

A framework to study twisted bilayer graphene in a tight binding model

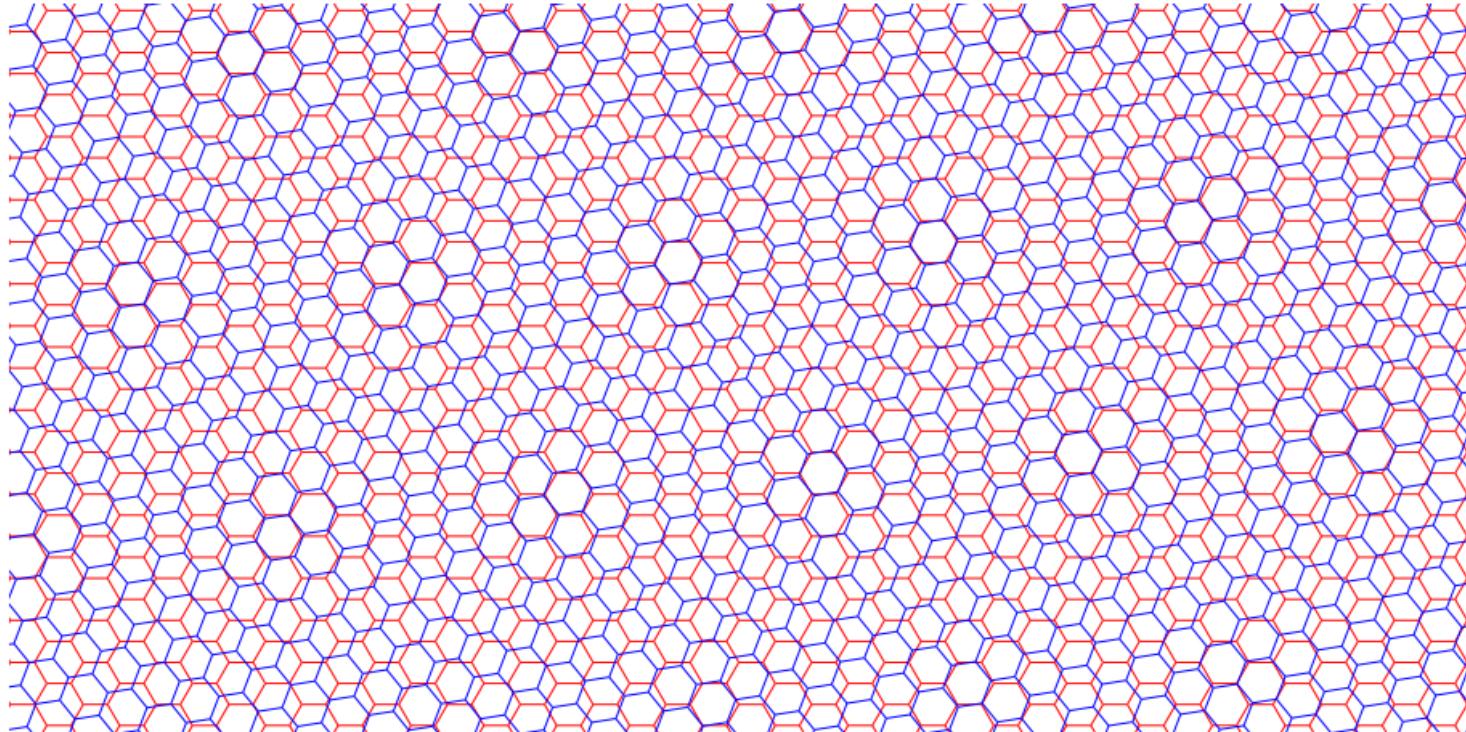
Ian Jauslin

joint with **Vieri Mastropietro**

arXiv: 2510.12918

<http://ian.jauslin.org>

Twisted Bilayer Graphene



Twisted Bilayer Graphene

- Two graphene sheets at an angle θ .
- Studied Theoretically [Bistritzer, MacDonald, 2011]
- Experimental realization: [Cao, Fatemi, Fang, Watanabe, Taniguchi, Kaxiras, Jarillo-Herrero, 2018]
- At certain specific angles (“magic angles”): flat bands, leading to unconventional superconductivity. [Oh, Nuckolls, Wong, Lee, Liu, Watanabe, Taniguchi, Yazdani, 2021]
- First (largest) Magic Angle: $\approx 1.05^\circ$ [Song, Wang, Shi, Li, Fang, Bernevig, 2019]

