A Renormalization Group based framework to study twisted bilayer graphene

Ian Jauslin

joint with Vieri Mastropietro

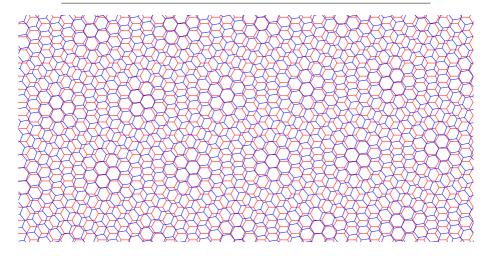
Dedicated to the memory of Giosi Benfatto, whose work is the foundation on which these results are built.

J Stat Phys (2015) 161:1203–1230 DOI 10.1007/s10955-015-1378-7

Kondo Effect in a Fermionic Hierarchical Model

Giuseppe Benfatto $^1\cdot Giovanni\ Gallavotti^2\cdot Ian\ Jauslin^3$

Twisted Bilayer Graphene



Twisted Bilayer Graphene

- Two graphene sheets at an angle θ .
- Theoretically studied: [Bistritzer, MacDonald, 2011]
- Experimental realization: [Cao, Fatemi, Fang, Watanabe, Taniguchi, Kaxiras, Jarillo-Herrero, 2018]
- At certain specific angles ("magic angles"): flat bands, leading to "unconventional" superconductivity.
- First (largest) Magic Angle: $\approx 1.05^{\circ}$

Model

- Graphene lattices: \mathcal{L}_1 and \mathcal{L}_2 .
- Intra-layer: for i = 1, 2,

$$H_i = \sum_{x \sim y \in \mathcal{L}_i} c_{i,x}^{\dagger} c_{i,y}$$

• Inter-layer:

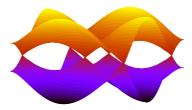
$$V = \lambda \sum_{x \in \mathcal{L}_1} \sum_{y \in \mathcal{L}_2} \phi(x - y) (c_{1,x}^{\dagger} c_{2,y} + c_{2,y}^{\dagger} c_{1,x})$$

• Total Hamiltonian

$$H = H_1 + H_2 + V.$$
^{4/13}

Intra-layer model

- If $\lambda = 0$, $H = H_1 + H_2$: two independent graphene layers.
- Hamiltonian is diagonalizable in Fourier space.



• Fermi points: singularities of two-point correlation.

Main result

• Theorem: If ϕ is short-ranged, and $\hat{\phi}(q) \leq ce^{-\kappa|q|}$ (plus a technical assumption), then, for any $[\theta_0, \theta_1] \subset [0, 2\pi)$ and any $C_0 > 0$, there exists a set of θ 's that has large measure (its complement has measure at most $(C_0/(\theta_0 - \theta_1)^2))$ for which (upon adding an appropriate counter-term to the Hamiltonian) the Schwinger function is close to the intra-layer one near the Fermi points:

$$S_{i}(\mathbf{k} + \mathbf{p}_{F,i}) = \begin{pmatrix} -iZ_{j,\omega}k_{0} & (iv_{i,\omega}k_{1} - w_{i,\omega}\omega k_{2}) \\ (-iv_{i,\omega}^{*}k_{1} - w_{i,\omega}^{*}\omega k_{2}) & -iZ_{j,\omega}k_{0} \end{pmatrix}^{-1} (1 + O(\mathbf{k}^{2}))$$

$$Z_{j,\omega} = 1 + O(\lambda) \in \mathbb{R}, \quad v_{i,\omega}, w_{i,\omega} = \frac{3}{2} + O(\lambda) \in \mathbb{C}$$

(Counter term)

- The counter-term fixes the Fermi points. Without it, they would be shifted in momentum space.
- Form

$$\begin{pmatrix} 0 & \nu_{i,\omega} \\ \nu_{i,\omega}^* & 0 \end{pmatrix}$$

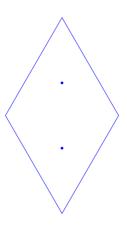
with

$$\nu = O(\lambda) \in \mathbb{C}.$$

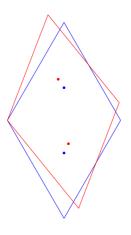
Renormalization group

- Renormalization group analysis: multiscale perturbation theory in λ .
- Main obstacle: the Fermi points are effectively dense (small divisor problem).

Small divisor problem



Small divisor problem



Small divisor problem

- The dual lattice $\hat{\mathcal{L}}_1$ is periodic modulo $\mathbb{Z}b_1 + \mathbb{Z}b_2$. On the other hand $\hat{\mathcal{L}}_2$ is periodic modulo $\mathbb{Z}b'_1 + \mathbb{Z}b'_2$ with $b'_i = R_{\theta}b_i$ (b'_i is rotated by an angle θ).
- Small divisor: for $l, m \in \mathbb{Z}^2$

$$|q_{i,j,\omega,\omega',l,m}| := |p_{F,i}^{\omega} - p_{F,j}^{\omega'} + l_1b_1 + l_2b_2 + m_1b_1' + m_2b_2'| \ll 1$$

leads to a divergence.

- However, such terms come with $\hat{\phi}(|q_{i,j,\omega,\omega',l,m}|)$, which decays exponentially with l, m.
- So we must ensure that for $|q_{i,j,\omega,\omega',l,m}|$ to be small, l,m have to be large enough to be dampened by the exponential decay of $\hat{\phi}$.

Diophantine condition

• For i = j, $\omega = \omega'$: choose θ such that

$$|l_1b_1 + l_2b_2 + m_1R_{\theta}b_1 + m_2R_{\theta}b_2| \geqslant \frac{C_0}{|l|^{\tau}}, \frac{C_0}{|m|^{\tau}}$$

- Complication: this is a two-dimensional condition, but there is only one parameter θ .
- The set of such θ 's has arbitrarily high measure (at the price of decreasing C_0).

Renormalization group analysis

- Remainder of the analysis: similar to RG for quasi-periodic potentials:
 - ▶ [Benfatto, Gentile, Mastropietro, 1997]
 - ▶ [Mastropietro, 2017]
 - ▶ [Gallone, Mastropietro, 2024].

Outlook

- Bistritzer-MacDonald model: only keeps 3 values of l, m.
- Our construction yields a framework to study twisted bilayers using absolutely convergent series.
- Next step: compute the first few orders and get a handle on the Magic Angles.