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Twisted Bilayer Graphene
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Twisted Bilayer Graphene

• Two graphene sheets at an angle θ.

• Theoretically studied: [Bistritzer, MacDonald, 2011]

• Experimental realization: [Cao, Fatemi, Fang, Watanabe, Taniguchi, Kaxi-
ras, Jarillo-Herrero, 2018]

• At certain specific angles (“magic angles”): flat bands, leading to “uncon-
ventional” superconductivity.

• First (largest) Magic Angle: ≈ 1.05◦
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https://doi.org/10.1073/pnas.1108174108
https://www.nature.com/articles/nature26160
https://www.nature.com/articles/nature26160


Model

• Graphene lattices: L1 and L2.

• Intra-layer: for i = 1, 2,

Hi =
∑

x∼y∈Li

c†i,xci,y

• Inter-layer:

V = λ
∑
x∈L1

∑
y∈L2

ϕ(x− y)(c†1,xc2,y + c†2,yc1,x)

• Total Hamiltonian
H = H1 +H2 + V.
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Intra-layer model

• If λ = 0, H = H1 +H2: two independent graphene layers.

• Hamiltonian is diagonalizable in Fourier space.

• Fermi points: singularities of two-point correlation.
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Main result

• Theorem: If ϕ is short-ranged, and ϕ̂(q) ⩽ ce−κ|q| (plus a technical
assumption), then, for any [θ0, θ1] ⊂ [0, 2π) and any C0 > 0, there exists
a set of θ’s that has large measure (its complement has measure at most
(C0/(θ0 − θ1)

2)) for which (upon adding an appropriate counter-term to
the Hamiltonian) the Schwinger function is close to the intra-layer one
near the Fermi points:

Si(k+ pF,i) =

(
−iZj,ωk0 (ivi,ωk1 − wi,ωωk2)

(−iv∗i,ωk1 − w∗
i,ωωk2) −iZj,ωk0

)−1

(1 +O(k2))

Zj,ω = 1 +O(λ) ∈ R, vi,ω, wi,ω =
3

2
+O(λ) ∈ C
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(Counter term)

• The counter-term fixes the Fermi points. Without it, they would be shifted
in momentum space.

• Form (
0 νi,ω

ν∗i,ω 0

)
with

ν = O(λ) ∈ C.
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Renormalization group

• Renormalization group analysis: multiscale perturbation theory in λ.

• Main obstacle: the Fermi points are effectively dense (small divisor prob-
lem).
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Small divisor problem
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Small divisor problem
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Small divisor problem

• The dual lattice L̂1 is periodic modulo Zb1 + Zb2. On the other hand L̂2

is periodic modulo Zb′1 +Zb′2 with b′i = Rθbi (b
′
i is rotated by an angle θ).

• Small divisor: for l,m ∈ Z2

|qi,j,ω,ω′,l,m| := |pωF,i − pω
′

F,j + l1b1 + l2b2 +m1b
′
1 +m2b

′
2| ≪ 1

leads to a divergence.

• However, such terms come with ϕ̂(|qi,j,ω,ω′,l,m|), which decays exponen-
tially with l,m.

• So we must ensure that for |qi,j,ω,ω′,l,m| to be small, l,m have to be large

enough to be dampened by the exponential decay of ϕ̂.
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Diophantine condition

• For i = j, ω = ω′: choose θ such that

|l1b1 + l2b2 +m1Rθb1 +m2Rθb2| ⩾
C0

|l|τ
,
C0

|m|τ

• Complication: this is a two-dimensional condition, but there is only one
parameter θ.

• The set of such θ’s has arbitrarily high measure (at the price of decreasing
C0).
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Renormalization group analysis

• Remainder of the analysis: similar to RG for quasi-periodic potentials:

▶ [Benfatto, Gentile, Mastropietro, 1997]

▶ [Mastropietro, 2017]

▶ [Gallone, Mastropietro, 2024].
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https://doi.org/10.1007/BF02765540
https://doi.org/10.1103/PhysRevLett.115.180401
https://doi.org/10.1007/s00220-024-05092-6


Outlook

• Bistritzer-MacDonald model: only keeps 3 values of l,m.

• Our construction yields a framework to study twisted bilayers using ab-
solutely convergent series.

• Next step: compute the first few orders and get a handle on the Magic
Angles.
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