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Time flies like an arrow; fruit flies like a banana

– A. Oettinger



Statistical Mechanics

• Classical mechanics: reversible: Hamilton’s equations:

q̇ = ∂pH(q, p), ṗ = −∂qH(q, p)

symmetric under (q, p, t) ↔ (q,−p,−t).
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Statistical Mechanics

• Classical mechanics: reversible: Hamilton’s equations:

q̇ = ∂pH(q, p), ṗ = −∂qH(q, p)

symmetric under (q, p, t) ↔ (q,−p,−t).

• Real world: irreversible. How is this possible?

• There are (very (very!)) many particles (≳ 1023).

• L. Boltzmann: random particle configurations (microcanonical ensemble),
entropy:

S = kB logW.

2/18



Microcanonical Ensemble

• Phase space: N particles in 3D, in bounded set Ω:

(q,p) ≡ (q1, · · · , qN ; p1, · · · , pN ) ∈ ΩN × R3N

• Hamiltonian:

H(q,p) =

N∑
i=1

1

2mi
p2
i + V (q).

• Energy shell: Fix ∆U small: for U ∈ R:

ΣU := {(q,p) : H(q,p) ∈ [U −∆U,U +∆U ]}

• Uniform distribution on ΣU : ρU : microcanonical distribution.
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Microcanonical Ensemble

• Phase point of system: randomly sampled from the microcanonical distri-
bution ρU .

• Can compute many quantities: e.g. ideal gas:

p =
2U

3V

• Why does this work?
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Unsatisfactory explanation number 1: Ergodicity

• Ergodicity and mixing: The trajectory under the Hamiltonian dynamics
uniformly covers the energy shell:

lim
T→∞

1

T

∫ T

0
dt f(q(t),p(t)) =

1

Vol(ΣU )

∫
ΣU

dqdp f(q,p)

left: time average, right: average over the microcanonical distribution.

• Problem: T needs to be extremely large in order to get anywhere near the
limit: ≳ 1010

23
s (life span of the universe: 4× 1017 s).
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Unsatisfactory explanation number 2: Uncertainty

• Uniform distribution because the observer does not know the exact state
in phase space.

• Problem: fundamental theories cannot depend on the knowledge of ob-
servers.

• Would the entropy of a gas change if we knew the position of all its
molecules?
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Satisfactory explanation: Typicality

• Macroscopic observables: M1, · · · ,Mℓ (e.g. energy, pressure, volume,
mass).

• Mi: coarse-grained functions on phase space (take discrete values (this is
not really necessary, but it makes things easier)).

• Γ1, · · · ,Γν : level sets of M ≡ (M1, · · · ,Mℓ). That is, M is constant on the
sets Γj .

• The Γj partition the energy shell:

Γ1 ⊔ · · · ⊔ Γν = ΣU

• Γj : “Macrostate”.
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Typicality

• If 1 macrostate dominates the energy shell: Equilibrium Macrostate

Γ

ν

eq

Γ

Picture: [Goldstein, Lebowitz, Tumulka, Zangh̀ı, 2019]
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Typicality

• The points in the equilibrium macrostate are indistinguishable from a
macroscopic point of view.

• Therefore, for all macroscopic observables Mi, and a point (q0,p0) ∈ Γeq,

Mi(q0,p0) =
1

Vol(Γeq)

∫
Γeq

dqdp Mi(q,p).

• If the macrostate is sufficiently large,

Mi(q0,p0) ≈
1

Vol(ΣU )

∫
ΣU

dqdp Mi(q,p)

that is, the microcanonical average.
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Typicality

• In summary: the microcanonical average of Mi is its value at a typical
point, that is, a point whose Mi values are the same as for most points in
the energy shell.

• Note: this is different from a random point of the energy shell. The point
is not sampled from a distribution.

• This is called the “Individualist” point of view, as opposed to the “En-
semblist” view.

• Questions:

▶ Is the choice of Mi and the coarse graining arbitrary?

