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Gas-liquid-crystal
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Hard-core lattice particle (HCLP) systems
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Non-sliding HCLPs

e There exist a finite number 7 of tilings {£4,---, L}
which are periodic and isometric to each other.
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Non-sliding HCLPs

e Defects are localized: for every connected particle
configuration X that is not the subset of a close pack-
ing and every Y D X, there is empty space in Y

neighboring X.
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Observables

e Gibbs measure

(A), = lim = ZA )2 X8, (X H o(z,2")

A=hoo Epw( XCA r#zr'eX
» A: finite subset of lattice Ao

» 2z > 0: fugacity.
» (z,2’): hard-core interaction.
» ‘B,: boundary condition: favors the v-th tiling.

e Pressure:

1
p(Z) T A1—1>moo |A| 10g‘—‘A V( )
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Theorem

e p(2) — pmlogz and (1, ---1,,), are analytic func-
tions of 1/z for large values of z.

e There are 7 distinct Gibbs states:
1+0(y)ifze L,
]1$>V -
O(y) if not.
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Low-fugacity expansion

e Formally,

1
log Z (2 br(A
[A] Z

where, if Z (k;) denotes the number of configurations
with k; particles, then

k .
1 (—1)7+t
S L S
j:l k1,~-~,]€j>1
k1+~~+kj=k
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Low-fugacity expansion

e Second term:

1

ba(h) = — (Z02) — 2201
IA] >

o %Zﬁ(l): counts non-interacting particle configura-
tions.

e Z(2): counts interacting particle configurations.

e The terms of order |A|? cancel out!
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Low-fugacity expansion

e [Ursell, 1927], [Mayer, 1937]: bi(A) — by.

e [Groeneveld, 1962], [Ruelle, 1963], [Penrose, 1963]:

p(z) = Z by2"
k=1

which has a positive radius of convergence.
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High-fugacity expansion

e Inverse fugacity y = 2!

Ea(z) = N 3 N X ] g(a,0)

XCA rz#x'eX
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High-fugacity expansion

e Formally,

1 [e.e]
o] log Zp = pm log z + ch(A)yk +o(1)

k=1

where, if Q4 (k;) denotes the number of configurations
with Npax — k; particles, then

k .
1 (—1)7*t
ck(A) = W E i E Qa(k1) - Qa(ky)
]:1 kl,"-,k]'}l
k‘1+~~+kj=k'
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High-fugacity expansion
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High-fugacity expansion

e [Gaunt, Fisher, 1965]: diamonds: ci(A) — ¢ for
k<9.

e [Joyce, 1988]: hexagons (integrable, [Baxter, 1980]).

e [Eisenberg, Baram, 2005]: crosses: ci(A) — ¢ for
k < 6.

e Cannot be done systematically: there exist counter-
examples: e.g. hard 2 x 2 squares on Z?:

c1(A) < \/]A]
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Holes interact

e Total volume of holes: € p,,'N.
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Gaunt-Fisher configurations

e Group together empty space and neighboring parti-
cles.
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Defect model

e Map particle system to a model of defects:

Ean(z) =M ST T @) | TT 6P

YCE(A) \v#Y' €Y TEY

» ®: hard-core repulsion of defects.

> )( ): activity of defect.

e The activity of a defect is exponentially small: de < 1
() <

e Low-fugacity expansion for defects.
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Crystallization

e Peierls argument: in order to have a particle at x
that is not compatible with the v-th perfect packing,
it must be part of or surrounded by a defect.

e Note: a naive Peierls argument requires the partition
function to be independent from the boundary con-
dition. This is not necessarily the case here, and we
need elements from Pirogov-Sinai theory.
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