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What is Statistical Mechanics?

• Phenomena that are directly observable are Macroscopic: for example

▶ Ideal gas law:
pV = NkBT

▶ Freezing and other phase transitions.

▶ Ohm’s law:
V = RI

• How to understand these? Microscopic theories!
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What is Statistical Mechanics?

• Phenomena that are directly observable are Macroscopic: for example

▶ Ideal gas law: free molecules

pV = NkBT

▶ Freezing and other phase transitions: ordering of particles.

▶ Ohm’s law: electrons moving through a metal

V = RI

• How to understand these? Microscopic theories!
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What is Statistical Mechanics?

• Statistical mechanics: understanding how the macroscopic properties fol-
low from the microscopic laws of nature (“first principles”).
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The arrow of time

• The microscopic dynamics are reversible.

▶ Consider the motion of a point particle, which follows the laws of
Newtonian mechanics.

▶ If time is reversed, the motion still satisfies the same laws of Newtonian
mechanics.

• Many macroscopic phenomena are irreversible.

▶ For example: friction: the law of friction is not invariant under time
reversal.

▶ Or, consider the expansion of a gas in a container.
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The thermodynamic limit

• One mole ≈ 6.02× 1023.

• Whereas a finite number of microscopic particles behaves reversibly, an
infinite number of microscopic particles does not.

• Fundamental tool of statistical mechanics: the thermodynamic limit, in
which the number of particles → ∞.
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Putting the Statistics in Statistical Mechanics

• To understand these infinite particles interacting with each other, we use
probability theory.

• Simple example: the free gas:

▶ Each particle is a point, and no two particles interact with each
other.

▶ Probability distribution: Gibbs distribution

p(x,v) =
1

Z
e−βH(x,v), β :=

1

kBT

where H(x,v) is the energy of the configuration where the particles
are located at x ≡ (x1, · · · , xN ) with velocities v ≡ (v1, · · · , vN ).
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The free gas

• The energy is the kinetic energy:

H(x,v) =
1

2
m

N∑
i=1

v2i .

• Denoting the number of particles by N and the volume by V , we have

Z = V N

(
2π

βm

) 3
2
N

.

• The pressure can be computed to be

p =
N

βV
≡ NkBT

V

that is, the ideal gas law.
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Hard sphere model

• Let us now consider a system where the microscopic particles interact: the
hard sphere model, in which each particle is a sphere of radius R, and the
interaction is such that no two spheres can overlap.

• Probability distribution:

p(x) =
1

Z
eβµN

where µ is the chemical potential and β = 1
kBT .
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Hard sphere model

• We expect, from numerical simulations, to see two phases: a gaseous phase
and a crystalline one.

• In the gaseous phase, the particles are almost decorrelated: they behave
as if they did not interact.

• In the crystalline phase, they form large scale periodic structures: they
behave very differently from the non-interacting gas.
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Hard sphere model

• The gaseous phase is very well understood. Much about it can be com-
puted using analytic expansions (called “cluster expansions” or “Mayer
expansions”).

• The crystalline phase is much more of a mystery: we still lack a proof that
it exists at positive temperatures!

• Open Problem: prove that hard spheres crystallize at sufficiently low
temperatures.
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Liquid crystals

• Phase of matter that shares properties of liquids (disorder) and crystals
(order).

• Nematic liquid crystals: order in orientation, disorder in position.
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Liquid crystals

• Model: hard cylinders.

• Expected phases: gas, nematic, smectic
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Liquid crystals

• Here again, the gas phase is well understood, but neither the nematic nor
the smectic have yet been proved to exist.

• Open Problem: Prove the existence of a nematic or smectic phase.
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Continuous symmetry breaking

• Difficulty for both the hard spheres and liquid crystals: breaking a contin-
uous symmetry (translation for the hard spheres, rotation for the liquid
crystals).

• Continuous symmetries cannot∗ be broken in one or two dimensions.

• Continuous symmetry breaking can, so far, only be proved in very special
models.
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Lattice models

• Many examples:
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Hard diamond model
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Hard diamond model
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Hard diamond model

• Idea: treat the vacancies as a gas of “virtual particles”.

• Can prove crystallization for a large class of lattice models.
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Hard rods on a lattice

• Model: rods of length k on Z2.
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Hard rods on a lattice

• Can prove that, when k−2 ≪ ρ ≪ k−1, the system forms a nematic phase.

• For larger densities, one expects yet another phase, in which there are tiles
of horizontal and vertical rods.

• Open Problem: generalization to 3 dimensions.
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Conclusion

• Statistical Mechanics establishes a link between Microscopic theories and
Macroscopic behavior.

• (In equilibrium) it consists in studying the properties of special probability
distributions called Gibbs Measures.

• Even simple models pose significant mathematical challenges.

• Still, much can be said about lattice models, even though there are many
problems that are still open!
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