▶ Can one prove that one macrostate dominates?
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Example: Boltzmann

• N spheres that collide elastically, at low density.

• Partition configuration space into ℓ boxes of volume V/ℓ. Ni: number of
particles in box i ∈ {1, · · · , ℓ}.

• Fix a coarse graining length ∆M , and define the Macroscopic observables
Mi as the occupation fraction of the i-th box, coarse grained over a length
∆M :

Mi :=

⌊
Ni

N∆M

⌋
∆M

• As we will now argue, the equilibrium macrostate is that of constant
density:

Γeq := {(q,p) : Mi =
1
ℓ}.
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Example: Boltzmann

• The probability distribution of Ni is binomial (either the particles go in
the i-th box or they do not):

P(Ni) =

(
N

Ni

)(
1

ℓ

)Ni
(
1− 1

ℓ

)N−Ni

• By the De Moivre-Laplace theorem, if N → ∞ and Ni ∝ N
ℓ ,

P(Ni) ∼
e−

(Ni−µ)2

2Nσ2

√
2Nπσ

, µ :=
N

ℓ
, σ2 :=

1

ℓ

(
1− 1

ℓ

)
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Example: Boltzmann

P(Ni) ∼
e−

(Ni−µ)2

2Nσ2

√
2Nπσ

, µ :=
N

ℓ
, σ2 :=

1

ℓ

(
1− 1

ℓ

)
, Mi :=

⌊
Ni

N∆M

⌋
∆M

• So the probability that Mi deviates by more than ∆M is the probability
that Ni deviates by more than N∆M , which is

1−
∫ N∆M

−N∆M
dx

e−
x2

2Nσ2

√
2Nπσ

∼ σ
√
2e−

∆M2N
2σ2

∆M
√
Nπ

• Thus the probability that Mi deviates from
1
ℓ is exponentially small in N .

As N gets larger Γeq fills the energy shell, independently of the choice of
ℓ or ∆M .
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Irreversibility

Γ

ν

eq

Γ

Picture: [Goldstein, Lebowitz, Tumulka, Zangh̀ı, 2019]
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Irreversibility

• If the configuration is initially in the equilibrium macrostate Γeq, it will
stay there for a very long time (infinite in the limit N → ∞).

• If the configuration is initially in another Γj , it is likely to leave the small
macrostate to go to a larger one.

• Defining the entropy of a state (q,p) ∈ Γj by

kB log Vol(Γj)

entropy always increases.

• Question: can one prove this?
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Quantum Statistical Mechanics

• Replace phase space with “states”: normalized wavefunctions ψ: uniquely
defined up to a phase.

• Convenient analog of probability on state space: density matrix:

ρ =
∑
i

ci |φi⟩ ⟨φi| ,
∑
i

ci = 1

where |φi⟩ is a basis of the Hilbert space and |φi⟩ ⟨φi| is the projector onto
the basis element, and ci ⩾ 0.

• Microcanonical density matrix: if D is the dimension of the Hilbert space.

ρmc =
1

D
∑
i

|φi⟩ ⟨φi|
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Quantum Typicality

• Given a density matrix ρ, the average of an observable A is

⟨A⟩ρ := Tr(ρA).

• “Pure state”: corresponds to a single wavefunction

ρpure = |ψ⟩ ⟨ψ| .
• Macrostate: set of states, which yield the same coarse-grained values of
macroscopic observables.

• Equilibrium macrostate: ρeq = |ψeq⟩ ⟨ψeq| (pure state)

Tr(ρmcA) = Tr(ρeqA).
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Further reading

S. Goldstein, J.L. Lebowitz, R. Tumulka, N. Zangh̀ı - Gibbs and Boltzmann
Entropy in Classical and Quantum Mechanics, Statistical Mechanics and Sci-
entific Explanation, pp. 519-581, 2020
doi:10.1142/9789811211720 0014, arXiv:1903.11870.
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