diff options
| -rw-r--r-- | Carlen_Jauslin_Lieb_2020.tex | 107 | ||||
| -rw-r--r-- | Changelog | 9 | 
2 files changed, 93 insertions, 23 deletions
diff --git a/Carlen_Jauslin_Lieb_2020.tex b/Carlen_Jauslin_Lieb_2020.tex index 1bbf607..b98df80 100644 --- a/Carlen_Jauslin_Lieb_2020.tex +++ b/Carlen_Jauslin_Lieb_2020.tex @@ -125,10 +125,10 @@ Along with the computation of the low density energy of the simple equation in o    for $N$ particles in a cubic box of  finite volume $V$ with periodic boundary conditions.    The ground state eigenfunction $\psi_0$ is unique and non-negative, as can be shown using the Perron-Frobenius theorem, and thus we may normalize $\psi_0$ to obtain a probability measure.  This is not the usual probability measure associated to a quantum state, which would be quadratic in the wave function, but since $\psi_0$ is non-negative and integrable ($\|\psi_0\|_1 \leqslant V^{1/2}\|\psi_0\|_2$), we may use it directly to define a probability measure, and this is the starting point of \cite{Li63}.  Because particles interact pairwise,  the ground state energy and other observables can be calculated in terms of the two-point correlation function associated to this probability measure:  \begin{equation} -  g_N(x_1-x_2) := \lim_{N,V\to\infty, N/V = \rho}\frac{V^2\int dx_3\cdots dx_N\ \psi_0(x_1,x_2,x_3,\dots,x_N)}{\int dy_1\cdots dy_N\ \psi_0(y_1,\dots,y_N )} +  g(x_1-x_2) := \lim_{N,V\to\infty, N/V = \rho}\frac{V^2\int dx_3\cdots dx_N\ \psi_0(x_1,x_2,x_3,\dots,x_N)}{\int dy_1\cdots dy_N\ \psi_0(y_1,\dots,y_N )}  \end{equation} -  In \cite{Li63}, under a few physically motivated approximations, in the thermodynamic limit, in which the number of particles $N$ and the volume of the gas $V$ are taken to infinity, with $\rho:=\frac NV$ fixed, an equation for the limiting two-point correlation function $g_{\infty}$ is derived. -  The function $u(x)$ in \eqref{simp} is then defined as $u(x):=1- g_{\infty}(x)$. Note that since by definition $g_{\infty}(x) \geqslant 0$, $u(x) \leqslant 1$.  +  In \cite{Li63}, under a few physically motivated approximations, in the thermodynamic limit, in which the number of particles $N$ and the volume of the gas $V$ are taken to infinity, with $\rho:=\frac NV$ fixed, an equation for the limiting two-point correlation function $g$ is derived. +  The function $u(x)$ in \eqref{simp} is then defined as $u(x):=1- g(x)$. Note that since by definition $g(x) \geqslant 0$, $u(x) \leqslant 1$.     Because the expected values in the ground state of  many physical observables can be calculated in terms of $g$, any method for computing $g$ that bypasses directly solving the $N$-body Schr\"odinger equation for the Hamiltonian  \eqref{ham0} provides an effective means for the computation of these  values, and this motivates the study of  the simple equation system\-~(\ref{simp}). Indeed, the ground state energy per particle is given in terms of $g$ by the second equation in \eqref{simp}.  