An effective equation to study Bose gases at all densities

Ian Jauslin

joint with Eric A. Carlen, Markus Holzmann, Elliott H. Lieb

```
    1912.04987
    2010.13882
    2011.10869
arXiv: 2202.07637
http://ian.jauslin.org
```


Bose-Einstein condensation

- System of many Bosons, e.g. Helium atoms, Rubidium atoms, etc...
- Bose-Einstein condensate: most particles are in the same quantum state.
- Related to the phenomena of superfluidity (flow with zero viscocity) and superconductivity (currents with zero resistance).
- Predicted theoretically in 1924-1925, experimentally observed in 1995.
- Mathematical understanding: still no proof of the existence of a condensate (at finite density, in the presence of interactions and in the continuum).

Repulsive Bose gas

- Potential: $v(r) \geqslant 0$ and $v \in L_{1}\left(\mathbb{R}^{3}\right)$, Hamiltonian:

$$
H_{N}:=-\frac{1}{2} \sum_{i=1}^{N} \Delta_{i}+\sum_{1 \leqslant i<j \leqslant N} v\left(\left|x_{i}-x_{j}\right|\right)
$$

- Ground state: ψ_{0}, energy E_{0}.
- Observables in the thermodynamic limit: ground state energy per particle and condensate fraction: P_{i} : projection onto condensate state

$$
e_{0}:=\lim _{\substack{V, N \rightarrow \infty \\ \frac{N}{V}=\rho}} \frac{E_{0}}{N}, \quad \eta_{0}:=\lim _{\substack{V, N \rightarrow \infty \\ \frac{N}{V}=\rho}} \frac{1}{N} \sum_{i=1}^{N}\left\langle\psi_{0}\right| P_{i}\left|\psi_{0}\right\rangle .
$$

Low density

- Bogolyubov theory: approximation scheme that reduces the problem to an effective 1-particle problem.
- Predictions [Lee, Huang, Yang, 1957]:
- Energy:

$$
e_{0}=2 \pi \rho a\left(1+\frac{128}{15 \sqrt{\pi}} \sqrt{\rho a^{3}}+o(\sqrt{\rho})\right)
$$

- Condensate fraction:

$$
1-\eta_{0} \sim \frac{8 \sqrt{\rho a^{3}}}{3 \sqrt{\pi}}
$$

Low density

- Energy asymptotics: proved: [Lieb, Yngvason, 1998], [Yau, Yin, 2009], [Fournais, Solovej, 2020].
- Condensate fraction: still open in the theormodynamic limit, but there are proofs of condensation in the Gross-Pitaevskii regime (ultra-dilute): [Lieb, Seiringer, 2002], [Boccato, Brennecke, Cenatiempo, Schlein, 2018].

High density

- [Bogolyubov, 1947]: if $\hat{v} \geqslant 0$.

$$
e_{0} \sim \frac{\rho}{2} \int v
$$

Hartree (mean field) energy.

- Proved in [Lieb, 1963].
- Condensate fraction

$$
\eta \rightarrow 1
$$

open.

Energy as a function of density

For $v(x)=e^{-|x|}:$

Energy as a function of density

For $v(x)=e^{-|x|}:$

Derivation of the equation

- [Lieb, 1963].
- Integrate $H_{N} \psi_{0}=E_{0} \psi_{0}$:

$$
\int d x_{1} \cdots d x_{N}\left(-\frac{1}{2} \sum_{i=1}^{N} \Delta_{i} \psi_{0}+\sum_{1 \leqslant i<j \leqslant N} v\left(x_{i}-x_{j}\right) \psi_{0}\right)=E_{0} \int d x_{1} \cdots d x_{N} \psi_{0}
$$

- Therefore,

$$
\frac{N(N-1)}{2} \int d x_{1} d x_{2} v\left(x_{1}-x_{2}\right) \frac{\int d x_{3} \cdots d x_{N} \psi_{0}}{\int d x_{1} \cdots d x_{N} \psi_{0}}=E_{0}
$$