Model

- Graphene lattices: \mathcal{L}_1 and \mathcal{L}_2 .
- Intra-layer: for $i = 1, 2$,

$$H_i = \sum_{x \sim y \in \mathcal{L}_i} c_{i,x}^\dagger c_{i,y}$$

- Inter-layer:

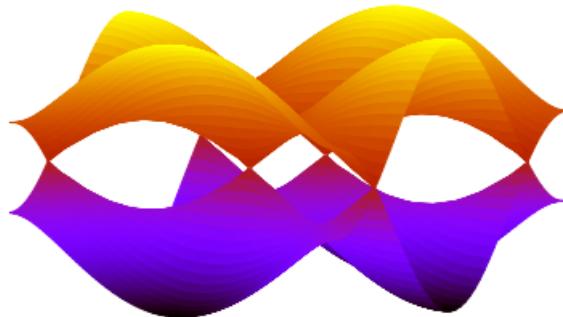
$$V = \lambda \sum_{x \in \mathcal{L}_1} \sum_{y \in \mathcal{L}_2} \phi(x - y) (c_{1,x}^\dagger c_{2,y} + c_{2,y}^\dagger c_{1,x})$$

- Total Hamiltonian

$$H = H_1 + H_2 + V.$$

Intra-layer model

- If $\lambda = 0$, $H = H_1 + H_2$: two independent graphene layers.
- Hamiltonian is [diagonalizable](#) in Fourier space.



- [Fermi points](#): singularities of two-point correlation.

Main result

- **Theorem:** There exists a **finite** set \mathcal{B} of pathological angles such that, if ϕ is **short-ranged**, and $\hat{\phi}(q) \leq ce^{-\kappa|q|}$ (plus a technical assumption), then, for any $\bar{\theta} \in [0, 2\pi) \setminus \mathcal{B}$, for any $\delta\theta$ **small enough**, for **almost every** $\theta \in [\bar{\theta} - \delta\theta, \bar{\theta} + \delta\theta]$, there exists λ_0 such that, for $\lambda < \lambda_0$ (and upon adding an appropriate **counter-term** to the Hamiltonian), the Schwinger function is **close** when $\lambda \ll 1$ to the intra-layer one near the Fermi points:

$$S_i(\mathbf{k} + \mathbf{p}_{F,i}) = \begin{pmatrix} -iZ_{j,\omega}k_0 & (iv_{i,\omega}k_1 - w_{i,\omega}\omega k_2) \\ (-iv_{i,\omega}^*k_1 - w_{i,\omega}^*\omega k_2) & -iZ_{j,\omega}k_0 \end{pmatrix}^{-1} (1 + O(\mathbf{k}^2))$$
$$Z_{j,\omega} = 1 + O(\lambda) \in \mathbb{R}, \quad v_{i,\omega}, w_{i,\omega} = \frac{3}{2} + O(\lambda) \in \mathbb{C}$$

Fourier space

- Fourier transform

$$\hat{c}_{1,k_1,\alpha} = \sum_{x \in \mathcal{L}_1: \text{type } \alpha} e^{ik_1 x} c_{1,x}, \quad k_1 \in \hat{\mathcal{L}}_1 \equiv \text{span}\{b_1, b_2\}$$

$$\hat{c}_{2,k_2,\alpha} = \sum_{x \in \mathcal{L}_2: \text{type } \alpha} e^{ik_2 x} c_{2,x}, \quad k_2 \in \hat{\mathcal{L}}_2 := R_\theta \hat{\mathcal{L}}_1$$

$$\hat{\phi}(q) = \sum_{x_1 \in \mathcal{L}_1, x_2 \in \mathcal{L}_2} e^{iq(x_1 - x_2)} \phi(x_1 - x_2), \quad q \in \mathbb{R}^2$$

Intra-layer term in Fourier space

- H_1, H_2 are diagonal in Fourier space:

$$H_1 = \frac{3\sqrt{3}}{8\pi^3} \int_{\hat{\mathcal{L}}_1} dk \ (\Omega(k) \hat{c}_{1,k,a}^\dagger \hat{c}_{1,k,b} + \Omega^*(k) \hat{c}_{1,k,b}^\dagger \hat{c}_{1,k,a})$$

$$H_2 = \frac{3\sqrt{3}}{8\pi^3} \int_{\hat{\mathcal{L}}_2} dk \ (\Omega(\mathcal{R}_\theta^T k) \hat{c}_{2,k,a}^\dagger \hat{c}_{2,k,b} + \Omega^*(\mathcal{R}_\theta^T k) \hat{c}_{2,k,b}^\dagger \hat{c}_{2,k,a})$$

with

$$\Omega(k_x, k_y) = 1 + 2e^{-i\frac{3}{2}k_x} \cos\left(\frac{\sqrt{3}}{2}k_y\right)$$

