The Simplified approach to the Bose gas

Ian Jauslin

joint with Eric A. Carlen, Elliott H. Lieb, Markus Holzmann

Congratulations, Jakob!

1912.04987

2010.13882 2011.10869

2011.10000

2202.07637

2302.13446

arXiv: 2302.13449

http://ian.jauslin.org

Motivation

- Effective theories to study interacting Bose gases: Bogolyubov, Gross-Pitaevskii, Hartree, etc...
- Many successes, but still many open problems, especially in the thermodynamic limit (superfluidity, Bose-Einstein condensation, etc...).
- The Simplified approach [Lieb, 1963]: single-particle non-linear effective equation(s) to study the ground state properties of repulsive Bose gases.
 - ▶ Reproduces known and conjectured results at low and high density.
 - ▶ Makes physical predictions (good agreement with Monte-Carlo) at intermediate densities.

Repulsive Bose gas

• Potential: $v(r) \ge 0$, $\hat{v} \ge 0$ and $v \in L_1(\mathbb{R}^3)$, on a torus of volume V:

$$H_N := -\frac{1}{2} \sum_{i=1}^{N} \Delta_i + \sum_{1 \le i < j \le N} v(|x_i - x_j|)$$

- Ground state (zero temperature): ψ_0 , energy E_0 .
- Observables in the thermodynamic limit: for instance, ground state energy per particle

$$e_0 := \lim_{\substack{V, N \to \infty \\ \frac{N}{V} = \rho}} \frac{E_0}{N}.$$

The Simplified approach

- [Lieb, 1963], [Jauslin, 2025].
- Integrate $H_N \psi_0 = E_0 \psi_0$:

$$\int dx_1 \cdots dx_N \left(-\frac{1}{2} \sum_{i=1}^N \Delta_i \psi_0 + \sum_{1 \leqslant i < j \leqslant N} v(|x_i - x_j|) \psi_0 \right) = E_0 \int dx_1 \cdots dx_N \psi_0$$

• Therefore,

$$\frac{N(N-1)}{2} \int dx_1 dx_2 \ v(x_1 - x_2) \frac{\int dx_3 \cdots dx_N \ \psi_0(x)}{\int dy_1 \cdots dy_N \ \psi_0(y)} = E_0$$

The Simplified approach

- $\psi_0 \ge 0$, so it can be thought of as a probability distribution.
- g_n : correlation functions of $V^{-N}\psi_0$

$$g_n(x_1,\dots,x_n) := \frac{V^n \int dx_{n+1} \dots dx_N \ \psi_0(x_1,\dots,x_N)}{\int dy_1 \dots dy_N \ \psi_0(y_1,\dots,y_N)}$$

• Thus,

$$\frac{E_0}{N} = \frac{N-1}{2V} \int dx \ v(x)g_2(0,x)$$

Hierarchy

• Equation for g_2 : integrate $H_N \psi_0 = E_0 \psi_0$ with respect to x_3, \dots, x_N :

$$-\frac{1}{2}(\Delta_x + \Delta_y)g_2(x,y) + \frac{N-2}{V} \int dz \ (v(x-z) + v(y-z))g_3(x,y,z)$$
$$+v(x-y)g_2(x,y) + \frac{(N-2)(N-3)}{2V^2} \int dz dt \ v(z-t)g_4(x,y,z,t) = E_0g_2(x,y)$$

• Infinite hierarchy of equations.

Factorization assumption

• Factorization assumption: for n = 3, 4,

$$g_n(x_1, \dots, x_n) = \prod_{1 \le i < j \le n} (1 - u_n(x_i - x_j)), \quad u_n \in L_1(\mathbb{R}^3)$$

• Consistency condition:

$$\int \frac{dx_3}{V} g_3(x_1, x_2, x_3) = g_2(x_1, x_2), \quad \int \frac{dx_3}{V} \frac{dx_4}{V} g_4(x_1, x_2, x_3, x_4) = g_2(x_1, x_2)$$

• Remark: the factorization assumption cannot hold exactly:

$$\int \frac{dx_4}{V} g_4(x_1, x_2, x_3, x_4) \neq g_3(x_1, x_2, x_3)$$

Big equation

• In the thermodynamic limit, with $u(x) := 1 - g_2(x)$,

$$-\Delta u(x) = (1 - u(x)) (v(x) - 2\rho K(x) + \rho^2 L(x))$$

$$K := u * S, \quad S(y) := (1 - u(y))v(y)$$

$$L := u * u * S - 2u * (u(u * S)) + \frac{1}{2} \int dy dz \ u(y)u(z - x)u(z)u(y - x)S(z - y).$$

