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Motivation

e Effective theories to study interacting Bose gases: Bogolyubov, Gross-
Pitaevskii, Hartree, etc...

e Many successes, but still many open problems, especially in the thermo-
dynamic limit (superfluidity, Bose-Einstein condensation, etc...).

e The Simplified approach [Lieb, 1963]: single-particle non-linear effective
equation(s) to study the ground state properties of repulsive Bose gases.
» Reproduces known and conjectured results at low and high density.

» Makes physical predictions (good agreement with Monte-Carlo) at
intermediate densities.
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Repulsive Bose gas

e Potential: v(r) >0, 9 > 0 and v € L1(R?), on a torus of volume V:

N
1
Hy:=—3 DA+ D> o(la — )
i=1 I<i<j<N
e Ground state (zero temperature): v, energy Ey.

e Observables in the thermodynamic limit: for instance, ground state energy
per particle

. Ey
ep:= lim —
V,N—oco N
N _
v =P
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The Simplified approach

e [Lieb, 1963], [Jauslin, 2025].
e Integrate Hyvog = Eyto:

/d$1 (ZA%-F Z v(|z; — zj)) 1/10>E0/dx1--

1<i<j<N

e Therefore,

N(J\;— D /daﬁldm v(z — x2)fd$3 - doy Yolo)

- = FE
Jdyi - dyn Yo(y) 0
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The Simplified approach

e 1)y > 0, so it can be thought of as a probability distribution.
e g,: correlation functions of V"N

gn(T1, - xp) = V" [dzpyy - -dey oz, zN)
n 5 sy Lp) - fdyl"'dyNwO(yl,"‘,yN)

® Thus, Ey2 N-1
O — — » »
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Hierarchy

e Equation for go: integrate Hyvg = Egg with respect to x3, -, zN:

5B+ B)ga(e ) + 2 [ e (oo = 2) oy — 2)galn )

(N —2)(N —3)
212

Fole — y)galay) + / dzdt v(z — H)ga(,y, %, t) = Bogale,y)

e Infinite hierarchy of equations.
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Factorization assumption

e Factorization assumption: for n = 3,4,

gn($17"'>$n) = H (1_un(xi_xj))v unELl(R3)
1<i<g<n
e Consistency condition:

dzs (1,2, 23) (x1,2) /dxgdm (1,2, 23,24) (x1,x2)
Vg31,2,3—g21,2, VVg41’2’3’4_921’2

e Remark: the factorization assumption cannot hold exactly:
dxy

7 94($17x273737354> 7é 93(1171,.’172,.’133)
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Big equation

e In the thermodynamic limit, with u(z) := 1 — go(x),
—Au(z) = (1 — u(z)) (v(z) - 20K (z) + p*L(z))
K:=uxS, S(y):=1-uy)vy)
Li=uxuxS—2ux(u(uxSs))+ % /dydz w(y)u(z — z)u(2)u(y — x)S(z — y).
e “Big” equation:

L~uxuxS —2ux (u(uxbS))
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Simple equation

e Further approximate S(z) ~ 2¢§(x) and u < 1.
p

e Simple equation:

—Au(z) = (1 —u(x))v(z) — deu(x) + 2ep u * u(z)

e= g/dx (1 —u(z))v(x)

e Theorem: If v(z) > 0 and v € L1 N L§+€(R3), then the simple equation
2
has an integrable solution (proved constructively), with 0 < u < 1.
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Comparison to the many-body Bose gas: notation

e Ground state energy per particle:

» Many-body Bose gas: eg
» Simplified approach: eg

e In general, for a quantity A:

» Many-body Bose gas: Ag
» Simplified approach: Aj
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The Ground state energy

e Theorem: [Bogolyubov, 1947], [Lee, Huang, Yang, 1957] [Lieb, Yngvason,
1998], [Yau, Yin, 2009], [Fournais, Solovej, 2020], [Basti, Cenatiempo,
Schlein, 2021]. At low density,

128
—9 14+ —22\/oa® + o(\/pa?
€0 7rpa< +15ﬁ pa + o(+/ pa ))
e Theorem: For the Simple equation, at low density