Derivation of the equation

- Thus,

$$
\frac{E_{0}}{N}=\frac{N-1}{2 V} \int d x v(x) g_{2}(0, x)
$$

- $\psi_{0} \geqslant 0$, so it can be thought of as a probability distribution.
- g_{n} : correlation functions of $V^{-N} \psi_{0}$

$$
g_{n}\left(x_{1}, \cdots, x_{n}\right):=\frac{V^{n} \int d x_{n+1} \cdots d x_{N} \psi_{0}\left(x_{1}, \cdots, x_{N}\right)}{\int d x_{1} \cdots d x_{N} \psi_{0}\left(x_{1}, \cdots, x_{N}\right)}
$$

Hierarchy

- Equation for g_{2} : integrate $H_{N} \psi_{0}=E_{0} \psi_{0}$ with respect to x_{3}, \cdots, x_{N} :

$$
\begin{aligned}
& -\frac{1}{2}\left(\Delta_{x}+\Delta_{y}\right) g_{2}(x, y)+\frac{N-2}{V} \int d z(v(x-z)+v(y-z)) g_{3}(x, y, z) \\
& +v(x-y) g_{2}(x, y)+\frac{(N-2)(N-3)}{2 V^{2}} \int d z d t v(z-t) g_{4}(x, y, z, t)=E_{0} g_{2}(x, y)
\end{aligned}
$$

- Factorization assumption:

$$
\begin{aligned}
& g_{3}\left(x_{1}, x_{2}, x_{3}\right)=g_{2}\left(x_{1}, x_{2}\right) g_{2}\left(x_{1}, x_{3}\right) g_{2}\left(x_{2}, x_{3}\right) \\
& g_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\prod_{i<j}\left(g_{2}\left(x_{i}, x_{j}\right)+O\left(V^{-1}\right)\right)
\end{aligned}
$$

Big equation

- In the thermodynamic limit, if $u(x):=1-g_{2}(0, x)$,

$$
\begin{gathered}
-\Delta u(x)=(1-u(x))\left(v(x)-2 \rho K(x)+\rho^{2} L(x)\right) \\
K:=u * S, \quad S(y):=(1-u(y)) v(y) \\
L:=u * u * S-2 u *(u(u * S))+\frac{1}{2} \int d y d z u(y) u(z-x) u(z) u(y-x) S(z-y) .
\end{gathered}
$$

- "Big" equation:

$$
L \approx u * u * S-2 u *(u(u * S))
$$

Simple equation

- Further approximate $S(x) \approx \frac{2 e}{\rho} \delta(x)$ and $u \ll 1$.
- Simple equation

$$
\begin{gathered}
-\Delta u(x)=(1-u(x)) v(x)-4 e u(x)+2 e \rho u * u(x) \\
e=\frac{\rho}{2} \int d x(1-u(x)) v(x)
\end{gathered}
$$

- Theorem 1: If $v(x) \geqslant 0$ and $v \in L_{1} \cap L_{2}\left(\mathbb{R}^{3}\right)$, then the simple equation has an integrable solution (proved constructively), with $0 \leqslant u \leqslant 1$.

Energy for the simple equation

- Theorem 2:

$$
\frac{e}{\rho} \underset{\rho \rightarrow \infty}{\longrightarrow} \frac{1}{2} \int d x v(x)
$$

(note that there is no condition that $\hat{v} \geqslant 0$). This coincides with the Hartree energy.

- Theorem 3:

$$
e=2 \pi \rho a\left(1+\frac{128}{15 \sqrt{\pi}} \sqrt{\rho a^{3}}+o(\sqrt{\rho})\right)
$$

This coincides with the Lee-Huang-Yang prediction.

