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Crystallization

e Crystallization: phase transition from a disordered phase to one with
long-range positional order.

e Example: Freezing transition in water.

e Simpler example: hard spheres: identical spherical particles in R?, may
not overlap. Conjecture: gas phase at low densities, crystalline phase at
high densities.
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Crystallization

e Very difficult (in the continuum): small fluctuations easily break long-
range order.

e To this day, there is no proof that there is crystallization in the hard
sphere model at positive temperature.
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Hard-core lattice models

e Here: simpler systems: hard-core lattice models: replace R? with a lattice
Ao (a periodic graph, examples: Z?, or triangular lattice, or honeycomb).

e Each particle has a position z € A and a shape w C R, which is a
bounded connected subset of RY. (d > 2)
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Equilibrium statistical mechanics

e Random particle configurations without overlap: if w, 1= x 4+ w,
wg Nwy = 0.

e Probability of a configuration X C A,: proportional to

| X

z

| X |: number of particles, z > 0: fugacity: controls the density of particles.

e Question: for large z, are typical configurations ordered?
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High density crystallization

[Dobrushin, 1968], [Gaunt, Fisher, 1965]: diamonds on Z2.
e [Heilmann, Praestgaard, 1974]: crosses on Z2.
[

Baxter, 1980], [Joyce, 1988]: hexagons on triangular lattice.

[Jauslin, Lebowitz, 2018]: non-sliding tiling models.

[Mazel, Stuhl, Suhov, 2018, 2019, 2020, 2021]: hard disks on Z?2, triangular,
honeycomb lattice.

e Here: criterion in arbitrary dimension d > 2 for non-sliding model (not
necessarily tiling).
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Main idea: sliding

e “sliding”: in closely-packed configurations, particles are not locked in
place.

e non-sliding: defects are localized.

6/20



Ground states

Ground states: closely-packed configurations.

e Periodic uniform density configurations: periodic X in Ao, such that for
all A € A, the number of particles in A is p|A| 4 o(|A]).

Maximal density: pmax ¢ Maximal density configuration: ground state.

Set of ground states: G.

(A2) G is finite and non-empty.
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Gibbs measure

e Gibbs measure:

(A), = lim Z A(X)2XB, (X H o(x,y)

A=A Zp V
XCA r#yeX
» A: finite subset of lattice Ay

» 2z > 0: fugacity. z > 1.
» ¢(z,y): hard-core interaction: = 0 if w, Nwy # 0 and 1 otherwise.
» ‘B,, v € G: boundary condition: favors the v-th ground state.

e Pressure:

1
p(Z) T Agmm |A’ log“—‘A l/( )

8/20



Theorem

We define 1, as the function that returns 1 if x € X and 0 if not, and denote
the ground states by £, for v € G.

If (A1)-(A6) (see below) are satisfied, then there exists zp > 0 such that,

o for |z] > 20, p(2) — pmaxlogz and (1, ---1,,), are analytic functions of
1/z.

e For z > zp, there are at least |G| distinct Gibbs states:
{1 +0(zYYifrel,

(1), = B .
O(z™h) if not.
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Defects

Discrete Voronoi cell of a particle at x in a configuration X: Vx(wy):
set of y € A such that y is closer (inclusively) to w, than to any other
particle.

Defined in this way, Voronoi cells may overlap.

The sites in the support w, of a particle only belong to the Voronoi cell
of that particle.

Def: The neighbors of a particle x are the particles whose Voronoi cells
are at distance < 1 from Vy(wy).

Def: Given v € G, a particle x € X is v-correct if its neighbors are the
same as in the ground state v.

Defect: incorrect particle.
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Independence of defects

e (A5) Given two particles x and y that are neighbors. If x is v-correct
and y is p-correct, then v = p.

e Disconnected defects are independent.
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Local density

[13

e Local density: inverse of the “weighted size” of the Voronoi cell:

1 1
loc = Z . ’
pg( )(w Ve tos) Hze X: yeVx(z)}

e (A4) The maximal local density is equal to the maximal density:
(loc)
Pmax — Pmaxe

e It must not be possible for a few particles to be packed more closely than
a ground state locally, at the expense of the global density.
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Gains from defects

e A dip in the local density should be unlikely when 2z > 1.
e (A6) Je > 0 such that, for any incorrect particle z,

-1 1

PX (Z/) > Pmax T €.

e (This condition can actually be made more general.)
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Criterion

(A1) Ay is Z¢ with d > 2 or the triangular or honeycomb lattices (our
result is actually more general than this).

(A2) G is finite and non-empty.
(A3) the ground states are isometric to each other.

(A4) The maximal local density is equal to the maximal density:
(loc)

Pmax — Pmaxe

(A5) Given two particles  and y that are neighbors. If x is v-correct
and y is pu-correct, then v = pu.

(A6) Je > 0 such that, for any incorrect particle z, px(y)~' >
Prmax + €
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Theorem

We define 1, as the function that returns 1 if x € X and 0 if not, and denote
the ground states by £, for v € G.

If (A1)-(A6) are satisfied, then there exists zp > 0 such that,

o for |z] > 20, p(2) — pPmaxlogz and (1, ---1,,), are analytic functions of
1/z.

e For z > zp, there are at least |G| distinct Gibbs states:
{1 +0(zYYifrel,

(1), = B .
O(z™h) if not.
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Low-fugacity (Mayer) expansion

e Partition function: Z,(n): number of configurations with n particles:

ZZ”ZA

e Formally, (converges if z is small enough)
1 =
a7 oe=a(e) = > br(A)2

where, if Z)(k;) denotes the number of configurations with k; particles,
then

1 o (—1)iF
:WZ > Zalkr) - Zalky)
j=1 S|
kietkj=k
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High-fugacity expansion

e Partition function: Z,(n): number of configurations with n particles:

Nmax

Ea(z) = ) 2"Zx(n)
n=0
e Inverse fugacity y = 2!
Nmax
Ep(z) = Nmax Z y"Qa(n)
n=0

with Qa(n) = ZA(Nmax — 1).
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High-fugacity expansion

e Formally,
1. _ = X
TAl log ZSA = Pmax IOg z+ Z Ck(A)y
A —
where ppax = ]\?XTX’

1 o (—1)7!
o) =i 32 X Qalh) - ally
1,05k >1
kit tk=k

e Does not always converge for large z. We prove it does under (A1)-(A6)
using Pirogov-Sinai theory.
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Pirogov-Sinai theory

e Switch to a contour model made up of defects.

e The contours interact via a hard-core repulsion (not really, but they can
be made to do so with some work).

e The density of contours is small: they contain dips in the local density
whose number is proportional to the size of the contour.

e Use cluster expansion for the contour model.

e (Extra complications: contours must be thickened, for various technical
reasons; nested contours interact, which we deal with using the Minlos-
Sinai trick.)
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Lee-Yang zeros

e Lee-Yang zeros: roots of =5 (z) <= singularities of pa(2).

e Whenever the high fugacity expansion has a radius of convergence R, there
are no Lee-Yang zeros outside of a disc of radius R™*.

20/20