• "Big" equation:

$$L \approx u * u * S - 2u * (u(u * S))$$

Simple equation

- Further approximate $S(x) \approx \frac{2e}{\rho} \delta(x)$ and $u \ll 1$.
- Simple equation:

$$-\Delta u(x) = (1 - u(x))v(x) - 4eu(x) + 2e\rho \ u * u(x)$$
$$e = \frac{\rho}{2} \int dx \ (1 - u(x))v(x)$$

• Theorem: If $v(x) \ge 0$ and $v \in L_1 \cap L_{\frac{3}{2} + \epsilon}(\mathbb{R}^3)$, then the simple equation has an integrable solution (proved constructively), with $0 \le u \le 1$.

Comparison to the many-body Bose gas: notation

• Ground state energy per particle:

► Many-body Bose gas: e₀

ightharpoonup Simplified approach: e_s

• In general, for a quantity A:

▶ Many-body Bose gas: A_0

ightharpoonup Simplified approach: $A_{\rm s}$

The Ground state energy

• Theorem: [Bogolyubov, 1947], [Lee, Huang, Yang, 1957] [Lieb, Yngvason, 1998], [Yau, Yin, 2009], [Fournais, Solovej, 2020], [Basti, Cenatiempo, Schlein, 2021]. At low density,

$$e_0 = 2\pi\rho a \left(1 + \frac{128}{15\sqrt{\pi}} \sqrt{\rho a^3} + o(\sqrt{\rho a^3}) \right)$$

• Theorem: For the Simple equation, at low density

$$e_{\rm s} = 2\pi \rho a \left(1 + \frac{128}{15\sqrt{\pi}} \sqrt{\rho a^3} + o(\sqrt{\rho a^3}) \right)$$

The Ground state energy

• Theorem: [Lieb, 1963]. At high density,

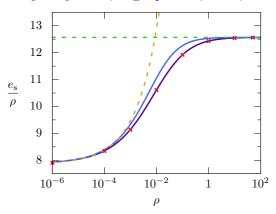
$$\frac{e_0}{\rho} \xrightarrow[\rho \to \infty]{} \frac{\rho}{2} \int dx \ v(x)$$

• Theorem: For the Simple equation, at high density

$$\frac{e_{\rm s}}{\rho} \xrightarrow[\rho \to \infty]{} \frac{1}{2} \int dx \ v(x).$$

The Ground state energy

For $v(x) = e^{-|x|}$: Simple equation, Big equation, LHY, Hartree, Monte Carlo



Condensate fraction

• Let P_i be the projector onto the constant state $V^{-\frac{1}{2}}$ for the *i*-th particle,

$$\eta_0 := \lim_{\substack{V, N \to \infty \\ \frac{N}{V} = \rho}} \frac{1}{N} \sum_{i} \langle \psi_0 | P_i | \psi_0 \rangle$$

• Conjecture: [Lee, Huang, Yang, 1957] At low density,

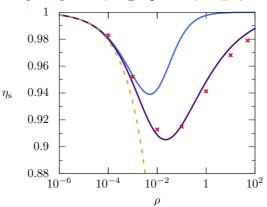
$$\eta_0 = 1 - \frac{8\sqrt{\rho a^3}}{3\sqrt{\pi}} + o(\sqrt{\rho a^3})$$

• **Theorem**: For the Simple equation, if $(1+|x|^4)v \in L_1 \cap L_2$, then

$$\eta_{\rm s} = 1 - \frac{8\sqrt{\rho a^3}}{3\sqrt{\pi}} + o(\sqrt{\rho a^3})$$

Condensate fraction

For $v(x) = e^{-|x|}$: Simple equation, Big equation, Bogolyubov, Monte Carlo



Two-point correlation

•

$$C_0^{(2)}(y-z) := \lim_{\substack{V,N \to \infty \\ \frac{N}{V} = \rho}} \sum_{i,j} \langle \psi_0 | \delta(y-x_i) \delta(z-x_j) | \psi_0 \rangle.$$

• Conjecture: [Lee, Huang, Yang, 1957] As $\sqrt{\rho a}|x| \to \infty$,

$$\frac{1}{\rho^2}C_0^{(2)}(x) - 1 \sim \frac{\frac{16a}{\pi^3\rho}}{|x|^4}$$

• **Theorem**: For the Simple equation, if $(1 + |x|^6)v \in L_1$, then

$$\frac{1}{\rho^2}C_{\rm s}^{(2)}(x) - 1 \sim \frac{c(\rho)}{|x|^4} + r(x)$$

with $|x|^4r \in L_2 \cap L_\infty$.

