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Twisted Bilayer Graphene
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Twisted Bilayer Graphene

e Two graphene sheets at an angle 6.
e Studied Theoretically [Bistritzer, MacDonald, 2011]

e Experimental realization: [Cao, Fatemi, Fang, Watanabe, Taniguchi, Kaxi-
ras, Jarillo-Herrero, 2018]

e At certain specific angles (“magic angles”): flat bands, leading to uncon-
ventional superconductivity. [Oh, Nuckolls, Wong, Lee, Liu, Watanabe,
Taniguchi, Yazdani, 2021]

o First (largest) Magic Angle: ~ 1.05° [Song, Wang, Shi, Li, Fang, Bernevig,
2019]
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Model

Graphene lattices: £1 and Ls.
Intra-layer: for i =1,2,

_ T
Hi = E: CiaCivy

xwyeﬁi

Inter-layer:

V=AY ST ol - u)el ony +clyere)

€Ly yeLo

Total Hamiltonian
H=H+Hy+ V.

3/17



Intra-layer model

e If \=0, H = H; + Hs: two independent graphene layers.

e Hamiltonian is diagonalizable in Fourier space.

e Fermi points: singularities of two-point correlation.
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Main result

e Theorem: If ¢ is short-ranged, and gZA)(q) < ce#ld (plus a technical
assumption), then, for any [0y, 01] C [0,27) and any Cy > 0, there exists
a set of @’s that has large measure (its complement has measure at most
(Co/(0y — 01)?)) for which (upon adding an appropriate counter-term to
the Hamiltonian) the Schwinger function is close when A <1 to the intra-

layer one near the Fermi points:

. . -1
) N *Zijwko (“}i,wkl — wi,wwkg) 2

3
Zjw =140 €R, i, wiw=35+0() €C
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Inter-layer term in Fourier space

e Fourier transform

~ k1 X A
Clkr,a = E e ey, k1€ Ly
z€Ly:type «
A ikox Ao 3
€ koo = § e ey, ko € Lo = RoLy
rE€Ly:type «

)= D, T —py), geR’

z1€L1, T2€L2
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Inter-layer term in Fourier space

e Essentially,

V =~ )\Z Z/ dk¢ k+lb)clka62k+lba+

« leZ?

+ Z dk ¢(k + mb’ )Cz & acl k+mb/
meZ? '62

where (b = 1101 + laby, mb' = mqb) + mabl.
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Perturbation theory

e Propagator for each layer

(ke QR (ke QRTE)N\ T

e g1 is periodic in by, by, go is periodic in b}, b}

e Singularity at p% = (2?”’ %) and Ryp:

1
g2(k + Rop) ~ —

w 1

k|’
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Perturbation theory

e Feynman diagram expansion for S; 1 (k):

~ ~

¢*(k+11b) ¢* (k + mob’ + I3b)

g1(k) ga(k +11b) g1(k +mab') g2(k + I3D) g1(k)
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Small divisor problem (Umklapp)
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Small divisor problem (Umklapp)

e Small divisor: for I,m € Z?
|G jwwr m| 7= D% — D5 ; + b1 + laby + maby + maby| < 1

leads to a divergence in the propagators.

e However, such terms come with QAS(qi,j’w,w/’l,m), which decays exponentially
with [, m.

e Bistritzer-MacDonald model: truncate the small divisor problem: only
keep 3 values of [,m. Here we keep all of them.

e Balance: we must ensure that for [g; . . 1.m| to be small, I, m have to be
large enough to be dampened by the exponential decay of ¢.
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Aside: Diophantine condition in KAM theory

2

e Theorem: for any € > 0, 7 > 2, f : [0,27)> — R2 f continuously

differentiable,

p ({000 wmez o0l > ) 2 4w - 000

where p is the Lebesgue measure

e For almost all 61,605, in order for n - f(#) to be small, |n| must be large.
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Diophantine condition

e For i = j, w=w': choose # such that

|l1b1 + laby + my Rgby + maRgby| > ‘10’2 &L

e Complication: this is a two-dimensional condition, but there is only one
parameter 6.

e The set of such 0’s has arbitrarily high measure (at the price of decreasing

Co).

e This gives a constraint on how big [, m need to be for |¢| to be small. This,
in turn, gives a lower bound on the rate of decay of diagrams due to the
decay of ¢.
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Main result

e Theorem: If ¢ is short-ranged, and gZA)(q) < ce#ld (plus a technical
assumption), then, for any [0y, 01] C [0,27) and any Cy > 0, there exists
a set of @’s that has large measure (its complement has measure at most
(Co/(0y — 01)?)) for which (upon adding an appropriate counter-term to
the Hamiltonian) the Schwinger function is close when A <1 to the intra-

layer one near the Fermi points:

. . -1
) N *Zijwko (“}i,wkl — wi,wwkg) 2

3
Zjw =140 €R, i, wiw=35+0() €C

14/17



(Counter term)

e The counter-term fixes the Fermi points. Without it, they would be shifted
in momentum space.

e Form

with
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Renormalization group analysis

e Renormalization group: multiscale perturbation theory.

e Similar to RG for quasi-periodic potentials:

» [Benfatto, Gentile, Mastropietro, 1997]
» [Mastropietro, 2017]
» [Gallone, Mastropietro, 2024].
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Conclusion

e Our construction yields a framework to study twisted bilayers using ab-
solutely convergent series.

e Can be extended fairly easily to interacting models.
e Main novelty: control of the Umklapp phenomenon.

e Next step: compute observables and study the flow of the beta function. Is
there a signature of the magic angles in the perturbative regime A < 17
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