Non-perturbative renormalization group in a hierarchical Kondo model

Ian Jauslin

joint with G. Benfatto and G. Gallavotti

arXiv: 1506.04381

http://ian.jauslin.org/

Kondo model

• [N. Andrei, 1980]:

$$H = H_0 + V$$

▶ H_0 : kinetic term of the *electrons*

$$H_0 := \sum_x \sum_{\alpha = \uparrow,\downarrow} c^{\dagger}_{\alpha}(x) \left(-\frac{\Delta}{2} - 1\right) c_{\alpha}(x)$$

 \blacktriangleright V: interaction with the *impurity*

$$V = -\lambda_0 \sum_{j=1,2,3} \sum_{\alpha_1,\alpha_2,\alpha_3,\alpha_4} c^{\dagger}_{\alpha_1}(0) \sigma^{j}_{\alpha_1,\alpha_2} c_{\alpha_2}(0) d^{\dagger}_{\alpha_3} \sigma^{j}_{\alpha_3,\alpha_4} d_{\alpha_4}$$

Kondo effect: magnetic susceptibility

• Non-interacting magnetic susceptibility

• Isolated impurity:
$$\chi^{(0)}(0,\beta) \xrightarrow[\beta \to \infty]{} \infty$$

• Chain of electrons:
$$\lim_{\beta \to \infty} \lim_{L \to \infty} \frac{1}{L} \chi_e(0, \beta) < \infty.$$

• Anti-ferromagnetic interaction: $\lambda_0 < 0$:

$$\lim_{\beta \to \infty} \chi^{(\lambda_0)}(0,\beta) < \infty.$$

• Non-perturbative effect: the qualitative behavior changes as soon as $\lambda_0 \neq 0$.

Previous results

- [J. Kondo, 1964]: third order Born approximation.
- [P. Anderson, 1970], [K. Wilson, 1975]: renormalization group approach
 - ► Sequence of effective Hamiltonians at varying energy scales.
 - ► For anti-ferromagnetic interactions, the effective Hamiltonians go to a *non-trivial fixed point*.
- Remark: [N. Andrei, 1980]: the Kondo model (suitably linearized) is exactly solvable via Bethe Ansatz.

Current results

- Hierarchical Kondo model: idealization of the Kondo model that shares its scaling properties.
- It is *exactly solvable*: the map relating the effective theories at different scales is *explicit* (no perturbative expansions).
- For $\lambda_0 < 0$, the flow tends to a non-trivial fixed point, and $\chi^{(\lambda_0)} < \infty$ in the $\beta \to \infty$ limit (Kondo effect).

Hierarchical beta function

• Beta function (*exact*)

$$\begin{split} C^{[m]} &= 1 + 3(\ell_0^{[m]})^2 + 9(\ell_1^{[m]})^2 + 9(\ell_2^{[m]})^2 + 324(\ell_3^{[m]})^2 \\ \ell_0^{[m-1]} &= \frac{1}{C^{[m]}} \Big(\ell_0^{[m]} + 18\ell_0^{[m]}\ell_3^{[m]} + 3\ell_0^{[m]}\ell_2^{[m]} + 3\ell_0^{[m]}\ell_1^{[m]} - 2(\ell_0^{[m]})^2 \Big) \\ \ell_1^{[m-1]} &= \frac{1}{C^{[m]}} \Big(\frac{1}{2}\ell_1^{[m]} + 9\ell_2^{[m]}\ell_3^{[m]} + \frac{1}{4}(\ell_0^{[m]})^2 \Big) \\ \ell_2^{[m-1]} &= \frac{1}{C^{[m]}} \Big(2\ell_2^{[m]} + 36\ell_1^{[m]}\ell_3^{[m]} + (\ell_0^{[m]})^2 \Big) \\ \ell_3^{[m-1]} &= \frac{1}{C^{[m]}} \Big(\frac{1}{2}\ell_3^{[m]} + \frac{1}{4}\ell_1^{[m]}\ell_2^{[m]} + \frac{1}{24}(\ell_0^{[m]})^2 \Big). \end{split}$$

Flow

Fixed points: $\ell^{(0)}, \ell^{(+)}, \ell^*$.

Kondo effect

- Fix h = 0.
- At $\ell^{(+)}$, the susceptibility diverges as β .
- At ℓ^* , the susceptibility remains finite in the $\beta \to \infty$ limit.