There is so far no rigorous derivation of \eqref{simp} from the $N$-body Schr\"odinger equation,  and hence there is no mathematical  @@ -325,7 +325,7 @@ We shall also need various $L^p$ bounds on $u'$, and for these we need a detaile    If $(1+ |x|^4)v(x)\in L^1(\mathbb R^3)\cap L^2(\mathbb R^3)$, then    \begin{equation}      \rho u(x)= -    \frac{\sqrt{2+\beta}}{2\pi^2\sqrt{e}}\frac1{1+|x|^{4}} +    \frac{\sqrt{2+\beta}}{2\pi^2\sqrt{e}}\frac1{|x|^{4}}      +      R(x)      \label{udecay} @@ -336,18 +336,13 @@ We shall also need various $L^p$ bounds on $u'$, and for these we need a detaile      ,    \end{equation}    and  where $|x|^4R(x)$ is in $L^2(\mathbb R^3)\cap L^\infty(\R^3)$, uniformly in $e$ on all compact sets. - Moreover,  there is a constant $C$ independent of $e$ and $\rho$ such that for all $x$ + Moreover, for every $\rho_0>0$, there is a constant $C$ that only depends on $\rho_0$ such that for all $x$, for all $\rho<\rho_0$,    \begin{equation}\label{fourdecay} - u(x) \leqslant C \rho^{-1}e^{-1/2}\frac{1}{1 + |x|^4}\ .  +   u(x) \leqslant \min\left\{1,\frac C{\rho e^{\frac12}|x|^4}\right\}\ .    \end{equation}  \end{theorem} -\begin{remark} -  Theorem\-~\ref{theo:pointwise} actually holds with the condition that $|x|^4 v\in L^1(\mathbb R^3)$, without necessarily being in $L^2(\mathbb R^3)$, together with the condition $v\in L^1(\R^3)\cap L^2(\R^3)$, but the proof of that is a bit more involved, and will not be presented here.   -\end{remark} -  -  The next two theorems concern the monotonicity of $\rho\mapsto e(\rho)$ and convexity if $\rho\mapsto\rho e(\rho)$.  These were conjectured in\-~\cite{CJL20}, and here, we prove them for small density $\rho$ (and, in the case of the monotonicity, also for large density). @@ -600,7 +595,7 @@ This provides  the control on $\|u'\|_q$ that we need to prove the theorem on co  \begin{remark}    As stated at the very beginning of the paper, we assume that $v$ is spherically symmetric.    This is, however, used very little in the proofs. -  In fact, the only theorem which relies on the spherical symmetry is theorem\-~\ref{theo:pointwise}. +  In fact, the only theorem that relies on the spherical symmetry is theorem\-~\ref{theo:pointwise}.    We believe it should still hold (provided the decay constant in\-~(\ref{udecay}) is suitably adapted) without the spherical symmetry.    In this case, the other theorems would not require the spherical symmetry.  \end{remark} @@ -665,6 +660,7 @@ This provides  the control on $\|u'\|_q$ that we need to prove the theorem on co      U_1(x)=\frac{e^{\frac32}}\pi e^{-2\sqrt e|x|}      -\frac1\pi \left(\delta(x)+\frac{(\beta+1)e}\pi\frac{e^{-2\sqrt e|x|}}{|x|}\right)      \ast f_1\ast f_2 +    \label{U1}    \end{equation}    where    \begin{equation} @@ -676,11 +672,13 @@ This provides  the control on $\|u'\|_q$ that we need to prove the theorem on co      =\frac{e}{\pi|x|}  \int_0^\infty e^{-\sqrt{2+\beta + t}(2\sqrt{e}|x|)}  t^{-1/2} dt\ ,    \end{equation}    now, for all $T>0$, -  \begin{eqnarray*} -  \int_0^\infty e^{-\sqrt{2+\beta + t}(2\sqrt{e}|x|)}  t^{-1/2}\ dt &=& \int_0^{T} e^{-\sqrt{2+\beta + t}(2\sqrt{e}|x|)}  t^{-1/2}+\int_{T}^\infty e^{-\sqrt{2+\beta + t}(2\sqrt{e}|x|)}  t^{-1/2}\ dt\\ -  &\leqslant& \int_0^{T} e^{-\sqrt{2+\beta}(2\sqrt{e}|x|)}  t^{-1/2}+\int_{T}^\infty e^{-\sqrt{ t}(2\sqrt{e}|x|)}  t^{-1/2}\ dt\\ -  &=& 2 T^{1/2} e^{-\sqrt{2+\beta}(2\sqrt{e}|x|)}  +  \frac{1}{\sqrt{e}|x|}e^{-\sqrt{T}(2\sqrt{e}|x|)}\ . -  \end{eqnarray*} +  \begin{eqnarray} +  \int_0^\infty e^{-\sqrt{2+\beta + t}(2\sqrt{e}|x|)}  t^{-1/2}\ dt &=& \int_0^{T} e^{-\sqrt{2+\beta + t}(2\sqrt{e}|x|)}  t^{-1/2}+\int_{T}^\infty e^{-\sqrt{2+\beta + t}(2\sqrt{e}|x|)}  t^{-1/2}\ dt +  \nonumber\\ +  &\leqslant& +  2 T^{1/2} e^{-\sqrt{2+\beta}(2\sqrt{e}|x|)}  +  \frac{1}{\sqrt{e}|x|}e^{-\sqrt{T}(2\sqrt{e}|x|)}\ . +  \label{boundf2} +  \end{eqnarray}    Choosing $T = 2+\beta$, we see that for large $(2\sqrt{e}|x|)$, $0 \leqslant f_2(x) \leqslant C e^{-\sqrt{2+\beta}(2\sqrt{e}|x|)}$.    