Liquid crystals
and interacting dimers

Ian Jauslin

joint with Elliott H. Lieb

Nematic liquid crystals
Nematic liquid crystals

- **Long range orientational order**: molecules tend to align, and maintain their alignment over macroscopic distances.

- **No positional order**: the locations of the centers of the molecules are decorrelated.
Heilmann-Lieb model

[Heilmann, Lieb, 1979]
Heilmann-Lieb model

- Probability of a configuration (grand-canonical Gibbs distribution):

\[
\text{Prob}(\text{conf}) = \frac{1}{\Xi} z^{\#\text{particles}} e^{J \#\text{interactions}}
\]

- \(\Xi\): partition function
- \(z \geq 0\): activity
- \(J \geq 0\): interaction strength

- Regime \(J \gg z \gg 1\).
• **Theorem:** given $x, y \in \mathbb{Z}^2$, the probability that there is a horizontal dimer attached to x and no horizontal dimer attached to y tends to 0 as $J, z \rightarrow \infty$. (**Orientational order.**)

• **Conjecture:** given to edges e and e', the probability of finding a dimer on e and another on e' is independent of e and e', up to a term that decays exponentially in $\text{dist}(e, e')$. (**No positional order.**)