A criterion for crystallization in hard-core lattice particle systems

Ian Jauslin

joint with Qidong He, Joel L. Lebowitz
1708.01912
arXiv: 2402.02615

http://ian.jauslin.org

Crystallization

- Crystallization: phase transition from a disordered phase to one with long-range positional order.
- Example: Freezing transition in water.
- Simpler example: hard spheres: identical spherical particles in \mathbb{R}^{3}, may not overlap. Conjecture: gas phase at low densities, crystalline phase at high densities.

Crystallization

- Very difficult (in the continuum): small fluctuations easily break longrange order.
- To this day, there is no proof that there is crystallization in the hard sphere model at positive temperature.

Hard-core lattice models

- Here: simpler systems: hard-core lattice models: replace \mathbb{R}^{3} with a lattice Λ_{∞} (a periodic graph, examples: \mathbb{Z}^{d}, or triangular lattice, or honeycomb).
- Each particle has a position $x \in \Lambda_{\infty}$ and a shape $\omega \subset \mathbb{R}^{d}$, which is a bounded connected subset of $\mathbb{R}^{d} .(d \geqslant 2)$

Equilibrium statistical mechanics

- Random particle configurations without overlap: if $\omega_{x}:=x+\omega$,

$$
\omega_{x} \cap \omega_{y}=\emptyset
$$

- Probability of a configuration $X \subset \Lambda_{\infty}$: proportional to

$$
z^{|X|}
$$

$|X|$: number of particles, $z>0$: fugacity: controls the density of particles.

- Question: for large z, are typical configurations ordered?

High density crystallization

- [Dobrushin, 1968], [Gaunt, Fisher, 1965]: diamonds on \mathbb{Z}^{2}.
- [Heilmann, Praestgaard, 1974]: crosses on \mathbb{Z}^{2}.
- [Baxter, 1980], [Joyce, 1988]: hexagons on triangular lattice.
- [Jauslin, Lebowitz, 2018]: non-sliding tiling models.
- [Mazel, Stuhl, Suhov, 2018, 2019, 2020, 2021]: hard disks on \mathbb{Z}^{2}, triangular, honeycomb lattice.
- Here: criterion in arbitrary dimension $d \geqslant 2$ for non-sliding model (not necessarily tiling).

Main idea: sliding

- "sliding": in closely-packed configurations, particles are not locked in place.
- non-sliding: defects are localized.

Ground states

- Ground states: closely-packed configurations.
- Uniform density configurations: X in Λ_{∞}, for all $\Lambda \Subset \Lambda_{\infty}$, the number of particles in Λ is $\rho|\Lambda|+o(|\Lambda|)$.
- Maximal density: $\rho_{\max } \leftrightarrow$ Maximal density configuration: ground state.
- Set of ground states: \mathcal{G}.
- (A2) \mathcal{G} is finite and non-empty.

Gibbs measure

- Gibbs measure:

$$
\langle A\rangle_{\nu}:=\lim _{\Lambda \rightarrow \Lambda_{\infty}} \frac{1}{\Xi_{\Lambda, \nu}(z)} \sum_{X \subset \Lambda} A(X) z^{|X|} \mathfrak{B}_{\nu}(X) \prod_{x \neq y \in X} \varphi(x, y)
$$

- Λ : finite subset of lattice Λ_{∞}.
- $z \geqslant 0$: fugacity. $z \gg 1$.
- $\varphi(x, y)$: hard-core interaction: $=0$ if $\omega_{x} \cap \omega_{y} \neq \emptyset$ and 1 otherwise.
- $\mathfrak{B}_{\nu}, \nu \in \mathcal{G}$: boundary condition: favors the ν-th ground state.
- Pressure:

$$
p(z):=\lim _{\Lambda \rightarrow \Lambda_{\infty}} \frac{1}{|\Lambda|} \log \Xi_{\Lambda, \nu}(z)
$$

Theorem

We define $\mathbb{1}_{x}$ as the function that returns 1 if $x \in X$ and 0 if not, and denote the ground states by \mathcal{L}_{ν} for $\nu \in \mathcal{G}$.

