Typicality in Statistical Mechanics and the arrow of time

Ian Jauslin

http://ian.jauslin.org

Time flies like an arrow; fruit flies like a banana

- A. Oettinger

Statistical Mechanics

- Classical mechanics: reversible: Hamilton's equations:

$$
\dot{q}=\partial_{p} H(q, p), \quad \dot{p}=-\partial_{q} H(q, p)
$$

symmetric under $(q, p, t) \leftrightarrow(q,-p,-t)$.

Statistical Mechanics

- Classical mechanics: reversible: Hamilton's equations:

$$
\dot{q}=\partial_{p} H(q, p), \quad \dot{p}=-\partial_{q} H(q, p)
$$

symmetric under $(q, p, t) \leftrightarrow(q,-p,-t)$.

- Real world: irreversible. How is this possible?
- There are (very (very!)) many particles ($\gtrsim 10^{23}$).
- L. Boltzmann: random particle configurations (microcanonical ensemble), entropy:

$$
S=k_{B} \log W
$$

Microcanonical Ensemble

- Phase space: N particles in 3D, in bounded set Ω :

$$
(\mathbf{q}, \mathbf{p}) \equiv\left(q_{1}, \cdots, q_{N} ; p_{1}, \cdots, p_{N}\right) \in \Omega^{N} \times \mathbb{R}^{3 N}
$$

- Hamiltonian:

$$
H(\mathbf{q}, \mathbf{p})=\sum_{i=1}^{N} \frac{1}{2 m_{i}} \mathbf{p}_{i}^{2}+V(\mathbf{q})
$$

- Energy shell: Fix ΔU small: for $U \in \mathbb{R}$:

$$
\Sigma_{U}:=\{(\mathbf{q}, \mathbf{p}): H(\mathbf{q}, \mathbf{p}) \in[U-\Delta U, U+\Delta U]\}
$$

- Uniform distribution on $\Sigma_{U}: \rho_{U}:$ microcanonical distribution.

Microcanonical Ensemble

- Phase point of system: randomly sampled from the microcanonical distribution ρ_{U}.
- Can compute many quantities: e.g. ideal gas:

$$
p=\frac{2 U}{3 V}
$$

- Why does this work?

Unsatisfactory explanation number 1: Ergodicity

- Ergodicity and mixing: The trajectory under the Hamiltonian dynamics uniformly covers the energy shell:

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t f(\mathbf{q}(t), \mathbf{p}(t))=\frac{1}{\operatorname{Vol}\left(\Sigma_{U}\right)} \int_{\Sigma_{U}} d \mathbf{q} d \mathbf{p} f(\mathbf{q}, \mathbf{p})
$$

left: time average, right: average over the microcanonical distribution.

- Problem: T needs to be extremely large in order to get anywhere near the limit: $\gtrsim 10^{10^{23}} \mathrm{~s}$ (life span of the universe: $4 \times 10^{17} \mathrm{~s}$).

Unsatisfactory explanation number 2: Uncertainty

- Uniform distribution because the observer does not know the exact state in phase space.
- Problem: fundamental theories cannot depend on the knowledge of observers.
- Would the entropy of a gas change if we knew the position of all its molecules?

Satisfactory explanation: Typicality

- Macroscopic observables: M_{1}, \cdots, M_{ℓ} (e.g. energy, pressure, volume, mass).
- M_{i} : coarse-grained functions on phase space (take discrete values (this is not really necessary, but it makes things easier)).
- $\Gamma_{1}, \cdots, \Gamma_{\nu}$: level sets of $\mathbf{M} \equiv\left(M_{1}, \cdots, M_{\ell}\right)$. That is, \mathbf{M} is constant on the sets Γ_{j}.
- The Γ_{j} partition the energy shell:

$$
\Gamma_{1} \sqcup \cdots \sqcup \Gamma_{\nu}=\Sigma_{U}
$$

- Γ_{j} : "Macrostate".

Typicality

- If 1 macrostate dominates the energy shell: Equilibrium Macrostate

Picture: [Goldstein, Lebowitz, Tumulka, Zanghì, 2019]

Typicality

- The points in the equilibrium macrostate are indistinguishable from a macroscopic point of view.
- Therefore, for all macroscopic observables M_{i}, and a point $\left(\mathbf{q}_{0}, \mathbf{p}_{0}\right) \in \Gamma_{\text {eq }}$,

$$
M_{i}\left(\mathbf{q}_{0}, \mathbf{p}_{0}\right)=\frac{1}{\operatorname{Vol}\left(\Gamma_{\mathrm{eq}}\right)} \int_{\Gamma_{\mathrm{eq}}} d \mathbf{q} d \mathbf{p} M_{i}(\mathbf{q}, \mathbf{p})
$$

- If the macrostate is sufficiently large,

$$
M_{i}\left(\mathbf{q}_{0}, \mathbf{p}_{0}\right) \approx \frac{1}{\operatorname{Vol}\left(\Sigma_{U}\right)} \int_{\Sigma_{U}} d \mathbf{q} d \mathbf{p} M_{i}(\mathbf{q}, \mathbf{p})
$$

that is, the microcanonical average.

Typicality

- In summary: the microcanonical average of M_{i} is its value at a typical point, that is, a point whose M_{i} values are the same as for most points in the energy shell.
- Note: this is different from a random point of the energy shell. The point is not sampled from a distribution.
- This is called the "Individualist" point of view, as opposed to the "Ensemblist" view.
- Questions:
- Is the choice of M_{i} and the coarse graining arbitrary?
- Can one prove that one macrostate dominates?

