diff options
-rw-r--r-- | Benfatto_Gallavotti_Jauslin_2015.tex | 6 |
1 files changed, 3 insertions, 3 deletions
diff --git a/Benfatto_Gallavotti_Jauslin_2015.tex b/Benfatto_Gallavotti_Jauslin_2015.tex index 002f209..6c9de92 100644 --- a/Benfatto_Gallavotti_Jauslin_2015.tex +++ b/Benfatto_Gallavotti_Jauslin_2015.tex @@ -70,7 +70,7 @@ H_0=&\sum_{\alpha\in\{\uparrow,\downarrow\}}\sum_{x=-{L}/2}^{{L}/2-1} c^+_\alpha(x)\,\left(-\frac{\Delta}2-1\right)\,c^-_\alpha(x)\\[0.75cm] H_K=&H_0+V_0+V_h:= H_0+V\\[0.25cm] V_0=&-\lambda_0\sum_{j=1,2,3}\sum_{\alpha_1,\alpha_2,\alpha_3,\alpha_4}c^+_{\alpha_1}(0)\sigma^j_{\alpha_1,\alpha_2}c^-_{\alpha_2}(0)\, d^+_{\alpha_3}\sigma^j_{\alpha_3,\alpha_4}d^-_{\alpha_4}\\[0.75cm] -V_h=& -h \, \sum_{\alpha\in\uparrow,\downarrow}d^+_\alpha\sigma^3_{\alpha,\alpha} d_\alpha^- +V_h=& -h \, \sum_{(\alpha,\alpha')\in\{\uparrow,\downarrow\}^2}d^+_\alpha\sigma^3_{\alpha,\alpha'} d_{\alpha'}^- \label{eqhamkondo}\end{array}\end{equation} where $\lambda_0,h$ are the interaction and magnetic field strengths and \begin{enumerate}[\ \ (1)\ \ ] @@ -175,7 +175,7 @@ If $\beta,L$ are finite, $\int\,\frac{dk_0 dk}{(2\pi)^2}$ in~(\ref{eqpropk}) has \begin{equation}\begin{array}{r@{\ }>{\displaystyle}l} V(\psi,\varphi)=& -\lambda_0 \sum_{{j\in\{1,2,3\}}\atop{\alpha_1,\alpha'_1,\alpha_2,\alpha_2'}}\int dt \,(\psi^+_{\alpha_1}(0,t)\sigma^j_{\alpha_1,\alpha'_1} \psi^-_{\alpha'_1}(0,t)) (\varphi^+_{\alpha_2}(t)\sigma^j_{\alpha_2,\alpha_2'} \varphi^-_{\alpha_2'}(t))\\ -&-h \sum_{j\in\{1,2,3\}}\bm\omega_j \int dt\sum_{\alpha\in\uparrow,\downarrow}\varphi^+_{\alpha}(t)\sigma^j_{\alpha,\alpha} \varphi^-_{\alpha}(t) +&-h \sum_{j\in\{1,2,3\}}\bm\omega_j \int dt\sum_{(\alpha,\alpha')\in\{\uparrow,\downarrow\}^2}\varphi^+_{\alpha}(t)\sigma^j_{\alpha,\alpha'} \varphi^-_{\alpha'}(t) \end{array}\label{eqpotgrass}\end{equation} Notice that $V$ only depends on the fields located at the site $x=0$. This is important because it will allow us to reduce the problem to a 1-dimensional one [\cite{aySN}, \cite{ayhSeZ}]. @@ -322,7 +322,7 @@ from which we see that the hierarchical model boils down to neglecting the $m'$ \begin{equation}\begin{array}{r@{\ }>{\displaystyle}l} V(\psi,\varphi)=& -\lambda_0 \sum_{{j\in\{1,2,3\}}\atop{\alpha_1,\alpha'_1,\alpha_2,\alpha_2'}}\int dt \,(\psi^+_{\alpha_1}(0,t)\sigma^j_{\alpha_1,\alpha'_1} \psi^-_{\alpha'_1}(0,t)) (\varphi^+_{\alpha_2}(t)\sigma^j_{\alpha_2,\alpha_2'} \varphi^-_{\alpha_2'}(t))\\ -&-h \sum_{j\in\{1,2,3\}}\bm\omega_j \int dt\sum_{\alpha\in\uparrow,\downarrow}\varphi^+_{\alpha}(t)\sigma^j_{\alpha,\alpha} \varphi^-_{\alpha}(t) +&-h \sum_{j\in\{1,2,3\}}\bm\omega_j \int dt\sum_{(\alpha,\alpha')\in\{\uparrow,\downarrow\}^2}\varphi^+_{\alpha}(t)\sigma^j_{\alpha,\alpha'} \varphi^-_{\alpha'}(t) \end{array}\label{eqpothier}\end{equation} in which $\psi^\pm_\alpha(0,t)$ and $\varphi^\pm_\alpha(t)$ are now defined in~(\ref{eqfieldhier}). \medskip |