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What is Statistical Mechanics?

e Phenomena that are directly observable are Macroscopic: for example

» Ideal gas law:
pV = Nk‘BT

» Freezing and other phase transitions.

» Ohm’s law:
V =RI

e How to understand these? Microscopic theories!
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What is Statistical Mechanics?

e Phenomena that are directly observable are Macroscopic: for example

» Ideal gas law: free molecules

pV = NkBT

» Freezing and other phase transitions: ordering of particles.
» Ohm’s law: electrons moving through a metal

V =RI

e How to understand these? Microscopic theories!
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What is Statistical Mechanics?

e Statistical mechanics: understanding how the macroscopic properties fol-
low from the microscopic laws of nature (“first principles”).
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The arrow of time

e The microscopic dynamics are reversible.

» Consider the motion of a point particle, which follows the laws of
Newtonian mechanics.
» If time is reversed, the motion still satisfies the same laws of Newtonian
mechanics.
e Many macroscopic phenomena are irreversible.
» For example: friction: the law of friction is not invariant under time
reversal.

» Or, consider the expansion of a gas in a container.
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The thermodynamic limit

e One mole ~ 6.02 x 1023,

e Whereas a finite number of microscopic particles behaves reversibly, an
infinite number of microscopic particles does not.

e Fundamental tool of statistical mechanics: the thermodynamic limit, in
which the number of particles — oo.

5/20



Putting the Statistics in Statistical Mechanics

e To understand these infinite particles interacting with each other, we use
probability theory.

e Simple example: the free gas:
» FEach particle is a point, and no two particles interact with each
other.
» Probability distribution: Gibbs distribution

1 1
— —6H(X,V) —_
plx,v) = e PO, i
where H(x,v) is the energy of the configuration where the particles
are located at x = (1, -+, xy) with velocities v = (v, -+, vN).
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The free gas

e The energy is the kinetic energy:

;N
H(x,v) = Qm;vg.
1=
e Denoting the number of particles by NV and the volume by V', we have

7z =VN (27T> i

Bm
e The pressure can be computed to be
N _ NkgT
p= 57 =Ty

that is, the ideal gas law.
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Hard sphere model

e Let us now consider a system where the microscopic particles interact: the
hard sphere model, in which each particle is a sphere of radius R, and the
interaction is such that no two spheres can overlap.

e Probability distribution:

1
p(x) = Eeﬁ“N

where p is the chemical potential and 8 = kE%T'
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Hard sphere model

e We expect, from numerical simulations, to see two phases: a gaseous phase
and a crystalline one.

e 0 °
3
%%

e In the gaseous phase, the particles are almost decorrelated: they behave
as if they did not interact.

e In the crystalline phase, they form large scale periodic structures: they
behave very differently from the non-interacting gas.
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Hard sphere model

e The gaseous phase is very well understood. Much about it can be com-
puted using analytic expansions (called “cluster expansions” or “Mayer
expansions” ).

e The crystalline phase is much more of a mystery: we still lack a proof that
it exists at positive temperatures!

e Open Problem: prove that hard spheres crystallize at sufficiently low
temperatures.
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Liquid crystals

e Phase of matter that shares properties of liquids (disorder) and crystals
(order).

e Nematic liquid crystals: order in orientation, disorder in position.
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Liquid crystals

e Model: hard cylinders.

e Expected phases: gas, nematic, smectic

IR
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Liquid crystals

e Here again, the gas phase is well understood, but neither the nematic nor
the smectic have yet been proved to exist.

e Open Problem: Prove the existence of a nematic or smectic phase.
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Continuous symmetry breaking

e Difficulty for both the hard spheres and liquid crystals: breaking a contin-
uous symmetry (translation for the hard spheres, rotation for the liquid
crystals).

e Continuous symmetries cannot® be broken in one or two dimensions.

e Continuous symmetry breaking can, so far, only be proved in very special
models.
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Lattice models

e Many examples:
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Hard diamond model
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Hard diamond model

LOALAL BN L
S IRAIE ik

e
SEASEE, L E5Y Y o

%
9

+

NEl

+
=it
¢

e
S

a»
+

=t
o
%!

s
| Ld
&

=
o«

16/20



Hard diamond model

e Idea: treat the vacancies as a gas of “virtual particles”.

e Can prove crystallization for a large class of lattice models.
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Hard rods on a lattice

e Model: rods of length k on Z2.




Hard rods on a lattice

e Can prove that, when k72 < p < k™!, the system forms a nematic phase.

e For larger densities, one expects yet another phase, in which there are tiles
of horizontal and vertical rods.

e Open Problem: generalization to 3 dimensions.
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Conclusion

Statistical Mechanics establishes a link between Microscopic theories and
Macroscopic behavior.

(In equilibrium) it consists in studying the properties of special probability
distributions called Gibbs Measures.

Even simple models pose significant mathematical challenges.

Still, much can be said about lattice models, even though there are many
problems that are still open!
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