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The Van der Waals model

e Model: interaction potential: hard-core plus attractive ¢:

2/18



The Van der Waals equation of state

e Van der Waals: heuristic computation:

Tp 1,
P(p) = 0 [ d
(p) T, "3’ / y »(lyl)

where

» p: density
» P: pressure

» T temperature
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Pressure

e When the pressure is decreasing, the system is unstable. (Squeezing lowers
the pressure!)
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Free energy

e The free energy f solves

e Following Van der Waals,
-1
pre L,
f=Tplog< )+p / dy o(|yl)
L=r) 2" Jy>r

e The pressure is decreasing if and only if f is concave.
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Free energy

6/18



Maxwell double tangent construction

e Idea: take the convex envelope of f:
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The Lebowitz-Penrose theorem

e [Lebowitz, Penrose, 1966], [Kac, Uhlenbeck, Hemmer, 1963] Hard-core
plus attractive interaction %o (yz).

e Take the limit v — 0.

e In other words, the attraction is of infinite range and infinitely weak
(mean-field).

e Theorem [LPG66]: fy: free energy without the attraction, if v — 0,

1
flp) =CE (fo(ﬂ) + 202/<p>
In particular, there is a phase transition when fo-i-% P> [ ¢ is not convex.
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Finite ~

e Open problem: existence of a phase transition for 0 < v < 1.

o [Lebowitz, Mazel, Presutti, 1999] [Presutti, 2009]: Proved a phase transi-
tion at 0 < v < 1 by adding a four-body long-range repulsion.

e Our result: prove a phase transition in a model with a pair interaction.
The interaction we consider is a coarse-grained version of a more realistic
interaction.
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The Box model
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The Box model

e We coarse-grain the attraction on mesoscopic boxes of size y71.

e We ignore the repulsion between different boxes.
e In other words, the interaction becomes

hard core(z — y) — Jiy? if Box, (x) = Box, (y)

Uy (z —y) = —Joy? if Box,(z) is next to Box,(y)
0 otherwise
e The probability of a configuration x1,---,xn is proportional to

e B Uicjuy(@i—aj)+BAN
A: chemical potential.
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The Box model as a spin model

e The box model is equivalent to a nearest-neighbor spin model on the lattice
7%, where each vertex of Z? corresponds to a box, and the spin value 7;
corresponds to the density of particles in the box.

e The Hamiltonian for the spin model is

H=y" —;len? = 2> ming+ Y fy(n) —)\Zm

i~vg 7

where f,(n) is the specific free energy for a system of hard-core particles

in a box of size 771
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The free energy in a box

e The free energy f, in a box with N = ny~¢ particles of radius R is

1 1
f(n) = TGy log N /([0771)d)N dry---dry H Ljzy>2r

1<J

e (We can be more general and just assume that f, is the free energy for any
system of particles in a box interacting via a superstable and tempered
potential.)

e (Our result is actually even more general, and allows for a large class of
functions f,.)
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Main result

Theorem: If 1
folp) = 5(J1 + 2d.Js)p”

is non-convex, then there exists 79 > 0 such that for all v < ~q, there
exists a chemical potential A at which the box model admits two distinct
translation invariant GGibbs measures that differ in their value of the den-
sity.

Thus, in this case, there is a first-order phase transition at A.

fo(p) = lim,_, fy(p), so the condition for the existence of a phase transi-
tion is the same as for the Lebowitz-Penrose theorem.
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Some comments on the proof

e The spin formulation of the box model is reflection-positive.

e Reflection-positivity (which means that E(f6f) > 0 for any f and any
reflection 0) is a very special property, but it is central to the argument.
Our proof thus does not extend to non-coarse-grained models.

e On the other hand, using the tools of reflection-positivity, the proof is
fairly easy.

e Next main idea: use the Dobrushin-Shlosman criterion, whose assumptions
are proved using the reflection positivity.
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The Dobrushin-Shlosman criterion

e [Dobrushin, Shlosman, 1981]

e Idea: if there are two disjoint events Ey, Fy such that Py (FE; U Es) is large,

and if for small \, Py(Ey) is large and for large A, P\(FE2) is large, then

there is an intermediate value of A where two phases coexist, one favoring
FE4 and the other favoring Fjs.

e Using reflection-positivity, we get bounds on Py(E;) in terms of local
considerations, involving the minimization of

1
folp) = 5(J1 + 2d.J5)p* — Ap.
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The Dobrushin-Shlosman criterion

fo— (J1 +2dJ5)/2p% — Mp
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Conclusion and outlook

e We have proved a liquid-vapor phase transition in a system with a pair
interaction.

e However, our proof relies on reflection positivity, and requires the inter-
action to be simplified (coarse-grained).

e On the other hand, using reflection positivity makes the proof rather easy,
so the box model serves as a good toy model for the liquid-vapor phase
transition.

e Open problem: what about the more realistic interaction y%p(yx)? Can
the coarse-graining be shown to be a good approximation? (This is what
is done in [Presutti, 2009] in the presence of a 4-body repulsion.)
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