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Macroscopic laws: phases of water

• Phenomena that are directly observable are Macroscopic.

• For example, water at ambient pressure freezes at 0◦C and boils at 100◦C.

• Liquid water, vapor and ice all have very different properties, and yet
one can easily transition between these states, simply by changing the
temperature

▶ A gas fills the entire volume available.

▶ A liquid is incompressible, but flows.

▶ A solid is rigid, and moves only as a whole.

• Melting ice is exactly at 0◦C, and boiling water is exactly at 100◦C.
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Macroscopic laws: gasses

• The state of a (ideal) gas is entirely characterized by three quantities:

▶ p: pressure

▶ T : temperature

▶ n: density

• Ideal gas law:

p =
kB
µ

nT

• Energy density:

e =
3

2
kBT
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Microscopic Theories: phases of water

• Understand macroscopic laws from first principles: Microscopic theories.

• Freezing and boiling: ordering transitions.

▶ Gases expand because the molecules are far apart.

▶ Liquids are jammed, but molecules can still move around each other.

▶ Solids are constrained by the rigid pattern of their molecules.
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Microscopic Theories: gasses

• Ideal gas: non-interacting molecules.

• We will discuss later how this predicts the laws discussed earlier.
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What is Statistical Mechanics?

• Statistical mechanics: understanding how the macroscopic properties fol-
low from the microscopic laws of nature (“first principles”).
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The arrow of time

• Microscopic dynamics are reversible.

• Consider the motion of a point particle, which follows the laws of (conser-
vative) Newtonian mechanics. If time is reversed, the motion still satisfies
the same laws of Newtonian mechanics.

• In fact, Newtonian mechanics has a recurrence time: any (bounded, con-
servative) mechanical system will return arbitrarily close to its original
state in finite time.
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The arrow of time

• Yet, many macroscopic phenomena are irreversible.

• Friction: the law of friction is not invariant under time reversal.

• The expansion of a gas in a container.

• How can reversible microscopic dynamics give rise to irreversible macro-
scopic phenomena?
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The thermodynamic limit

• One mole ≈ 6.02× 1023.

• Rough estimate of the recurrence time for a mechanical system containing
1023 particles: ≈ 1010

23
s. (Time since the big bang: ≈ 1017 s.)

• Whereas a finite number of microscopic particles behaves reversibly, an
infinite number of microscopic particles does not.

• Fundamental tool of statistical mechanics: the thermodynamic limit, in
which the number of particles → ∞.
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Putting the Statistics in Statistical Mechanics

• To understand these infinite interacting particles, we use probability the-
ory.

• Simple example: the ideal gas:

▶ Each particle is a point, and no two particles interact.

▶ Probability distribution: Gibbs distribution

p(x,v) =
1

Z
e−βH(x,v), β :=

1

kBT

where H(x,v) is the energy of the configuration where the particles
are located at x ≡ (x1, · · · , xN ) with velocities v ≡ (v1, · · · , vN ).
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The ideal gas

• The energy is the kinetic energy:

H(x,v) =
1

2
m

N∑
i=1

v2i .

• Denoting the number of particles by N and the volume by V , we have

Z =

∫
dxdv e−βH(x,v) =

∫
dx

∫
dv e−

βm
2

v2
= V N

(
2π

βm

) 3
2
N

.

• The average energy is

E(H) =
1

Z

∫
dxdv H(x,v)e−βH(x,v) = − ∂

∂β
logZ =

3N

2β
=

3

2
NkBT.

• The ideal gas law can also be proved for this model.
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Hard sphere model

• The ideal gas does not form a liquid or a solid phase.

• In order to have such phase transitions, we need an interaction between
particles.

• Hard sphere model: each particle is a sphere of radius R, and the inter-
action is such that no two spheres can overlap.

• Parameter: density.
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Hard sphere model

• We expect, from numerical simulations, to see two phases: a gaseous phase
at low density and a crystalline one at high density.

• In the gaseous phase, the particles are almost decorrelated: they behave
as if they did not interact.

• In the crystalline phase, they form large scale periodic structures: they
behave very differently from the ideal gas.
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Hard sphere model

• The gaseous phase is very well understood.

• The crystalline phase is much more of a mystery: we still lack a proof that
it exists at positive temperatures!

• Open Problem: prove that hard spheres crystallize at sufficiently low
temperatures.

• Even at zero temperature, it was only proved that they crystallize in 2005,
and that proof is computer-assisted.

• This is very difficult: even tiny fluctuations in the positions of the spheres
could destroy the crystalline structure.
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Liquid crystals

• Phase of matter that shares properties of liquids (disorder) and crystals
(order).

• Nematic liquid crystals: order in orientation, disorder in position.
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Liquid crystals

• Model: hard cylinders, expected phases: gas, nematic, smectic, ...

• Here again, the gas phase is well understood, but neither the nematic nor
the smectic have yet been proved to exist.
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Continuous symmetry breaking

• Difficulty for both the hard spheres and liquid crystals: breaking a contin-
uous symmetry (translation for the hard spheres, rotation for the liquid
crystals).

• Continuous symmetries cannot∗ be broken in one or two dimensions.

• Continuous symmetry breaking can, so far, only be proved in very special
models.
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Lattice models

• Many examples:
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Hard diamond model
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Hard diamond model
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Hard diamond model

• Idea: treat the vacancies as a gas of “virtual particles”.

• Can prove crystallization for a large class of lattice models.

19/22



Hard rods on a lattice

• Model: rods of length k on Z2.
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Hard rods on a lattice

• Can prove that, when k−2 ≪ ρ ≪ k−1, the system forms a nematic phase.

• For larger densities, one expects yet another phase, in which there are tiles
of horizontal and vertical rods.

• Open Problem: generalization to 3 dimensions.
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Conclusion

• Statistical Mechanics establishes a link between Microscopic theories and
Macroscopic behavior.

• (In equilibrium) it consists in studying the properties of special probability
distributions called Gibbs Measures.

• Even simple models pose significant mathematical challenges.

• Still, much can be said about lattice models, even though there are many
problems that are still open!
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