Ian Jauslin
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Giuliani_Jauslin_2015.tex4
1 files changed, 2 insertions, 2 deletions
diff --git a/Giuliani_Jauslin_2015.tex b/Giuliani_Jauslin_2015.tex
index fd45555..65d8bd2 100644
--- a/Giuliani_Jauslin_2015.tex
+++ b/Giuliani_Jauslin_2015.tex
@@ -574,8 +574,8 @@ where $\mathcal H_0$ is the {\it free Hamiltonian} and $\mathcal H_I$ is the {\i
\end{array}\label{hamx}\end{equation}
Equation~(\ref{hamx}) can be rewritten in Fourier space as follows. We define the Fourier transform of the annihilation operators as
\begin{equation} \hat a_{k}:=\sum_{x\in\Lambda}e^{ikx}a_{x}\;,\quad
-\hat{\tilde b}_{k}:=\sum_{x\in\Lambda}e^{ikx}\hat{\tilde b}_{x+\delta_1}\;,\quad
-\hat{\tilde a}_{k}:=\sum_{x\in\Lambda}e^{ikx}\hat{\tilde a}_{x-\delta_1}\;,\quad
+\hat{\tilde b}_{k}:=\sum_{x\in\Lambda}e^{ikx}\tilde b_{x+\delta_1}\;,\quad
+\hat{\tilde a}_{k}:=\sum_{x\in\Lambda}e^{ikx}\tilde a_{x-\delta_1}\;,\quad
\hat b_{k}:=\sum_{x\in\Lambda}e^{ikx}b_{x+\delta_1}\;\end{equation}
in terms of which
\begin{equation}