Inter-layer term in Fourier space

- Essentially,

$$V \approx \lambda \frac{3\sqrt{3}}{32\pi^4} \sum_{\alpha} \left(\sum_{\mathbf{l} \in \mathbb{Z}^2} \int_{\hat{\mathcal{L}}_1} dk \hat{\phi}^*(\mathbf{k} + \mathbf{l}b) \hat{c}_{1,k,\alpha}^\dagger \hat{c}_{2,\mathbf{k}+\mathbf{l}b,\alpha} + \sum_{\mathbf{m} \in \mathbb{Z}^2} \int_{\hat{\mathcal{L}}_2} dk \hat{\phi}(\mathbf{k} + \mathbf{m}b') \hat{c}_{2,k,\alpha}^\dagger \hat{c}_{1,\mathbf{k}+\mathbf{m}b',\alpha} \right)$$

where $lb \equiv l_1 b_1 + l_2 b_2$, $mb' \equiv m_1 b'_1 + m_2 b'_2$.

Formal perturbation theory

- Interlayer hopping: connects \mathbf{k} in layer 1 with $\mathbf{k} + \mathbf{l}b$ in layer 2, and \mathbf{k} in layer 2 with $\mathbf{k} + \mathbf{m}b'$ in layer 1:

$$V \approx \lambda \frac{3\sqrt{3}}{32\pi^4} \sum_{\alpha} \left(\sum_{l \in \mathbb{Z}^2} \int_{\hat{\mathcal{L}}_1} dk \hat{\phi}^*(k + lb) \hat{c}_{1,k,\alpha}^\dagger \hat{c}_{2,k+lb,\alpha} + \right. \\ \left. + \sum_{m \in \mathbb{Z}^2} \int_{\hat{\mathcal{L}}_2} dk \hat{\phi}(k + mb') \hat{c}_{2,k,\alpha}^\dagger \hat{c}_{1,k+mb',\alpha} \right)$$

- Layer 1 has a singularity at $p_F^\omega = (\frac{2\pi}{3}, \omega \frac{2\pi}{3\sqrt{3}})$ and layer 2 has a singularity at $R_\theta p_F^\omega$.

Formal perturbation theory

- Propagator for each layer

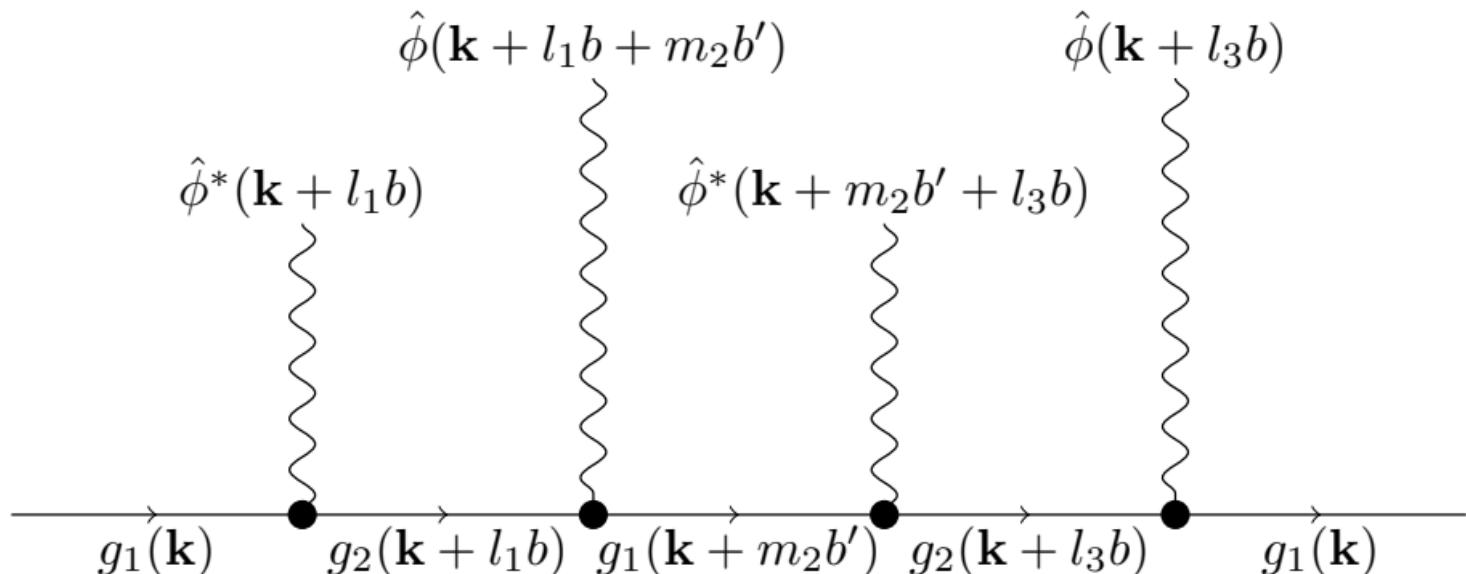
$$g_1(\mathbf{k}) := \begin{pmatrix} ik_0 & \Omega(k) \\ \Omega^*(k) & ik_0 \end{pmatrix}^{-1}, \quad g_2(\mathbf{k}) := \begin{pmatrix} ik_0 & \Omega(\mathbf{R}_\theta^T k) \\ \Omega^*(\mathbf{R}_\theta^T k) & ik_0 \end{pmatrix}^{-1}$$

