Non-perturbative behavior of interacting Bosons at intermediate densities

Ian Jauslin

joint with Eric A. Carlen, Elliott H. Lieb, Markus Holzmann

$$
\begin{array}{r}
1912.04987 \\
2010.13882 \\
2011.10869 \\
2202.07637 \\
2302.13446 \\
\text { arXiv: } 2302.13449
\end{array}
$$

Systems of interacting Bosons: What and why?

- Bosons are a part of the natural world:
- Quantum particles are either Fermions or Bosons (in 3D).
- Fermions: electrons, protons, neutrinos, etc...
- Bosons: photons, Helium atoms, Higgs particle, etc...
- They exhibit non-trivial physical behavior at low temperatures: e.g. BoseEinstein condensation, superfluidity, quantized vortices, etc...
- It is difficult to handle mathematically: for instance, Bose-Einstein condensation has never been proved in interacting models in the continuum at finite density.

Repulsive Bose gas

- Potential: $v(r) \geqslant 0, \hat{v} \geqslant 0$ and $v \in L_{1}\left(\mathbb{R}^{3}\right)$, on a torus of volume V :

$$
H_{N}:=-\frac{1}{2} \sum_{i=1}^{N} \Delta_{i}+\sum_{1 \leqslant i<j \leqslant N} v\left(\left|x_{i}-x_{j}\right|\right)
$$

- Smallest eigenvalue: E_{0} (energy), eigenvector: ψ_{0} (ground state) $(T=0)$.
- Observables in the thermodynamic limit: for instance, ground state energy per particle

$$
e_{0}:=\lim _{\substack{V, N \rightarrow \infty \\ \frac{N}{V}=\rho}} \frac{E_{0}}{N} .
$$

- Main difficulty: dealing with the interactions.

Known theorems

- Low density: Lee-Huang-Yang formula

$$
e_{0}=2 \pi \rho a\left(1+\frac{128}{15 \sqrt{\pi}} \sqrt{\rho a^{3}}+o\left(\sqrt{\rho a^{3}}\right)\right)
$$

proved: [Lieb, Yngvason, 1998], [Yau, Yin, 2009], [Fournais, Solovej, 2020], [Basti, Cenatiempo, Schlein, 2021].

- High density: Hartree energy:

$$
e_{0} \sim \frac{\rho}{2} \int v
$$

proved: [Lieb, 1963].

The Simplified approach: proof of concept

For $v(x)=e^{-|x|}$: Simplified approach, LHY, Hartree, Monte Carlo

The Simplified approach

- [Lieb, 1963], [Jauslin, 2023].
- Integrate $H_{N} \psi_{0}=E_{0} \psi_{0}$:

$$
\int d x_{1} \cdots d x_{N}\left(-\frac{1}{2} \sum_{i=1}^{N} \Delta_{i} \psi_{0}+\sum_{1 \leqslant i<j \leqslant N} v\left(\left|x_{i}-x_{j}\right|\right) \psi_{0}\right)=E_{0} \int d x_{1} \cdots d x_{N} \psi_{0}
$$

- Therefore,

$$
\frac{N(N-1)}{2} \int d x_{1} d x_{2} v\left(x_{1}-x_{2}\right) \frac{\int d x_{3} \cdots d x_{N} \psi_{0}}{\int d y_{1} \cdots d y_{N} \psi_{0}}=E_{0}
$$

The Simplified approach

- $\psi_{0} \geqslant 0$, so it can be thought of as a probability distribution.
- g_{n} : correlation functions of $V^{-N} \psi_{0}$

$$
g_{n}\left(x_{1}, \cdots, x_{n}\right):=\frac{V^{n} \int d x_{n+1} \cdots d x_{N} \psi_{0}\left(x_{1}, \cdots, x_{N}\right)}{\int d y_{1} \cdots d y_{N} \psi_{0}\left(y_{1}, \cdots, y_{N}\right)}
$$

- Thus,

$$
\frac{E_{0}}{N}=\frac{N-1}{2 V} \int d x v(x) g_{2}(0, x)
$$

Hierarchy

- Equation for g_{2} : integrate $H_{N} \psi_{0}=E_{0} \psi_{0}$ with respect to x_{3}, \cdots, x_{N} :

$$
\begin{aligned}
& -\frac{1}{2}\left(\Delta_{x}+\Delta_{y}\right) g_{2}(x, y)+\frac{N-2}{V} \int d z(v(x-z)+v(y-z)) g_{3}(x, y, z) \\
& +v(x-y) g_{2}(x, y)+\frac{(N-2)(N-3)}{2 V^{2}} \int d z d t v(z-t) g_{4}(x, y, z, t)=E_{0} g_{2}(x, y)
\end{aligned}
$$