Furthermore,    \begin{equation} @@ -689,14 +687,16 @@ This provides  the control on $\|u'\|_q$ that we need to prove the theorem on co      \frac{e^{\frac32}}{\pi^3}\frac1{|x|^2}\ast g      ,\quad      g(x)=\frac{(1-\sqrt e|x|)e^{-(2\sqrt e)|x|}}{|x|} +    \label{g}    \end{equation}    Using     \begin{equation} -  \frac{1}{|x-y|^2} = \frac{1}{1+|x|^2} +  \frac{1-|y|^2 + 2x\cdot y}{ (1+|x|^2)|x-y|^2} +  \frac{1}{|x-y|^2} = \frac{1}{|x|^2} +  \frac{-|y|^2 + 2x\cdot y}{|x|^2|x-y|^2}    \end{equation}    twice and the fact that $g(y)$ is even, integrates to zero, and $\int y g(y)\ dy=0$,    \begin{equation} -  f_1(x) = \frac{1}{(1+|x|^2)^2}  \frac{e^{\frac32}}{\pi^3}\left( - \int_{\R^3} |y|^2 g(y){\rm d} y  +   \int_{\R^3}  \frac{(1-|y|^2 + 2x\cdot y)^2}{ |x-y|^2}g(y) {\rm d} y\right) +  f_1(x) = \frac{1}{|x|^4}  \frac{e^{\frac32}}{\pi^3}\left( - \int_{\R^3} |y|^2 g(y){\rm d} y  +   \int_{\R^3}  \frac{(-|y|^2 + 2x\cdot y)^2}{|x-y|^2}g(y) {\rm d} y\right) +  \label{f1}    \end{equation}    We compute    $ @@ -708,7 +708,58 @@ This provides  the control on $\|u'\|_q$ that we need to prove the theorem on co    Therefore,    \begin{equation}    \lim_{|x|\to \infty} |x|^4 f_1(x) =  -\frac{1}{2\pi^2\sqrt e} \qquad{\rm and}\qquad   \lim_{|x|\to \infty} |x|^4 U_1(x)  =  \frac{1}{2\pi^2\sqrt e}\sqrt{2+\beta}\ . +  \label{U1decay} +  \end{equation} +  \bigskip + +  \indent +  We now turn to an upper bound of $U_1$. +  First of all, if $|x|\leqslant\frac1{\sqrt e}$, then by\-~(\ref{g}) and\-~(\ref{f1}), +  \begin{equation} +    f_1(x)\geqslant 0 +  \end{equation} +  and if $|x|>\frac1{\sqrt e}$, then +  \begin{equation} +     f_1(x)\geqslant +     -\frac{1}{|x|^4}  \frac{e^{2}}{\pi^3}\int_{\mathbb R^3}  \frac{(-|y|^2 + 2x\cdot y)^2}{ |x-y|^2}e^{-(2\sqrt e)|y|} {\rm d} y +     . +  \end{equation} +  We split the integral into two parts: $|y-x|>|x|$ and $|y-x|<|x|$. +  We have, (recalling $|x|>\frac1{\sqrt e}$), +  \begin{equation} +     \int_{|y-x|>|x|}  \frac{(-|y|^2 + 2x\cdot y)^2}{ |x-y|^2}e^{-(2\sqrt e)|y|} {\rm d} y +     \leqslant +     e^{-\frac52}C +  \end{equation} +  for some constant $C$ (we use a notation where the constant $C$ may change from one line to the next). +  Now, +  \begin{equation} +     \int_{|y-x|<|x|}  \frac{(-|y|^2 + 2x\cdot y)^2}{ |x-y|^2}e^{-(2\sqrt e)|y|} {\rm d} y +     \leqslant +     e^{-\sqrt e|x|}\int_{|y-x|<|x|}  \frac{(|y|^2 + 2|x||y|)^2}{ |x-y|^2} {\rm d} y +     \leqslant +     |x|^5e^{-\sqrt e|x|}C +     .    \end{equation} +  Therefore, for all $x$, +  \begin{equation} +    f_1(x)\geqslant +    -\frac{1}{|x|^4}C(e^{-\frac12}+e^2|x|^4e^{-\sqrt e|x|}) +    . +  \end{equation} +  Finally, by use\-~(\ref{boundf2}), +  \begin{equation} +    |x|^4\left(\delta(x)+\frac{(\beta+1)e}{\pi}\frac{e^{-2\sqrt e|x|}}{|x|}\right)\ast f_1\ast f_2(x)\geqslant +    -Ce^{-\frac12} +    . +  \end{equation} +  All in all, by\-~(\ref{U1}), (since $|x|^4e^{\frac32}e^{-2\sqrt e|x|}<Ce^{-\frac12}$) +  \begin{equation} +    |x|^4U_1(x)\leqslant Ce^{-\frac12} +    . +    \label{boundU1} +  \end{equation} +  \bigskip    \point    We now show that $\Delta^2\widehat U_2$ is integrable and square-integrable. @@ -716,6 +767,7 @@ This provides  the control on $\|u'\|_q$ that we need to prove the theorem on co    \begin{equation}      16e^2\Delta^2\equiv\partial_\kappa^4+\frac4\kappa\partial_\kappa^3      . +    \label{D2}    \end{equation}    We have, by the Leibniz rule,    \begin{equation} @@ -739,6 +791,7 @@ This provides  the control on $\|u'\|_q$ that we need to prove the theorem on co    for some family of constants $c_{l_1,\cdots,l_p}^{(p,n)}$ which can easily be computed explicitly, but this is not needed.    