A criterion for crystallization in hard-core lattice particle systems

Ian Jauslin

joint with Qidong He, Joel L. Lebowitz

http://ian.jauslin.org

1708.01912 arXiv: 2402.02615

Crystallization

- Crystallization: phase transition from a disordered phase to one with long-range positional order.
- Very difficult (in the continuum): small fluctuations easily break long-range order.
- To this day, there is no proof that there is crystallization in realistic models (models on \mathbb{R}^3 at positive temperature).

- Paradigmatic model: hard spheres: identical spherical particles in \mathbb{R}^3 , may not overlap.
- Even at zero-temperature (densest packing): difficult [Hales, 2005] (computer assisted).
- Here: simpler systems: hard-core lattice models: replace \mathbb{R}^3 with a lattice Λ_{∞} (a periodic graph, examples: \mathbb{Z}^d , or triangular lattice, or honeycomb).
- Each particle has a position $x \in \Lambda_{\infty}$ and a shape $\omega \subset \mathbb{R}^d$, which is a bounded connected subset of \mathbb{R}^d . $(d \ge 2)$
- Interaction: if $\omega_x := x + \omega$,

$$\omega_x \cap \omega_y = \emptyset.$$

• discrete support: $\sigma_x := \omega_x \cap \Lambda_\infty$.

Examples of hard-core lattice models

High density crystallization

- [Dobrushin, 1968], [Gaunt, Fisher, 1965]: diamonds on \mathbb{Z}^2 .
- [Heilmann, Praestgaard, 1974]: crosses on \mathbb{Z}^2 .
- [Baxter, 1980], [Joyce, 1988]: hexagons on triangular lattice.
- [Jauslin, Lebowitz, 2018]: non-sliding tiling models.
- [Mazel, Stuhl, Suhov, 2018, 2019, 2020, 2021]: hard disks on $\mathbb{Z}^2,$ triangular, honeycomb lattice.
- Here: criterion in arbitrary dimension $d \ge 2$ for non-sliding model (not necessarily tiling).

Main idea: sliding

- "sliding": in closely-packed configurations, particles are not locked in place.
- non-sliding: defects are localized.

- Ground states: closely-packed configurations.
- Uniform density configurations: X in Λ_{∞} , for all $\Lambda \Subset \Lambda_{\infty}$, the number of particles in Λ is $\rho|\Lambda| + o(|\Lambda|)$.
- Maximal density: $\rho_{\max} \leftrightarrow$ Maximal density configuration: ground state.
- Set of ground states: \mathcal{G} .
- (A2) \mathcal{G} is finite and non-empty.

Gibbs measure

• Gibbs measure:

$$\langle A \rangle_{\nu} := \lim_{\Lambda \to \Lambda_{\infty}} \frac{1}{\Xi_{\Lambda,\nu}(z)} \sum_{X \subset \Lambda} A(X) z^{|X|} \mathfrak{B}_{\nu}(X) \prod_{x \neq x' \in X} \varphi(x,x')$$

- A: finite subset of lattice Λ_{∞} .
- ► $z \ge 0$: fugacity. $z \gg 1$.
- $\varphi(x, x')$: hard-core interaction.
- $\mathfrak{B}_{\nu}, \nu \in \mathcal{G}$: boundary condition: favors the ν -th ground state.
- Pressure:

$$p(z) := \lim_{\Lambda \to \Lambda_{\infty}} \frac{1}{|\Lambda|} \log \Xi_{\Lambda,\nu}(z).$$

Defects

- Discrete Voronoi cell of a particle at x in a configuration X: $V_X(\sigma_x)$: set of $y \in \Lambda_{\infty}$ such that y is closer (inclusively) to σ_x than to any other particle.
- Defined in this way, Voronoi cells may overlap.
- The sites in the support σ_x of a particle only belong to the Voronoi cell of that particle.
- Def: The neighbors of a particle x are the particles whose Voronoi cells are at distance ≤ 1 from $V_X(\sigma_x)$.
- Def: Given $\nu \in \mathcal{G}$, a particle $x \in X$ is ν -correct if its neighbors are the same as in the ground state ν .
- Defect: incorrect particle.

Independence of defects

- (A5) Given two particles x and y that are neighbors. If x is ν -correct and y is μ -correct, then $\nu = \mu$.
- Disconnected defects are independent.

• Local density: inverse of the "weighted size" of the Voronoi cell:

$$\frac{1}{\rho_X^{(\text{loc})}(x)} := \sum_{y \in V_X(\sigma_x)} \frac{1}{|\{z \in X : y \in V_X(z)\}|}.$$

- (A4) The maximal local density is equal to the maximal density: $\rho_{\max}^{(loc)} = \rho_{\max}$.
- It must not be possible for a few particles to be packed more closely than a ground state locally, at the expense of the global density.

