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Systems of interacting Bosons: What and why?

e Bosons are a part of the natural world:

» Quantum particles are either Fermions or Bosons (in 3D).
» Fermions: electrons, protons, neutrinos, etc...
» Bosons: photons, Helium atoms, Higgs particle, etc...
e They exhibit non-trivial physical behavior at low temperatures: e.g. Bose-
FEinstein condensation, superfluidity, quantized vortices, etc...

e It is difficult to handle mathematically: for instance, Bose-Einstein con-
densation has never been proved in interacting models in the continuum
at finite density.
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Repulsive Bose gas

Potential: v(r) =0, o > 0 and v € L;(R?), on a torus of volume V:

:—*ZA+ Z v(|@; — a4))

1<i<j<N
Ground state (zero temperature): g, energy FEj.

Observables in the thermodynamic limit: for instance, ground state energy
per particle

. 0
ep:= lim —.
V,N—oo IN
N_
v =P

Main difficulty: dealing with the interactions.
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Known theorems

e Low density: [Bogolyubov, 1947], [Lee, Huang, Yang, 1957]:

128
eo = 2mpa (1 + NG pa’ + 0(\/pa3)>

proved: [Lieb, Yngvason, 1998], [Yau, Yin, 2009], [Fournais, Solovej, 2020],
[Basti, Cenatiempo, Schlein, 2021].

e High density: Hartree energy:

egwp/v
2
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The Simplified approach: proof of concept

For v(x) = e~1®l: Simplified approach, , Hartree, Monte Carlo
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The Simplified approach

e [Lieb, 1963], [Jauslin, 2023].
e Integrate Hyvg = Eoto:

/da:l..-da:N —*ZAT/)O"F Z v(|zs — xj])o :Eo/dwl"

1<i<j<N

e Therefore,

N(N -1)

da=---d
5 /dxldafg v(z — xg)f 3 TN Yo _

[dyi--dyn o
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The Simplified approach

e 1)y > 0, so it can be thought of as a probability distribution.
e g,: correlation functions of V"N

gnl@1, - ap) == V" [dzpyy - -dey oz, zN)
n s sy ) * fdyl..-dyN'(/Jo(yl’...’yN)

e Thus, 5 N1
) N-
N =g [ dee@n(.0)
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Hierarchy

e Equation for go: integrate Hyvg = Egyg with respect to x3, -, zN:

5B+ B)ga(e ) + 2 [ e (oo = 2) oy — 2)galn )

(N —2)(N —3)
212

Fole — y)galay) + / dzdt v(z — H)ga(,y, %, t) = Bogale,y)

e Infinite hierarchy of equations.
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Factorization assumption

e Factorization assumption: for n = 3,4,

gn(@,-an) = [ Q= un(@i—=)), un € Li(R?)

1<i<y<n

e Consistency condition:

[ mlonwass) = ol [ T2 o ) = ga(w1,22)
% g3(T1,T2,x3) = g2(T1,T2), V vV g4(T1,22,23,T4) = g2(T1, T2

e Remark: in general,
dxy

7 94($1733273737354) 7é 93(371,.’172,.'133)
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Factorization assumption

e Lemma [Lieb, 1963], [Jauslin, 2025]. Under the Factorization assumption
and the consistency condition,

1

us(o = y) = ule —y) + (1~ ule =) [ ds ule = ulz ) + OV

wile—y) =ule —y) + (1~ ule ) [ dz ule ~ ulz - y) + OV

o With u(x) :=1— g2(0, ).
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Big equation

e In the thermodynamic limit,
—Au(z) = (1 — u(z)) (v(z) - 20K (z) + p*L(z))
Ki=uxS, S(y):=1-uy)ovy)
Li=uxu*S—2ux(u(uxSs))+ % /dydz w(y)u(z — z)u(2)u(y — x)S(z — y).
e “Big” equation:

L~uxuxS —2ux (u(uxbS))
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Simple equation

e Further approximate S(x) ~ %5(30) and u < 1.

e Simple equation:

—Au(z) = (1 —u(x))v(z) — deu(x) + 2ep u * u(z)

e= g/dx (1 —u(z))v(x)

e Theorem 1: If v(x) > 0 and v € L1 N Ly(R3), then the simple equation
has an integrable solution (proved constructively), with 0 < u < 1.
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Energy for the simple equation

e Theorem 2: 1
£ /d$ v(x).
P P00 2
This coincides with the Hartree energy.

e Theorem 3:
128
=2 1+— 3
e 7r,0a< —1—15\/7? pa —I—o(ﬁ)>

This coincides with the Lee-Huang-Yang prediction.

e Theorem 4: The Simple equation predicts Bose-Einstein condensation
at small densities. (Agrees with Bogolyubov theory)
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Energy

v(z) = e~ l#l Big equation, Monte Carlo
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Radial distribution function

Two-point correlation:

Caly —2) = > (%ol 6(y — 2:)8(z — ) [vo) -
i,
Radial distribution: spherical average and normalization:

Gy =— [ W51yl - ().

p? ) 4Amr?
Compute Cy using 5
€0

Cy(x) = 2p5v($).

Theorem 5: The Simple equation predicts that Cy ~ |z|~* for large |z,
which agrees with Bogolyubov theory.
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Radial distribution function

v(z) = 16e~1*l. p = 0.02 Big equation, Monte Carlo
1.2 T T T T T T T T

1 - >

G(r) 0.6
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0.2
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Radial distribution function

v(z) =8 1#l p=1075-10""
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Radial distribution function

v(z) = 8¢~ 1*l, maximal value as a function of p:
1.04 I T I T
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Structure factor

Structure factor: Fourier transform of G:

Sk =1+ p [ dz ¢ (Glal) - ).

Directly observable in X-ray scattering experiments.
Sharp peaks: order.

Large deviation from 1: uniformity.
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Structure factor

v(z) =8 1*l, p=1075-0.3
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Structure factor

v(z) =8 1*l, p=1075-0.3
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Structure factor

v(z) = 8¢~ 1*l, maximal value as a function of p:
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“Liquid” behavior

e Correlation function:

» Maximum above 1: there is a length scale at which it is more probable
to find pairs of particles.

» No long range order: Short-range order.
e Structure factor:

» Sharpening of the peak.
» Not Bragg peaks: No long range order: Short-range order.
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Condensate fraction

e Proportion of particles in the condensate state:

n= 5 O ol Pilio)

(2

where P; is the projector onto the constant state Vol

e 7 > 0 in thermodynamic limit: Bose-Einstein condensation (still not
proved to occur in the many-body system).
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Condensate fraction

v(z) = 8e~ 1l

0
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Summary and outlook

e Using the Simplified approach, we were able to probe the repulsive Bose
gas beyond the dilute regime.

e Evidence for non-trivial behavior at intermediate densities: short-range
order.

e The intermediate density regime has not been studied much, due to the
lack of tools to do so. As we have seen, there is non-trivial behavior there.
This warrants further investigation, both theoretical and experimental.
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Open problems on the Simplified approach

e Connect the Simplified approach to the many-Boson system: numerics
suggests the prediction of the Simplified approach is an upper bound, for

all densities.

e Understand the factorization assumption. It certainly does not hold ex-
actly. Does it hold approximately, in some sense?

e There are still many questions about the Bose gas with hard core inter-
actions. The Simplified approach is easily defined in the hard core case.

Can it shed some light?
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