- Infinite hierarchy of equations.
- Truncate: Factorization assumption: for $n=3,4$,

$$
g_{n}\left(x_{1}, \cdots, x_{n}\right)=\prod_{1 \leqslant i<j \leqslant n}\left(1-u\left(x_{i}-x_{j}\right)\right), \quad u(x):=1-g_{2}(0, x) \in L_{1}\left(\mathbb{R}^{3}\right)
$$

Big equation

- In the thermodynamic limit,

$$
\begin{gathered}
-\Delta u(x)=(1-u(x))\left(v(x)-2 \rho K(x)+\rho^{2} L(x)\right) \\
K:=u * S, \quad S(y):=(1-u(y)) v(y) \\
L:=u * u * S-2 u *(u(u * S))+\frac{1}{2} \int d y d z u(y) u(z-x) u(z) u(y-x) S(z-y) .
\end{gathered}
$$

- "Big" equation:

$$
L \approx u * u * S-2 u *(u(u * S))
$$

Simple equation

- Further approximate $S(x) \approx \frac{2 e}{\rho} \delta(x)$ and $u \ll 1$.
- Simple equation:

$$
\begin{gathered}
-\Delta u(x)=(1-u(x)) v(x)-4 e u(x)+2 e \rho u * u(x) \\
e=\frac{\rho}{2} \int d x(1-u(x)) v(x)
\end{gathered}
$$

- Theorem 1: If $v(x) \geqslant 0$ and $v \in L_{1} \cap L_{2}\left(\mathbb{R}^{3}\right)$, then the simple equation has an integrable solution (proved constructively), with $0 \leqslant u \leqslant 1$.

Energy for the simple equation

- Theorem 2:

$$
\frac{e}{\rho} \underset{\rho \rightarrow \infty}{\longrightarrow} \frac{1}{2} \int d x v(x)
$$

This coincides with the Hartree energy.

- Theorem 3:

$$
e=2 \pi \rho a\left(1+\frac{128}{15 \sqrt{\pi}} \sqrt{\rho a^{3}}+o(\sqrt{\rho})\right)
$$

This coincides with the Lee-Huang-Yang prediction.

- Theorem 4: The Simple equation predicts Bose-Einstein condensation at small densities. (Agrees with Bogolyubov theory)

Energy

$v(x)=e^{-|x|}$, Big equation, Monte Carlo

Radial distribution function

- Two-point correlation:

$$
C_{2}(y-z)=\sum_{i, j}\left\langle\psi_{0}\right| \delta\left(y-x_{i}\right) \delta\left(z-x_{j}\right)\left|\psi_{0}\right\rangle
$$

- Radial distribution: spherical average and normalization:

$$
G(r):=\frac{1}{\rho^{2}} \int \frac{d y}{4 \pi r^{2}} \delta(|y|-r) C_{2}(y)
$$

- Compute C_{2} using

$$
C_{2}(x)=2 \rho \frac{\delta e_{0}}{\delta v(x)}
$$

- Theorem 5: The Simple equation predicts that $C_{2}-1 \sim|x|^{-4}$ for large $|x|$, which agrees with Bogolyubov theory.

Radial distribution function

$v(x)=16 e^{-|x|}, \rho=0.02$ Big equation, Monte Carlo

Radial distribution function

$$
v(x)=8 e^{-|x|}, \rho=10^{-5}-10^{-1}
$$

Radial distribution function

$v(x)=8 e^{-|x|}$, maximal value as a function of ρ :

Structure factor

- Structure factor: Fourier transform of G :

$$
S(|k|):=1+\rho \int d x e^{i k x}(G(|x|)-1)
$$

- Directly observable in X-ray scattering experiments.
- Sharp peaks: order.

Structure factor

$$
\begin{aligned}
& v(x)=8 e^{-|x|}, \rho=10^{-5}-0.3
\end{aligned}
$$

Structure factor

$v(x)=8 e^{-|x|}$, maximal value as a function of ρ :

"Liquid" behavior

- Correlation function:
- Maximum above 1: there is a length scale at which it is more probable to find pairs of particles.
- No long range order: Short-range order.
- Structure factor:
- Sharpening of the peak.
- Not Bragg peaks: No long range order: Short-range order.

Summary and outlook

- Using the Simplified approach, we were able to probe the repulsive Bose gas beyond the dilute regime.
- Evidence for non-trivial behavior at intermediate densities: short-range order.
- The intermediate density regime has not been studied much, due to the lack of tools to do so. As we have seen, there is non-trivial behavior there. This warrants further investigation, both theoretical and experimental.

Open problems on the Simplified approach

- Connect the Simplified approach to the many-Boson system: numerics suggests the prediction of the Simplified approach is an upper bound, for all densities.
- Understand the factorization assumption. It certainly does not hold exactly. Does it hold approximately, in some sense?
- There are still many questions about the Bose gas with hard core interactions. The Simplified approach is easily defined in the hard core case. Can it shed some light?