- g_1 is periodic in b_1, b_2 , g_2 is periodic in b'_1, b'_2
- Singularity at $p_F^\omega = (\frac{2\pi}{3}, \omega \frac{2\pi}{3\sqrt{3}})$ and $\mathbf{R}_\theta p_F^\omega$:

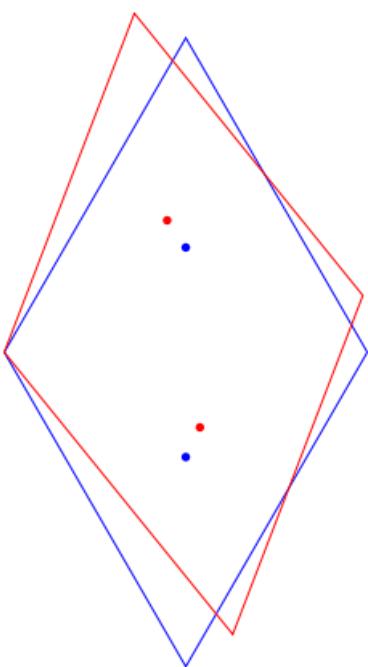
$$g_1(\mathbf{k} + p_F^\omega) \sim \frac{1}{|\mathbf{k}|}, \quad g_2(\mathbf{k} + \mathbf{R}_\theta p_F^\omega) \sim \frac{1}{|\mathbf{k}|}$$

Perturbation theory

- Feynman diagram expansion for $S_{1,1}(\mathbf{k})$:



Small divisor problem (Umklapp)



Small divisor problem (Umklapp)

- Small divisor: for $l, m \in \mathbb{Z}^2$

$$|q_{i,j,\omega,\omega',l,m}| := |p_{F,i}^\omega - p_{F,j}^{\omega'} + l_1 b_1 + l_2 b_2 + m_1 b'_1 + m_2 b'_2| \ll 1$$

leads to a divergence in the propagators.

- However, such terms come with $\hat{\phi}(q_{i,j,\omega,\omega',l,m})$, which decays exponentially with l, m .
- Bistritzer-MacDonald model: truncate the small divisor problem: only keep 3 values of l, m . Here we keep all of them.
- Balance: we must ensure that for $|q_{i,j,\omega,\omega',l,m}|$ to be small, l, m have to be large enough to be damped by the exponential decay of $\hat{\phi}$.

Aside: Diophantine condition in KAM theory

- **Theorem:** for any $\epsilon > 0$, $\tau > 2$, $f : [0, 2\pi)^2 \rightarrow \mathbb{R}^2$, f continuously differentiable, invertible, $|\det Df| > \beta > 0$,

$$\mu \left(\left\{ (\theta_1, \theta_2) : \forall n \in \mathbb{Z}^2, |n \cdot f(\theta_1, \theta_2)| \geq \frac{\epsilon}{|n|^\tau} \right\} \right) \geq 4\pi^2 - O(\epsilon)$$

where μ is the Lebesgue measure

- For almost all θ_1, θ_2 , in order for $n \cdot f(\theta)$ to be small, $|n|$ must be large.

Diophantine condition

- For $i = j$, $\omega = \omega'$: choose θ such that

$$|l_1 b_1 + l_2 b_2 + m_1 R_\theta b_1 + m_2 R_\theta b_2| \geq \frac{C_0}{|l|^\tau}, \frac{C_0}{|m|^\tau}$$

- Complication: this is a two-dimensional condition, but there is only one parameter θ .
- The set of such θ 's has arbitrarily high measure (at the price of decreasing C_0).
- This gives a constraint on how big l, m need to be for $|q|$ to be small. This, in turn, gives a lower bound on the rate of decay of diagrams due to the decay of $\hat{\phi}$.

