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Bose-Einstein condensation

System of many Bosons, e.g. Helium atoms, Rubidium atoms, etc...

Bose-Einstein condensate: most particles are in the same quantum state.

Related to the phenomena of superfluidity (flow with zero viscocity) and
superconductivity (currents with zero resistance).

Predicted theoretically in 1924-1925, experimentally observed in 1995.

Mathematical understanding: still no proof of the existence of a conden-
sate (at finite density, in the presence of interactions and in the contin-
uum).
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Repulsive Bose gas

e Potential: v(r) > 0 and v € L;(R?), Hamiltonian:

N
Hym =33 Ak Y el
i=1

1<i<j<N
e Ground state: 19, energy Ej.

e Observables in the thermodynamic limit: ground state energy per particle
and condensate fraction: P;: projection onto condensate state

N
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Low density

e Bogolyubov theory: approximation scheme that reduces the problem to
an effective 1-particle problem.

e Predictions [Lee, Huang, Yang, 1957]:

» Energy:
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Low density

e Energy asymptotics: proved: [Lieb, Yngvason, 1998], [Yau, Yin, 2009],
[Fournais, Solovej, 2020).

e Condensate fraction: still open in the theormodynamic limit, but there
are proofs of condensation in the Gross-Pitaevskii regime (ultra-dilute):
[Lieb, Seiringer, 2002], [Boccato, Brennecke, Cenatiempo, Schlein, 2018].
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High density

e [Bogolyubov, 1947]: if v > 0.

€ ~ p/-’U
20 B

Hartree (mean field) energy.
e Proved in [Lieb, 1963].

e Condensate fraction

open.
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Energy

as a function of density

For v(x) = e~ 17l
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Energy as a function of density

For v(x) = e~ 17l
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Derivation of the equation

e [Lieb, 1963].
e Integrate Hyvg = FEoto:

1<i<j<N

e Therefore,

— daa---d
N(NQ D /dxldafg v(z — :cg)f 3 N Vo

—F
[doy-dey vo
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Derivation of the equation

e Thus, 5 N1
. N
N = [ e e@n(.0)

e 1)y > 0, so it can be thought of as a probability distribution.

e g,: correlation functions of V"N

_ andﬂ?nﬂ'--dwN Yo(r1, -, TN)

gn(l'l,.”7xn) . fdxlde 1/10(.731,"‘,1’N)
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Hierarchy

e Equation for go: integrate Hyvg = Egyg with respect to x3, -, zy:
1 N -2
—5(Be + By)ga(w,y) + —— [ dz (v(z = 2) +uly = 2))gs(x, Y, 2)
(N —2)(N —-3)

+'l)(!1? - y)QQ(‘Ta y) + /dZdt U(Z - t)94($7y7 27t> = EOQQ(«T, y)

2V2

e Factorization assumption:
93(71, 2, 73) = ga(w1, ¥2)g2(21, 23)g2(72, T3)

(@1, 9, w3, 24) = [ [(92(20,25) + O(VT))

1<j
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Big equation

e In the thermodynamic limit, if u(z) := 1 — (0, z),
—Au(z) = (1 — u(z)) (v(z) - 20K (z) + p*L(z))
K:=uxS, S(y):=1-uy)vy)
Li=uxuxS—2ux(u(uxSs))+ % /dydz w(y)u(z — z)u(2)uly — x)S(z —y).
e “Big” equation:

Lr~uxuxS —2ux(u(uxbS))
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Simple equation

e Further approximate S(x) ~ %5(30) and u < 1.

e Simple equation

—Au(z) = (1 —u(x))v(x) — deu(z) + 2ep u * u(x)
v o(z
e=3 / dz (1 —u(z))v(x)

e Theorem 1: If v(x) > 0 and v € L1 N Ly(R3), then the simple equation
has an integrable solution (proved constructively), with 0 < u < 1.
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Energy for the simple equation

e Theorem 2:
e 1
- — = [ dz v(z)
p p—o0 2

(note that there is no condition that v > 0). This coincides with the
Hartree energy.

e Theorem 3:
128
e = 2mpa <1 + NG pad + 0(@))

This coincides with the Lee-Huang-Yang prediction.
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Energy

v(z) = e~ 12l Blue: simple equation; purple: big equation; red: Monte Carlo
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Energy

v(z) = e~ 12l Blue: simple equation; red: Jastrow; purple: big equation
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Condensate fraction

e Add a parameter p to the Hamiltonian:

1 N N
Hy(p) = —§ZA,~+ Z v(xi—xj)—,uZPi
i=1

1<i<j<N i=1

e Projection onto condensate wavefunction: F;.

e Condensate fraction:

1 N 1
Mo = 5 (ol D Pi o) = -0 (Wl Hin (1) 90) Ly = — Do)l umo
=1
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Condensate fraction

e Theorem 4: For the simple equation, as p — 0

1 8/ pa?
W

which coincides with Bogolyubov’s prediction.
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Condensate fraction
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Two point correlation function

v(z) = 16e~ 12, Blue: simple equation; purple: big equation; red: Monte Carlo
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Summary and outlook

e Two effective equations: the big equation and the simple equation, which
are non-linear 1-particle equations.

e Reproduce the known results for both small and large densities.

e Their derivation is different from Bogolyubov theory, so they may give
new insights onto studying the Bose gas in these asymptotic regimes.

e The big equation is quantitatively accurate at intermediate densities.

e This opens up the possibility of studying the physics of the Bose gas at
intermediate densities.
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Open problems

e Uniqueness of the solution of the simple equation (done for small and large
p)-

e LHY as an upper bound at low density using the simple equation to
construct an Ansatz.

e Existence (and uniqueness) of the solution of the big equation.
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The uniqueness problem

—Au(z) = (1 —u(x))v(z) —deu(z) +2ep uxu(zx /de‘ (1 —u(x))v(x)

e Change the point of view: fix e > 0, and compute p and w.
e [teration: ug =0,

2e
Jde (1 un(@))o(z)

(A +4de+v)uy, =0+ 2epp_1Un—1 * Up—1, pPn =
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The uniqueness problem

e Lemma: u,(z) is an increasing sequence, and is bounded wu,(z) < 1. It
converges to a function u, which is the unique integrable solution of the
equation with e fixed.

e Lemma: e — p(e) is continuous, and p(0) = 0 and p(co) = oo, which
allows us to compute solutions for the problem at fixed p.

e We thus have a restricted notion of uniqueness. The full uniqueness would
follow from a proof that e — p(r) is monotone increasing (which must be
true for the physics to make sense).
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Upper bound at low density

[Yau, Yin, 2009]: proof for weak, smooth, rapidly decaying potentials.

[Basti, Cenatiempo, Schlein, 2021]: extended for Lz (and compactly sup-
ported) potentials (excludes hard-core interactions).

Simple Equation: our analysis holds for the hard-core, so if one could find
a good Ansatz from it, one might get an upper bound for the energy in
this case.

Idea for Ansatz? (Jastrow, Dyson-Jastrow?).
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Upper bound at low density: Jastrow function

Idea:

w H —u(z;—xj)

1<J
Why this: p < 1, and if pllul|; < 1,

g2 ~1—u.

Again, if p||lu|l; < 1, we would be able to compute the energy of ¥ using
a cluster expansion!

However, ||ull; = %!
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Existence for the Big Equation

e Numerical method: Newton algorithm.

e For the existence of a solution, it would suffice to prove that the Newton
algorithm has a Basin of attraction. (Kantorovich-like theorem?)

e Such a result, applied to the Simple Equation, would imply the uniqueness
of a solution (provided we have convergence in an appropriate norm).
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