If (A1)-(A6) (see below) are satisfied, then there exists $z_{0}>0$ such that,

- for $|z| \geqslant z_{0}, p(z)-\rho_{\max } \log z$ and $\left\langle\mathbb{1}_{x_{1}} \cdots \mathbb{1}_{x_{n}}\right\rangle_{\nu}$ are analytic functions of $1 / z$.
- For $z \geqslant z_{0}$, there are at least $|\mathcal{G}|$ distinct Gibbs states:

$$
\left\langle\mathbb{1}_{x}\right\rangle_{\nu}= \begin{cases}1+O\left(z^{-1}\right) & \text { if } x \in \mathcal{L}_{\nu} \\ O\left(z^{-1}\right) & \text { if not. }\end{cases}
$$

Defects

- Discrete Voronoi cell of a particle at x in a configuration $X: V_{X}\left(\omega_{x}\right)$: set of $y \in \Lambda_{\infty}$ such that y is closer (inclusively) to ω_{x} than to any other particle.
- Defined in this way, Voronoi cells may overlap.
- The sites in the support ω_{x} of a particle only belong to the Voronoi cell of that particle.
- Def: The neighbors of a particle x are the particles whose Voronoi cells are at distance $\leqslant 1$ from $V_{X}\left(\omega_{x}\right)$.
- Def: Given $\nu \in \mathcal{G}$, a particle $x \in X$ is ν-correct if its neighbors are the same as in the ground state ν.
- Defect: incorrect particle.

Independence of defects

- (A5) Given two particles x and y that are neighbors. If x is ν-correct and y is μ-correct, then $\nu=\mu$.
- Disconnected defects are independent.

Local density

- Local density: inverse of the "weighted size" of the Voronoi cell:

$$
\frac{1}{\rho_{X}^{(\mathrm{loc})}(x)}:=\sum_{y \in V_{X}\left(\omega_{x}\right)} \frac{1}{\left|\left\{z \in X: y \in V_{X}(z)\right\}\right|} .
$$

- (A4) The maximal local density is equal to the maximal density: $\rho_{\text {max }}^{(\operatorname{loc})}=\rho_{\text {max }}$.
- It must not be possible for a few particles to be packed more closely than a ground state locally, at the expense of the global density.

Gains from defects

- A dip in the local density should be unlikely when $z \gg 1$.
- (A6) $\exists \epsilon>0$ such that, for any incorrect particle x,

$$
\rho_{X}(y)^{-1} \geqslant \rho_{\max }^{-1}+\epsilon .
$$

- (This condition can actually be made more general.)

Criterion

- (A1) Λ_{∞} is \mathbb{Z}^{d} with $d \geqslant 2$ or the triangular or honeycomb lattices (our result is actually more general than this).
- (A2) \mathcal{G} is finite and non-empty.
- (A3) the ground states are isometric to each other.
- (A4) The maximal local density is equal to the maximal density: $\rho_{\text {max }}^{(\text {loc })}=\rho_{\text {max }}$.
- (A5) Given two particles x and y that are neighbors. If x is ν-correct and y is μ-correct, then $\nu=\mu$.
- (A6) $\exists \epsilon>0$ such that, for any incorrect particle $x, \rho_{X}(y)^{-1} \geqslant$ $\rho_{\text {max }}^{-1}+\epsilon$.