- A dip in the local density should be unlikely when $z \gg 1$.
- (A6) $\exists \epsilon > 0$ such that, for any incorrect particle x,

 $\rho_X(y)^{-1} \ge \rho_{\max}^{-1} + \epsilon.$

• (This condition can actually be made more general.)

Criterion

- (A1) Λ_{∞} is \mathbb{Z}^d with $g \ge 2$ or the triangular or honeycomb lattices (our result is actually more general than this).
- (A2) \mathcal{G} is finite and non-empty.
- (A3) the ground states are isometric to each other.
- (A4) The maximal local density is equal to the maximal density: $\rho_{\max}^{(loc)} = \rho_{\max}$.
- (A5) Given two particles x and y that are neighbors. If x is ν -correct and y is μ -correct, then $\nu = \mu$.
- (A6) $\exists \epsilon > 0$ such that, for any incorrect particle x, $\rho_X(y)^{-1} \ge \rho_{\max}^{-1} + \epsilon$.

Theorem

We define $\mathbb{1}_x$ as the function that returns 1 if $x \in X$ and 0 if not, and denote the ground states by \mathcal{L}_{ν} for $\nu \in \mathcal{G}$.

If (A1)-(A6) are satisfied, then there exists $z_0 > 0$ such that,

- for $|z| \ge z_0$, $p(z) \rho_{\max} \log z$ and $\langle \mathbb{1}_{x_1} \cdots \mathbb{1}_{x_n} \rangle_{\nu}$ are analytic functions of 1/z.
- For $z \ge z_0$, there are at least $|\mathcal{G}|$ distinct Gibbs states:

$$\langle \mathbb{1}_x \rangle_{\nu} = \begin{cases} 1 + O(z^{-1}) \text{ if } x \in \mathcal{L}_{\nu} \\ \\ O(z^{-1}) & \text{if not.} \end{cases}$$

Low-fugacity (Mayer) expansion

• Partition function: $Z_{\Lambda}(n)$: number of configurations with n particles:

$$\Xi_{\Lambda}(z) = \sum_{n=0}^{\infty} z^n Z_{\Lambda}(n)$$

• Formally, (converges if z is small enough)

$$\frac{1}{|\Lambda|}\log \Xi_{\Lambda}(z) = \sum_{k=1}^{\infty} b_k(\Lambda) z^k$$

where, if $Z_{\Lambda}(k_i)$ denotes the number of configurations with k_i particles, then

$$b_k(\Lambda) := \frac{1}{|\Lambda|} \sum_{j=1}^k \frac{(-1)^{j+1}}{j} \sum_{\substack{k_1, \dots, k_j \ge 1\\k_1 + \dots + k_j = k}} Z_{\Lambda}(k_1) \cdots Z_{\Lambda}(k_j)$$

High-fugacity expansion

• Partition function: $Z_{\Lambda}(n)$: number of configurations with n particles:

$$\Xi_{\Lambda}(z) = \sum_{n=0}^{N_{\max}} z^n Z_{\Lambda}(n)$$

• Inverse fugacity $y \equiv z^{-1}$:

$$\Xi_{\Lambda}(z) = z^{N_{\max}} \sum_{n=0}^{N_{\max}} y^n Q_{\Lambda}(n)$$

with $Q_{\Lambda}(n) \equiv Z_{\Lambda}(N_{\max} - n).$

High-fugacity expansion

• Formally,

$$\frac{1}{|\Lambda|}\log \Xi_{\Lambda} = \rho_{\max}\log z + \sum_{k=1}^{\infty} c_k(\Lambda) y^k$$

where
$$\rho_{\max} = \frac{N_{\max}}{|\Lambda|}$$
,

$$c_k(\Lambda) := \frac{1}{|\Lambda|} \sum_{j=1}^k \frac{(-1)^{j+1}}{j\tau^j} \sum_{\substack{k_1, \dots, k_j \ge 1\\k_1 + \dots + k_j = k}} Q_\Lambda(k_1) \cdots Q_\Lambda(k_j)$$

• Does not always converge for large z. We prove it does under (A1)-(A6) using Pirogov-Sinai theory.

- Switch to a contour model made up of defects.
- The contours interact via a hard-core repulsion (not really, but they can be made to do so with some work).
- The density of contours is small: they contain dips in the local density whose number is proportional to the size of the contour.
- Use cluster expansion for the contour model.
- (Extra complications: contours must be thickened, for various technical reasons; nested contours interact, which we deal with using the Minlos-Sinai trick.)

- Lee-Yang zeros: roots of $\Xi_{\Lambda}(z) \iff$ singularities of $p_{\Lambda}(z)$.
- Whenever the high fugacity expansion has a radius of convergence \tilde{R} , there are no Lee-Yang zeros outside of a disc of radius \tilde{R}^{-1} .