Energy

$v(x)=e^{-|x|}$, Blue: simple equation; purple: big equation; red: Monte Carlo

Energy

$v(x)=e^{-|x|}$, Blue: simple equation; red: Jastrow; purple: big equation

Condensate fraction

- Add a parameter μ to the Hamiltonian:

$$
H_{N}(\mu):=-\frac{1}{2} \sum_{i=1}^{N} \Delta_{i}+\sum_{1 \leqslant i<j \leqslant N} v\left(x_{i}-x_{j}\right)-\mu \sum_{i=1}^{N} P_{i}
$$

- Projection onto condensate wavefunction: P_{i}.
- Condensate fraction:

$$
\eta_{0}:=\frac{1}{N}\left\langle\psi_{0}\right| \sum_{i=1}^{N} P_{i}\left|\psi_{0}\right\rangle=-\left.\frac{1}{N} \partial_{\mu}\left\langle\psi_{0}\right| H_{N}(\mu)\left|\psi_{0}\right\rangle\right|_{\mu_{0}} \equiv-\left.\partial_{\mu} e_{0}(\mu)\right|_{\mu=0}
$$

Condensate fraction

- Theorem 4: For the simple equation, as $\rho \rightarrow 0$

$$
1-\eta \sim \frac{8 \sqrt{\rho a^{3}}}{3 \sqrt{\pi}}
$$

which coincides with Bogolyubov's prediction.

Condensate fraction

$v(x)=e^{-|x|}$, Blue: simple equation; purple: big equation; red: Monte Carlo

Two point correlation function

$v(x)=16 e^{-|x|}$, Blue: simple equation; purple: big equation; red: Monte Carlo

Summary and outlook

- Two effective equations: the big equation and the simple equation, which are non-linear 1-particle equations.
- Reproduce the known results for both small and large densities.
- Their derivation is different from Bogolyubov theory, so they may give new insights onto studying the Bose gas in these asymptotic regimes.
- The big equation is quantitatively accurate at intermediate densities.
- This opens up the possibility of studying the physics of the Bose gas at intermediate densities.

Open problems

- Uniqueness of the solution of the simple equation (done for small and large ρ).
- LHY as an upper bound at low density using the simple equation to construct an Ansatz.
- Existence (and uniqueness) of the solution of the big equation.

The uniqueness problem

$$
-\Delta u(x)=(1-u(x)) v(x)-4 e u(x)+2 e \rho u * u(x), \quad e=\frac{\rho}{2} \int d x(1-u(x)) v(x)
$$

- Change the point of view: fix $e>0$, and compute ρ and u.
- Iteration: $u_{0}=0$,

$$
(-\Delta+4 e+v) u_{n}=v+2 e \rho_{n-1} u_{n-1} * u_{n-1}, \quad \rho_{n}:=\frac{2 e}{\int d x\left(1-u_{n}(x)\right) v(x)} .
$$

The uniqueness problem

- Lemma: $u_{n}(x)$ is an increasing sequence, and is bounded $u_{n}(x) \leqslant 1$. It converges to a function u, which is the unique integrable solution of the equation with e fixed.
- Lemma: $e \mapsto \rho(e)$ is continuous, and $\rho(0)=0$ and $\rho(\infty)=\infty$, which allows us to compute solutions for the problem at fixed ρ.
- We thus have a restricted notion of uniqueness. The full uniqueness would follow from a proof that $e \mapsto \rho(r)$ is monotone increasing (which must be true for the physics to make sense).

Upper bound at low density

- [Yau, Yin, 2009]: proof for weak, smooth, rapidly decaying potentials.
- [Basti, Cenatiempo, Schlein, 2021]: extended for L_{3} (and compactly supported) potentials (excludes hard-core interactions).
- Simple Equation: our analysis holds for the hard-core, so if one could find a good Ansatz from it, one might get an upper bound for the energy in this case.
- Idea for Ansatz? (Jastrow, Dyson-Jastrow?).

Upper bound at low density: Jastrow function

- Idea:

$$
\psi=\prod_{i<j} e^{-u\left(x_{i}-x_{j}\right)}
$$

- Why this: $\rho \ll 1$, and if $\rho\|u\|_{1} \ll 1$,

$$
g_{2} \sim 1-u
$$

- Again, if $\rho\|u\|_{1} \ll 1$, we would be able to compute the energy of ψ using a cluster expansion!
- However, $\|u\|_{1}=\frac{1}{\rho}$!

Existence for the Big Equation

- Numerical method: Newton algorithm.
- For the existence of a solution, it would suffice to prove that the Newton algorithm has a Basin of attraction. (Kantorovich-like theorem?)
- Such a result, applied to the Simple Equation, would imply the uniqueness of a solution (provided we have convergence in an appropriate norm).