Theorem

We define $\mathbb{1}_{x}$ as the function that returns 1 if $x \in X$ and 0 if not, and denote the ground states by \mathcal{L}_{ν} for $\nu \in \mathcal{G}$.
If (A1)-(A6) are satisfied, then there exists $z_{0}>0$ such that,

- for $|z| \geqslant z_{0}, p(z)-\rho_{\max } \log z$ and $\left\langle\mathbb{1}_{x_{1}} \cdots \mathbb{1}_{x_{n}}\right\rangle_{\nu}$ are analytic functions of $1 / z$.
- For $z \geqslant z_{0}$, there are at least $|\mathcal{G}|$ distinct Gibbs states:

$$
\left\langle\mathbb{1}_{x}\right\rangle_{\nu}= \begin{cases}1+O\left(z^{-1}\right) & \text { if } x \in \mathcal{L}_{\nu} \\ O\left(z^{-1}\right) & \text { if not. }\end{cases}
$$

Low-fugacity (Mayer) expansion

- Partition function: $Z_{\Lambda}(n)$: number of configurations with n particles:

$$
\Xi_{\Lambda}(z)=\sum_{n=0}^{\infty} z^{n} Z_{\Lambda}(n)
$$

- Formally, (converges if z is small enough)

$$
\frac{1}{|\Lambda|} \log \Xi_{\Lambda}(z)=\sum_{k=1}^{\infty} b_{k}(\Lambda) z^{k}
$$

where, if $Z_{\Lambda}\left(k_{i}\right)$ denotes the number of configurations with k_{i} particles, then

$$
b_{k}(\Lambda):=\frac{1}{|\Lambda|} \sum_{j=1}^{k} \frac{(-1)^{j+1}}{j} \sum_{\substack{k_{1}, \cdots, k_{j} \geqslant 1 \\ k_{1}+\cdots+k_{j}=k}} Z_{\Lambda}\left(k_{1}\right) \cdots Z_{\Lambda}\left(k_{j}\right)
$$

High-fugacity expansion

- Partition function: $Z_{\Lambda}(n)$: number of configurations with n particles:

$$
\Xi_{\Lambda}(z)=\sum_{n=0}^{N_{\max }} z^{n} Z_{\Lambda}(n)
$$

- Inverse fugacity $y \equiv z^{-1}$:

$$
\Xi_{\Lambda}(z)=z^{N_{\max }} \sum_{n=0}^{N_{\max }} y^{n} Q_{\Lambda}(n)
$$

with $Q_{\Lambda}(n) \equiv Z_{\Lambda}\left(N_{\max }-n\right)$.

High-fugacity expansion

- Formally,

$$
\frac{1}{|\Lambda|} \log \Xi_{\Lambda}=\rho_{\max } \log z+\sum_{k=1}^{\infty} c_{k}(\Lambda) y^{k}
$$

where $\rho_{\max }=\frac{N_{\max }}{|\Lambda|}$,

$$
c_{k}(\Lambda):=\frac{1}{|\Lambda|} \sum_{j=1}^{k} \frac{(-1)^{j+1}}{j \tau^{j}} \sum_{\substack{k_{1}, \cdots, k_{j} \geqslant 1 \\ k_{1}+\cdots+k_{j}=k}} Q_{\Lambda}\left(k_{1}\right) \cdots Q_{\Lambda}\left(k_{j}\right)
$$

- Does not always converge for large z. We prove it does under (A1)-(A6) using Pirogov-Sinai theory.

Pirogov-Sinai theory

- Switch to a contour model made up of defects.
- The contours interact via a hard-core repulsion (not really, but they can be made to do so with some work).
- The density of contours is small: they contain dips in the local density whose number is proportional to the size of the contour.
- Use cluster expansion for the contour model.
- (Extra complications: contours must be thickened, for various technical reasons; nested contours interact, which we deal with using the MinlosSinai trick.)

Lee-Yang zeros

- Lee-Yang zeros: roots of $\Xi_{\Lambda}(z) \Longleftrightarrow$ singularities of $p_{\Lambda}(z)$.
- Whenever the high fugacity expansion has a radius of convergence \tilde{R}, there are no Lee-Yang zeros outside of a disc of radius \tilde{R}^{-1}.

20/20

