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Gas-liquid-crystal
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Hard-core lattice particle (HCLP) systems
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Non-sliding HCLPs

• There exist a finite number τ of tilings {L1, · · · ,Lτ}
which are periodic and isometric to each other.
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Non-sliding HCLPs

• Defects are localized: for every connected particle
configuration X that is not the subset of a close pack-
ing and every Y ⊃ X, there is empty space in Y
neighboring X.
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Observables

• Gibbs measure:

〈A〉ν := lim
Λ→Λ∞

1

ΞΛ,ν(z)

∑
X⊂Λ

A(X)z|X|Bν(X)
∏

x 6=x′∈X
ϕ(x, x′)

I Λ: finite subset of lattice Λ∞.

I z > 0: fugacity.

I ϕ(x, x′): hard-core interaction.

I Bν : boundary condition: favors the ν-th tiling.

• Pressure:

p(z) := lim
Λ→Λ∞

1

|Λ|
log ΞΛ,ν(z).

5/18



Theorem

• p(z)− ρm log z and 〈1x1 · · ·1xn〉ν are analytic func-
tions of 1/z for large values of z.

• There are τ distinct Gibbs states:

〈1x〉ν =

{
1 +O(y) if x ∈ Lν

O(y) if not.
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Low-fugacity expansion

• Formally,

1

|Λ|
log ΞΛ(z) =

∞∑
k=1

bk(Λ)zk

where, if ZΛ(ki) denotes the number of configurations
with ki particles, then

bk(Λ) :=
1

|Λ|

k∑
j=1

(−1)j+1

j

∑
k1,···,kj>1
k1+···+kj=k

ZΛ(k1) · · ·ZΛ(kj)
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Low-fugacity expansion

• Second term:

b2(Λ) =
1

|Λ|

(
ZΛ(2)− 1

2
Z2

Λ(1)

)

• 1
2Z

2
Λ(1): counts non-interacting particle configura-

tions.

• ZΛ(2): counts interacting particle configurations.

• The terms of order |Λ|2 cancel out!
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Low-fugacity expansion

• [Ursell, 1927], [Mayer, 1937]: bk(Λ)→ bk.

• [Groeneveld, 1962], [Ruelle, 1963], [Penrose, 1963]:

p(z) =

∞∑
k=1

bkz
k

which has a positive radius of convergence.
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High-fugacity expansion

• Inverse fugacity y ≡ z−1:

ΞΛ(z) = zNmax
∑
X⊂Λ

yNmax−|X|
∏

x 6=x′∈X
φ(x, x′)
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High-fugacity expansion

• Formally,

1

|Λ|
log ΞΛ = ρm log z +

∞∑
k=1

ck(Λ)yk + o(1)

where, if QΛ(ki) denotes the number of configurations
with Nmax − ki particles, then

ck(Λ) :=
1

|Λ|

k∑
j=1

(−1)j+1

jτ j

∑
k1,···,kj>1
k1+···+kj=k

QΛ(k1) · · ·QΛ(kj)
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High-fugacity expansion
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High-fugacity expansion

• [Gaunt, Fisher, 1965]: diamonds: ck(Λ) → ck for
k 6 9.

• [Joyce, 1988]: hexagons (integrable, [Baxter, 1980]).

• [Eisenberg, Baram, 2005]: crosses: ck(Λ) → ck for
k 6 6.

• Cannot be done systematically: there exist counter-
examples: e.g. hard 2× 2 squares on Z2:

c1(Λ) ∝
√
|Λ|
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Holes interact

• Total volume of holes: ∈ ρ−1
m N.

14/18



Non-sliding condition

• Distinct defects are decorrelated.
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Gaunt-Fisher configurations

• Group together empty space and neighboring parti-
cles.
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Defect model

• Map particle system to a model of defects:

ΞΛ,ν(z) = zρm|Λ|
∑

γ⊂Cν(Λ)

 ∏
γ 6=γ′∈γ

Φ(γ, γ′)

∏
γ∈γ

ζ(z)
ν (γ)

I Φ: hard-core repulsion of defects.

I ζ
(z)
ν (γ): activity of defect.

• The activity of a defect is exponentially small: ∃ε� 1

ζ(z)
ν (γ) < ε|γ|

• Low-fugacity expansion for defects.
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Crystallization

• Peierls argument: in order to have a particle at x
that is not compatible with the ν-th perfect packing,
it must be part of or surrounded by a defect.

• Note: a naive Peierls argument requires the partition
function to be independent from the boundary con-
dition. This is not necessarily the case here, and we
need elements from Pirogov-Sinai theory.
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