Now, since $S\geqslant 0$, $\frac\rho{1e}|\widehat S|\leqslant 1$, so $|\zeta_1|\leqslant\frac12$ and $\zeta_1=\frac12$ if and only if $\kappa=0$.    Therefore, $\widehat U_2$ is bounded when $\kappa$ is away from 0, so it suffices to show that $\Delta^2\widehat U_2$ is integrable and square integrable at infinity and at 0. +  \bigskip    \subpoint We first consider the behavior at infinity, and assume that $\kappa$ is sufficiently large. @@ -746,7 +799,7 @@ This provides  the control on $\|u'\|_q$ that we need to prove the theorem on co    To prove the corresponding claim for $\zeta_1$, we use the fact that $|x|^4 v$ square integrable, which implies that $\widehat S$ is as well.    Therefore, by\-~(\ref{zetas}) for $0\leqslant n\leqslant 4$, $\kappa^2\partial_\kappa^n\zeta_1$ is integrable at infinity, and, therefore, square-integrable at infinity.    Furthermore, by\-~(\ref{zetas}), $\zeta_1<\frac12-\epsilon$ for large $\kappa$, and $\partial^n\zeta_1$ is bounded, so $\partial_\kappa^{n-i}(\kappa^2+1)\partial_\kappa^i(1-\sqrt{1-2\zeta_1})$ is integrable and square integrable. -    +  \bigskip    \subpoint As $\kappa\to0$    \begin{equation} @@ -787,7 +840,7 @@ This provides  the control on $\|u'\|_q$ that we need to prove the theorem on co      =O(\kappa^{1-i})      .    \end{equation} -  Thus, by\-~(\ref{leibnitz}), +  Thus, by\-~(\ref{leibnitz}), as $\kappa\to0$,    \begin{equation}      |\partial_\kappa^4\widehat U_2|=O(\kappa^{-1})      ,\quad @@ -795,7 +848,15 @@ This provides  the control on $\|u'\|_q$ that we need to prove the theorem on co      .    \end{equation}    Thus, $\Delta^2\widehat U_2$ is integrable and square integrable. -  And since the $O(\cdot)$ hold uniformly in $e$ on all compact sets, $U_2|x|^4$ is bounded and square integrable uniformly in $e$ on all compact sets. +  And since the $O(\cdot)$ hold uniformly in $e$ on all compact sets, by\-~(\ref{D2}), +  \begin{equation} +    |x|^4U_2(x) +    \leqslant +    \frac{8e^{\frac32}}{16e^2}\int \left(\partial_{|k|}^4+\frac4{|k|}\partial_{|k|}^3\right)\hat U_2(|k|)\ dk +    \leqslant\frac C{\sqrt e} +    . +  \end{equation} +  This along with\-~(\ref{U1decay}) and\-~(\ref{boundU1}) implies\-~(\ref{udecay}) and\-~(\ref{fourdecay}).  \qed @@ -1849,7 +1910,7 @@ $$  $$  \end{proof} -It now follows that with $e_\star$ define as in  Theorem~\ref{Mon}, on account of the bound on $\rho'$ proved there, and on account of Theorem~\ref{theo:pointwise} that there is a constant independent of $e$ such that for all $e\leqslant e_\star$, +It now follows that with $e_\star$ defined as in  Theorem~\ref{Mon}, on account of the bound on $\rho'$ proved there, and on account of Theorem~\ref{theo:pointwise} that there is a constant independent of $e$ such that for all $e\leqslant e_\star$,  \begin{equation}\label{varphipointwise}  |\varphi(x)| \leqslant Ce^{-3/2}(1 + |x|^4)^{-1}\ .  \end{equation} @@ -1,3 +1,12 @@ +v0.2: + +  * Changed: more precise statement of the bound on the large x decay of u (Theorem 1.2) + +  * Added: more details in the proof of the large x decay of u (Theorem 1.2) + +  * Fixed: miscellaneous typos. + +  v0.1:    * Added: references to [Nelson, 1964] and [Reed, Simon, 1975].  | 