Universal Tan relations

• Momentum distribution: if $K_i(k)$ is the projector on e^{ikx} for i,

$$\mathcal{M}_{0}(k) := \lim_{\substack{V, N \to \infty \\ \frac{N}{V} = \rho}} \frac{1}{N} \sum_{i=1}^{N} \langle \psi_{0} | K_{i}(k) | \psi_{0} \rangle$$

• Conjecture: (Bogolyubov) as $\rho \to 0$ with $\kappa := |k|/(2\sqrt{2\pi\rho a})$ fixed,

$$\mathcal{M}_0(k) \sim \frac{1}{2\rho} \left(\frac{\kappa^2 + 1}{\sqrt{(\kappa^2 + 1)^2 - 1}} - 1 \right)$$

• Theorem: For the Simple equation, as $\rho \to 0$ with $\kappa := |k|/(2\sqrt{e})$ fixed,

$$\mathcal{M}_{\mathrm{s}}(k) \sim rac{1}{2
ho} \left(rac{\kappa^2 + 1}{\sqrt{(\kappa^2 + 1)^2 - 1}} - 1
ight)$$

Universal Tan relations

• If one takes the limit $\kappa \to \infty$ after $\rho \to 0$, we get the Universal Tan relation [Tan, 2008] [Combescot, Alzetto, Leyronas, 2009]

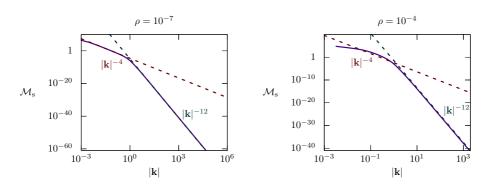
$$\mathcal{M}_0(k) \sim \frac{16\pi^2 \rho a^2}{|k|^4}$$

• The Simple equation predicts that the Tan relation holds in the regime

$$\sqrt{\rho a} \ll |k| \ll 1$$

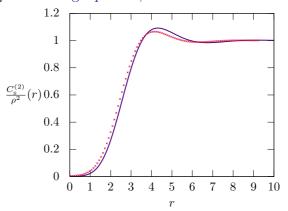
and so it predicts that the Tan relations will break down at intermediate densities.

Breakdown of the Universal Tan relations

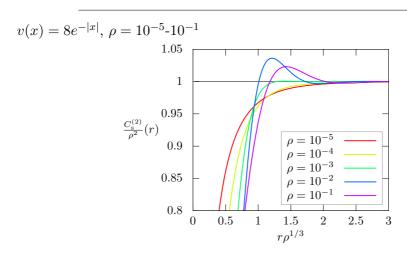


Two-point correlation function at intermediate density

 $v(x) = 16e^{-|x|}, \rho = 0.02$ Big equation, Monte Carlo

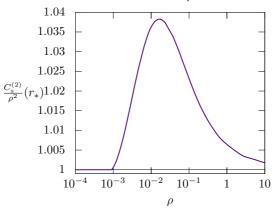


Two-point correlation function at intermediate density



Two-point correlation function at intermediate density

 $v(x) = 8e^{-|x|}$, maximal value as a function of ρ :



"Liquid" behavior

• Correlation function:

- ▶ Maximum above 1: there is a length scale at which it is more probable to find pairs of particles.
- ▶ No long range order: Short-range order.

Summary

- The Simplified approach is based on an uncontrolled approximation, nevertheless, it reproduces known and conjectured results for
 - ▶ the energy at low and high density,
 - ▶ the condensate fraction at low density,
 - ▶ the two-point correlation function at low density,
 - ▶ the Universal Tan relations at low density.
- It also appears to be quantitatively accurate at all densities (for some potentials), and predicts a non-trivial, "liquid"-like behavior at intermediate densities, as well as a breakdown of the Universal Tan relations.

Open problems

• Mathematics:

- ▶ Uniqueness of solutions for the Simple equation.
- ▶ Existence of solutions for the Big equation.
- ▶ Positivity of the prediction for the condensate fraction.
- ▶ Variational formulation of the Simple equation.

• Physics:

- ► Further investigation of the intermediate density regime.
- ► Extension to positive temperature.
- ▶ Add a trapping potential and connect to Gross-Pitaevskii theory.

Open problems

• Mathematical Physics

- ► Control the factorization assumption.
- ► Construct a trial state for the many-body Bose gas. Natural choice: Bijl-Dingle-Jastrow function

$$\psi(x_1, \dots, x_N) = \prod_{i < j} e^{-u(x_i - x_j)}$$

where u is the solution to the Simple equation.