+ mode=PP_BRACKET_MODE;
+ }
+ break;
+ // factor mode
+ case 'l':
+ if(mode==PP_BRACKET_MODE){
+ mode=PP_FACTOR_MODE;
+ buffer_ptr=buffer;
+ *buffer_ptr='\0';
+ }
+ break;
+ // monomial mode
+ case 'f':
+ if(mode==PP_BRACKET_MODE){
+ mode=PP_MONOMIAL_MODE;
+ buffer_ptr=buffer;
+ *buffer_ptr='\0';
+ }
+ break;
+ // read monomial or factor
+ case ']':
+ sscanf(buffer,"%d",&i);
+ if(mode==PP_FACTOR_MODE){
+ int_array_append(i,&factor);
+ }
+ else if(mode==PP_MONOMIAL_MODE){
+ int_array_append(i,&monomial);
+ }
+ // switch back to null mode
+ mode=PP_NULL_MODE;
+ break;
+
+ // numerical pre-factor
+ case '(':
+ if(mode==PP_NULL_MODE){
+ mode=PP_NUMBER_MODE;
+ parenthesis_count=0;
+ buffer_ptr=buffer;
+ *buffer_ptr='\0';
+ }
+ else if(mode==PP_NUMBER_MODE){
+ // match parentheses
+ parenthesis_count++;
+ buffer_ptr=str_addchar(buffer_ptr,str_polynomial.str[j]);
+ }
+ break;
+ case ')':
+ if(mode==PP_NUMBER_MODE){
+ if(parenthesis_count==0){
+ // write num
+ str_to_Number(buffer,&tmp1_num);
+ number_prod_chain(tmp1_num,&num);
+ free_Number(tmp1_num);
+ // back to null mode
+ mode=PP_NULL_MODE;
+ }
+ else{
+ parenthesis_count--;
+ buffer_ptr=str_addchar(buffer_ptr,str_polynomial.str[j]);
+ }
+ }
+ break;
+
+ // characters to ignore
+ case ' ':break;
+ case '&':break;
+ case '\n':break;
+
+ // comments
+ case '#':
+ comment=1;
+ break;
+
+ default:
+ if(mode!=PP_NULL_MODE){
+ // write to buffer
+ buffer_ptr=str_addchar(buffer_ptr,str_polynomial.str[j]);
+ }
+ break;
+ }
+ }
+ }
+
+ // last term
+ polynomial_append_noinit(monomial, factor, num, output);
+
+ free(buffer);
+ return(0);
+}
+
+// with str input
+int str_to_Polynomial(char* str_polynomial,Polynomial* output){
+ Char_Array buffer;
+ str_to_char_array(str_polynomial, &buffer);
+ Char_Array_to_Polynomial(buffer, output);
+ free_Char_Array(buffer);
+ return(0);
+}
+
+
+// -------------------- Polynomial_Matrix ---------------------
+
+// init
+int init_Polynomial_Matrix(Polynomial_Matrix* matrix, int length){
+ int i,j;
+ (*matrix).matrix=calloc(length,sizeof(Polynomial*));
+ (*matrix).indices=calloc(length,sizeof(int));
+ for(i=0;i<length;i++){
+ (*matrix).matrix[i]=calloc(length,sizeof(Polynomial));
+ for(j=0;j<length;j++){
+ (*matrix).matrix[i][j]=polynomial_zero();
+ }
+ }
+ (*matrix).length=length;
+ return(0);
+}
+int free_Polynomial_Matrix(Polynomial_Matrix matrix){
+ int i,j;
+ for(i=0;i<matrix.length;i++){
+ for(j=0;j<matrix.length;j++){
+ free_Polynomial(matrix.matrix[i][j]);
+ }
+ free(matrix.matrix[i]);
+ }
+ free(matrix.matrix);
+ free(matrix.indices);
+ return(0);
+}