128
es = 2mpa (1 + NG pad + 0(\/pa3))
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The Ground state energy

e Theorem: [Lieb, 1963]. At high density,

60—>p/dmv(a:)

P p—00 2

e Theorem: For the Simple equation, at high density

1
& /d$ v(x).
p p—oo 2
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The Ground state energy

For v(x) = e~1®l: Simple equation, Big equation, , Hartree, Monte Carlo

13 7
12
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Condensate fraction

e Let P; be the projector onto the constant state V=3 for the i-th particle,

1
= 1 — P,
= lim E (Yol P; [¥o)
N (2

v =P
e Conjecture: [Lee, Huang, Yang, 1957] At low density,

nozl—gg/j?Jro(\/ﬁ)

e Theorem: For the Simple equation, if (14 |z[*)v € Ly N Lo, then

77521_8;)/\;?+0(m)
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Condensate fraction

For v(x) = e~1®l: Simple equation, Big equation,
1 I I

0.98 |-
0.96 |
ns 094

0.92 |-
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Two-point correlation

[ ]
2 .
) (y—2) = lim > (ol by — w:)3(= — ) o)
N __ [2¥}
V="
e Conjecture: [Lee, Huang, Yang, 1957] As \/palz| — oo,
1 e
7C(2)($) B I
200 B
e Theorem: For the Simple equation, if (1 + |z|%)v € Ly, then
L e c(p)
TCS( @) =1~ ol +7(x)

with |z|*r € Ly N Leo.
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Universal Tan relations

e Momentum distribution: if K;(k) is the projector on e*** for i,
1 N
= i — g K;
Molk) = N 2 (ol Ka(k) [vo)
N -
N_

e Conjecture: (Bogolyubov) as p — 0 with x := |k|/(2v/27pa) fixed,

1 241
Mo(k) ~ [y
20 \ V(2 +1)2-1
e Theorem: For the Simple equation, as p — 0 with s := |k|/(2+/e) fixed,

1 k241
MS(k)NZO( (l{',2—}-1)2—1 —1>
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Universal Tan relations

e If one takes the limit Kk — oo after p — 0, we get the Universal Tan
relation [Tan, 2008] [Combescot, Alzetto, Leyronas, 2009]

1672 pa?

Mo (k) ~ TR

e The Simple equation predicts that the Tan relation holds in the regime

Vpa < k| <1

and so it predicts that the Tan relations will break down at intermediate
densities.
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Breakdown of the Universal Tan relations
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Two-point correlation function at intermediate density

v(z) = 16e~1*l. p = 0.02 Big equation, Monte Carlo
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Two-point correlation function at intermediate density

v(z) =8 1#l p=1075-10""
1.05




Two-point correlation function at intermediate density

v(z) = 8¢~ 1*l, maximal value as a function of p:
1.04 I T I T
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“Liquid” behavior

e Correlation function:

» Maximum above 1: there is a length scale at which it is more probable
to find pairs of particles.

» No long range order: Short-range order.
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Summary

e The Simplified approach is based on an uncontrolled approximation, nev-
ertheless, it reproduces known and conjectured results for

>

>

>

»

the energy at low and high density,
the condensate fraction at low density,
the two-point correlation function at low density,

the Universal Tan relations at low density.

e It also appears to be quantitatively accurate at all densities (for some po-
tentials), and predicts a non-trivial, “liquid”-like behavior at intermediate
densities, as well as a breakdown of the Universal Tan relations.
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Open problems

e Mathematics:

» Uniqueness of solutions for the Simple equation.

» Existence of solutions for the Big equation.

» Positivity of the prediction for the condensate fraction.
» Variational formulation of the Simple equation.

e Physics:

» Further investigation of the intermediate density regime.
» Extension to positive temperature.

» Add a trapping potential and connect to Gross-Pitaevskii theory.
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Open problems

e Mathematical Physics

» Control the factorization assumption.

» Construct a trial state for the many-body Bose gas. Natural choice:
Bijl-Dingle-Jastrow function

Y(xy, -, 2N) = H o w(@i—z;)

i<j

where u is the solution to the Simple equation.
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