Main result

- **Theorem:** There exists a **finite** set \mathcal{B} of pathological angles such that, if ϕ is **short-ranged**, and $\hat{\phi}(q) \leq ce^{-\kappa|q|}$ (plus a technical assumption), then, for any $\bar{\theta} \in [0, 2\pi) \setminus \mathcal{B}$, for any $\delta\theta$ **small enough**, for **almost every** $\theta \in [\bar{\theta} - \delta\theta, \bar{\theta} + \delta\theta]$, there exists λ_0 such that, for $\lambda < \lambda_0$ (and upon adding an appropriate **counter-term** to the Hamiltonian), the Schwinger function is **close** when $\lambda \ll 1$ to the intra-layer one near the Fermi points:

$$S_i(\mathbf{k} + \mathbf{p}_{F,i}) = \begin{pmatrix} -iZ_{j,\omega}k_0 & (iv_{i,\omega}k_1 - w_{i,\omega}\omega k_2) \\ (-iv_{i,\omega}^*k_1 - w_{i,\omega}^*\omega k_2) & -iZ_{j,\omega}k_0 \end{pmatrix}^{-1} (1 + O(\mathbf{k}^2))$$
$$Z_{j,\omega} = 1 + O(\lambda) \in \mathbb{R}, \quad v_{i,\omega}, w_{i,\omega} = \frac{3}{2} + O(\lambda) \in \mathbb{C}$$

Fractal nature

- The dependence of λ_0 on θ is **extremely rough** (discontinuous almost everywhere).
- Reformulate the result from the point of view of fixing λ_0 and **varying** θ .

Main result

- **Theorem:** There exists a finite set \mathcal{B} of pathological angles and an integer $\alpha \in \mathbb{N}$ such that, if ϕ is short-ranged, and $\hat{\phi}(q) \leq ce^{-\kappa|q|}$ (plus a technical assumption), then, for any $\bar{\theta} \in [0, 2\pi) \setminus \mathcal{B}$, for any $\delta\theta$ small enough, for any λ_0 there exists a subset of $[\bar{\theta} - \delta\theta, \bar{\theta} + \delta\theta]$ of measure $(1 - O(\lambda_0^\alpha))2\delta\theta$ such that, for $\lambda < \lambda_0$ (and upon adding an appropriate counter-term to the Hamiltonian), the Schwinger function is close when $\lambda \ll 1$ to the intra-layer one near the Fermi points:

$$S_i(\mathbf{k} + \mathbf{p}_{F,i}) = \begin{pmatrix} -iZ_{j,\omega}k_0 & (iv_{i,\omega}k_1 - w_{i,\omega}\omega k_2) \\ (-iv_{i,\omega}^*k_1 - w_{i,\omega}^*\omega k_2) & -iZ_{j,\omega}k_0 \end{pmatrix}^{-1} (1 + O(\mathbf{k}^2))$$
$$Z_{j,\omega} = 1 + O(\lambda) \in \mathbb{R}, \quad v_{i,\omega}, w_{i,\omega} = \frac{3}{2} + O(\lambda) \in \mathbb{C}$$

Fractal nature

- The set of θ 's is a **Cantor set**, and depends **very roughly** on λ_0 .
- In particular, this set of θ 's certainly **does not contain** rational multiples of 2π .

(Counter term)

- The counter-term fixes the Fermi points. Without it, they would be shifted in momentum space.
- Form

$$\begin{pmatrix} 0 & \nu_{i,\omega} \\ \nu_{i,\omega}^* & 0 \end{pmatrix}$$

with

$$\nu = O(\lambda) \in \mathbb{C}.$$

Renormalization group analysis

- Renormalization group: multiscale perturbation theory.
- Similar to RG for quasi-periodic potentials:
 - ▶ [Benfatto, Gentile, Mastropietro, 1997]
 - ▶ [Mastropietro, 2017]
 - ▶ [Gallone, Mastropietro, 2024].

Conclusion

- Our construction yields a framework to study twisted bilayers using absolutely convergent series.
- Can be extended fairly easily to interacting models.
- Main novelty: control of the Umklapp phenomenon.
- Next step: compute observables and study the flow of the beta function. Is there a signature of the magic angles in the perturbative regime $\lambda \ll 1$?