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Crystallization

• Crystallization: phase transition from a disordered phase to one with
long-range positional order.

• Very difficult (in the continuum): small fluctuations easily break long-
range order.

• To this day, there is no proof that there is crystallization in realistic models
(models on R3 at positive temperature).
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Hard-core models

• Paradigmatic model: hard spheres: identical spherical particles in R3,
may not overlap.

• Even at zero-temperature (densest packing): difficult [Hales, 2005] (com-
puter assisted).

• Here: simpler systems: hard-core lattice models: replace R3 with a lattice
Λ∞ (a periodic graph, examples: Zd, or triangular lattice, or honeycomb).

• Each particle has a position x ∈ Λ∞ and a shape ω ⊂ Rd, which is a
bounded connected subset of Rd. (d ⩾ 2)

• Interaction: if ωx := x+ ω,

ωx ∩ ωy = ∅.

• discrete support: σx := ωx ∩ Λ∞.
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Examples of hard-core lattice models
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High density crystallization

• [Dobrushin, 1968], [Gaunt, Fisher, 1965]: diamonds on Z2.

• [Heilmann, Praestgaard, 1974]: crosses on Z2.

• [Baxter, 1980], [Joyce, 1988]: hexagons on triangular lattice.

• [Jauslin, Lebowitz, 2018]: non-sliding tiling models.

• [Mazel, Stuhl, Suhov, 2018, 2019, 2020, 2021]: hard disks on Z2, triangular,
honeycomb lattice.

• Here: criterion in arbitrary dimension d ⩾ 2 for non-sliding model (not
necessarily tiling).
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Main idea: sliding

• “sliding”: in closely-packed configurations, particles are not locked in
place.

• non-sliding: defects are localized.
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Ground states

• Ground states: closely-packed configurations.

• Uniform density configurations: X in Λ∞, for all Λ ⋐ Λ∞, the number of
particles in Λ is ρ|Λ|+ o(|Λ|).

• Maximal density: ρmax ↔ Maximal density configuration: ground state.

• Set of ground states: G.

• (A2) G is finite and non-empty.
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Gibbs measure

• Gibbs measure:

⟨A⟩ν := lim
Λ→Λ∞

1

ΞΛ,ν(z)

∑
X⊂Λ

A(X)z|X|Bν(X)
∏

x̸=x′∈X
φ(x, x′)

▶ Λ: finite subset of lattice Λ∞.

▶ z ⩾ 0: fugacity. z ≫ 1.

▶ φ(x, x′): hard-core interaction.

▶ Bν , ν ∈ G: boundary condition: favors the ν-th ground state.

• Pressure:

p(z) := lim
Λ→Λ∞

1

|Λ|
log ΞΛ,ν(z).
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Defects

• Discrete Voronoi cell of a particle at x in a configuration X: VX(σx): set of
y ∈ Λ∞ such that y is closer (inclusively) to σx than to any other particle.

• Defined in this way, Voronoi cells may overlap.

• The sites in the support σx of a particle only belong to the Voronoi cell
of that particle.

• Def: The neighbors of a particle x are the particles whose Voronoi cells
are at distance ⩽ 1 from VX(σx).

• Def: Given ν ∈ G, a particle x ∈ X is ν-correct if its neighbors are the
same as in the ground state ν.

• Defect: incorrect particle.
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Independence of defects

• (A5) Given two particles x and y that are neighbors. If x is ν-correct
and y is µ-correct, then ν = µ.

• Disconnected defects are independent.
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Local density

• Local density: inverse of the “weighted size” of the Voronoi cell:

1

ρ
(loc)
X (x)

:=
∑

y∈VX(σx)

1

|{z ∈ X : y ∈ VX(z)}|
.

• (A4) The maximal local density is equal to the maximal density:

ρ
(loc)
max = ρmax.

• It must not be possible for a few particles to be packed more closely than
a ground state locally, at the expense of the global density.
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Gains from defects

• A dip in the local density should be unlikely when z ≫ 1.

• (A6) ∃ϵ > 0 such that, for any incorrect particle x,

ρX(y)−1 ⩾ ρ−1
max + ϵ.

• (This condition can actually be made more general.)
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Criterion

• (A1) Λ∞ is Zd with g ⩾ 2 or the triangular or honeycomb lattices (our
result is actually more general than this).

• (A2) G is finite and non-empty.

• (A3) the ground states are isometric to each other.

• (A4) The maximal local density is equal to the maximal density:

ρ
(loc)
max = ρmax.

• (A5) Given two particles x and y that are neighbors. If x is ν-correct
and y is µ-correct, then ν = µ.

• (A6) ∃ϵ > 0 such that, for any incorrect particle x, ρX(y)−1 ⩾
ρ−1
max + ϵ.
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Theorem

We define 1x as the function that returns 1 if x ∈ X and 0 if not, and denote
the ground states by Lν for ν ∈ G.

If (A1)-(A6) are satisfied, then there exists z0 > 0 such that,

• for |z| ⩾ z0, p(z) − ρmax log z and ⟨1x1 · · ·1xn⟩ν are analytic functions of
1/z.

• For z ⩾ z0, there are at least |G| distinct Gibbs states:

⟨1x⟩ν =

{
1 +O(z−1) if x ∈ Lν

O(z−1) if not.
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Low-fugacity (Mayer) expansion

• Partition function: ZΛ(n): number of configurations with n particles:

ΞΛ(z) =

∞∑
n=0

znZΛ(n)

• Formally, (converges if z is small enough)

1

|Λ|
log ΞΛ(z) =

∞∑
k=1

bk(Λ)z
k

where, if ZΛ(ki) denotes the number of configurations with ki particles,
then

bk(Λ) :=
1

|Λ|

k∑
j=1

(−1)j+1

j

∑
k1,···,kj⩾1

k1+···+kj=k

ZΛ(k1) · · ·ZΛ(kj)
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High-fugacity expansion

• Partition function: ZΛ(n): number of configurations with n particles:

ΞΛ(z) =

Nmax∑
n=0

znZΛ(n)

• Inverse fugacity y ≡ z−1:

ΞΛ(z) = zNmax

Nmax∑
n=0

ynQΛ(n)

with QΛ(n) ≡ ZΛ(Nmax − n).
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High-fugacity expansion

• Formally,
1

|Λ|
log ΞΛ = ρmax log z +

∞∑
k=1

ck(Λ)y
k

where ρmax = Nmax
|Λ| ,

ck(Λ) :=
1

|Λ|

k∑
j=1

(−1)j+1

jτ j

∑
k1,···,kj⩾1

k1+···+kj=k

QΛ(k1) · · ·QΛ(kj)

• Does not always converge for large z. We prove it does under (A1)-(A6)
using Pirogov-Sinai theory.
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Pirogov-Sinai theory

• Switch to a contour model made up of defects.

• The contours interact via a hard-core repulsion (not really, but they can
be made to do so with some work).

• The density of contours is small: they contain dips in the local density
whose number is proportional to the size of the contour.

• Use cluster expansion for the contour model.

• (Extra complications: contours must be thickened, for various technical
reasons; nested contours interact, which we deal with using the Minlos-
Sinai trick.)
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Lee-Yang zeros

• Lee-Yang zeros: roots of ΞΛ(z) ⇐⇒ singularities of pΛ(z).

• Whenever the high fugacity expansion has a radius of convergence R̃, there
are no Lee-Yang zeros outside of a disc of radius R̃−1.
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