Example: Boltzmann

- N spheres that collide elastically, at low density.
- Partition configuration space into ℓ boxes of volume $V / \ell . N_{i}$: number of particles in box $i \in\{1, \cdots, \ell\}$.
- Fix a coarse graining length ΔM, and define the Macroscopic observables M_{i} as the occupation fraction of the i-th box, coarse grained over a length ΔM :

$$
M_{i}:=\left\lfloor\frac{N_{i}}{N \Delta M}\right\rfloor \Delta M
$$

- As we will now argue, the equilibrium macrostate is that of constant density:

$$
\Gamma_{\mathrm{eq}}:=\left\{(\mathbf{q}, \mathbf{p}): M_{i}=\frac{1}{\ell}\right\} .
$$

Example: Boltzmann

- The probability distribution of N_{i} is binomial (either the particles go in the i-th box or they do not):

$$
\mathbb{P}\left(N_{i}\right)=\binom{N}{N_{i}}\left(\frac{1}{\ell}\right)^{N_{i}}\left(1-\frac{1}{\ell}\right)^{N-N_{i}}
$$

- By the De Moivre-Laplace theorem, if $N \rightarrow \infty$ and $N_{i} \propto \frac{N}{\ell}$,

$$
\mathbb{P}\left(N_{i}\right) \sim \frac{e^{-\frac{\left(N_{i}-\mu\right)^{2}}{2 N \sigma^{2}}}}{\sqrt{2 N \pi} \sigma}, \quad \mu:=\frac{N}{\ell}, \quad \sigma^{2}:=\frac{1}{\ell}\left(1-\frac{1}{\ell}\right)
$$

Example: Boltzmann

$$
\mathbb{P}\left(N_{i}\right) \sim \frac{e^{-\frac{\left(N_{i}-\mu\right)^{2}}{2 N \sigma^{2}}}}{\sqrt{2 N \pi} \sigma}, \quad \mu:=\frac{N}{\ell}, \quad \sigma^{2}:=\frac{1}{\ell}\left(1-\frac{1}{\ell}\right), \quad M_{i}:=\left\lfloor\frac{N_{i}}{N \Delta M}\right\rfloor \Delta M
$$

- So the probability that M_{i} deviates by more than ΔM is the probability that N_{i} deviates by more than $N \Delta M$, which is

$$
1-\int_{-N \Delta M}^{N \Delta M} d x \frac{e^{-\frac{x^{2}}{2 N^{2}}}}{\sqrt{2 N \pi} \sigma} \sim \frac{\sigma \sqrt{2} e^{-\frac{\Delta M^{2} N}{2 \sigma^{2}}}}{\Delta M \sqrt{N \pi}}
$$

- Thus the probability that M_{i} deviates from $\frac{1}{\ell}$ is exponentially small in N. As N gets larger $\Gamma_{\text {eq }}$ fills the energy shell, independently of the choice of ℓ or ΔM.

Irreversibility

Picture: [Goldstein, Lebowitz, Tumulka, Zanghì, 2019]

Irreversibility

- If the configuration is initially in the equilibrium macrostate $\Gamma_{\text {eq }}$, it will stay there for a very long time (infinite in the limit $N \rightarrow \infty$).
- If the configuration is initially in another Γ_{j}, it is likely to leave the small macrostate to go to a larger one.
- Defining the entropy of a state $(\mathbf{q}, \mathbf{p}) \in \Gamma_{j}$ by

$$
k_{B} \log \operatorname{Vol}\left(\Gamma_{j}\right)
$$

entropy always increases.

- Question: can one prove this?

Quantum Statistical Mechanics

- Replace phase space with "states": normalized wavefunctions ψ : uniquely defined up to a phase.
- Convenient analog of probability on state space: density matrix:

$$
\rho=\sum_{i} c_{i}\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|, \quad \sum_{i} c_{i}=1
$$

where $\left|\varphi_{i}\right\rangle$ is a basis of the Hilbert space and $\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|$ is the projector onto the basis element, and $c_{i} \geqslant 0$.

- Microcanonical density matrix: if \mathcal{D} is the dimension of the Hilbert space.

$$
\begin{gathered}
\rho_{\mathrm{mc}}=\frac{1}{\mathcal{D}} \sum_{i}\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|, 16 / 18
\end{gathered}
$$

Quantum Typicality

- Given a density matrix ρ, the average of an observable A is

$$
\langle A\rangle_{\rho}:=\operatorname{Tr}(\rho A)
$$

- "Pure state": corresponds to a single wavefunction

$$
\rho_{\text {pure }}=|\psi\rangle\langle\psi| .
$$

- Macrostate: set of states, which yield the same coarse-grained values of macroscopic observables.
- Equilibrium macrostate: $\rho_{\mathrm{eq}}=\left|\psi_{\text {eq }}\right\rangle\left\langle\psi_{\text {eq }}\right|$ (pure state)

$$
\operatorname{Tr}\left(\rho_{\mathrm{mc}} A\right)=\operatorname{Tr}\left(\rho_{\mathrm{eq}} A\right)
$$

Further reading

S. Goldstein, J.L. Lebowitz, R. Tumulka, N. Zanghì - Gibbs and Boltzmann Entropy in Classical and Quantum Mechanics, Statistical Mechanics and Scientific Explanation, pp. 519-581, 2020 doi:10.1142/9789811211720_0014, arXiv:1903.11870.

