simplesolv
v0.4

Table of contents:

1. Basic usage
2. Methods
2.1. easyeq.
2.1.1. Usage
2.1.2. Description . Coe e
2.1.2.1. Fourier space formulation .
2.1.2.2. Evaluating integrals .
2.1.2.3. Main algorithm to compute U .
2.1.2.4. Condensate fraction . e
2.1.2.5. Correlation function (spherical average) .
2.1.2.6. Fourier transform of two-point correlation (spherical average)
2.1.2.7. Momentum distribution
2.2. anyeq .
2.2.1. Usage
2.2.2. Description . Ce
2.2.2.1. Fourier space formulation .
2.2.2.2. Evaluating integrals . .
2.2.2.3. Chebyshev polynomial expansion .
2.2.2.4. Convolutions .
2.2.2.5. Evaluating s S
2.2.2.6. Main algorithm to compute U .
2.2.2.7. Condensate fraction . Ce
2.2.2.8. Correlation function (spherical average) . .
2.2.2.9. Fourier transform of two-point correlation (spherical average)
2.2.2.10. Correlation function of uncondensed particles (spherical average)
2.2.2.11. Momentum distribution .
2.2.2.12. Compressibility .
2.3. simpleq-Kv.
2.3.1. Usage
2.3.2. Description .
2.4. simpleq-hardcore .
2.4.1. Usage
2.4.2. Description .
2.4.2.1. Energy . .
2.4.2.2. Integral equation .
2.4.2.3. The auto-convolution term .
2.4.2.4. Chebyshev polynomial expansion .
2.4.2.5. Energy . .
2.4.2.6. Newton algorithm .
2.4.2.7. Condensate fraction .
2.5. simpleq-iteration
2.5.1. Usage
2.5.2. Description .

3. Potentials .
3.1. Built-in potentials

© 00 O LUt NN =

s s s e W0 W W W W W W W W W W WNNNNDNNDNFE =R
T i WO OO IO Ui B WNNDNOOWWDSTTWNNDO OB wNho

IS
S S

3.1.1. exp .

3.1.2. tent .

3.1.3. expcry .

3.1.4. npt

3.1.5. alg

3.1.6. algwell

3.1.7. exact .
3.2. Programming custom potentials .

Appendices

A1. Chebyshev polynomial expansion .

A2. Gauss quadratures
A3. Bipolar coordinates .

A4. Hann windowing .

References

. 46
.47
. A7
. 48
. 48
. 48
.49
.49

. ol
. 92
. 53
. 95

. 56

simplesolv is a tool to compute the solution of the equations of the “Simplified approach”
to the repulsive Bose gas introduced in [CJL20, CJL21, CHe21]. This approach provides an
approximation to various observables of the ground state of the Hamiltonian

N
Hy=—33" A+ Y ollei—)
=1

1<i<j<N
in three dimensions, with periodic boundary conditions, in the thermodynamic limit N — oo at

fixed density p.

simplesolv is written in julia. The source code is located in the src directory of this bundle.
Throughout the documentation, we will refer to the directory containing the src directory as the
“installation directory”, and will denote it by the bash variable $SIMPLESOLV (so that the main
julia file, for instance, is located at $SIMPLESOLV/src/main.jl).

1. Basic usage

Denoting the location of the installation directory by $SIMPLESOLV, simplesolv is run by
calling

julia $SIMPLESOLV/src/main.jl [args] <command>

where the optional arguments [args] take the form [-p params] [-U potential] [-M method]
[-s savefile].

A few commands support multithreaded execution. To enable julia to run on several pro-
cessors, it should be run with the -p option. For example, to run on 8 CPUs, run

julia -p 8 $SIMPLESOLV/src/main.jl [args] <command>

command specifies which computation is to be carried out, such as energy to compute the
ground state energy, or condensate_fraction for the uncondensed fraction. The list of available
commands depends on the method argument, which specifies one of the available methods to
solve the equation at hand. The available methods are (see section 2 for further details)

e casyeq (default) for the Simple or Medium equation, or any interpolation between them,
with a soft potential using the Newton algorithm,

e anyeq for any equation in the “Simplified approach” using the Newton algorithm.

e simpleq-Kv for the Simple equation using explicit expressions involving fv (see (2.3.3)),

e simpleqg-hardcore for the Simple equation with a hard core potential using the Newton
algorithm,

e simpleqg-iteration for the Simple equation with a soft potential using the iteration defined
in [CJL20].

Each method is described in detail below, along with the list of commands (command) and param-
eters (params) compatible with them. In addition, the scattering length can be displayed using
the scattering length command:

julia $SIMPLESOLV/src/main.jl scattering length

(0.0.1)

params should be a ¢;’ separated list of entries, each of which is of the form key=value.
For example -p "rho=1e-6;v_a=2". (Note that you should not end the list of parameters by a
‘;’, otherwise simplesolv will interpret that as there being an empty parameter entry, which it
cannot split into a key and value, and will fail.)

potential specifies which potential v should be used, from the following list (see section 3
for further details).

e exp (default) for v(|z|) = ae~1*l,

||

e tent for v(|z|) =]l|x|<ba%7r(1 — %)Z(T +2),

e expcry for v(|z|) = e~ 1l — ge 01,

e npt for v(|z|) = z%e~ 17,

e alg for v(|z|) = Hiﬁ

4
e algwell for v(|z|) = %

12¢(]z|%b8 (2e—b2)+b*|z|* (9e—Tb2) +4b2| x| (3e—2b%) +(5e+16b2))
(1+62[2[?)? (4402 [x]*)2 ((1+b2[2]*)? —c)

The parameters in the potential can be set using the params argument: to set a set v_a, to set b

set v_b, to set ¢ set v_c, and to set e set v_e.

e exact for v(|z|) =

savefile can be used to accelerate the computation of observables in the compleq equation.
Indeed, as is discussed in section 2.2, the computation of compleq is based on the computation
of a large matrix, which can be pre-computed, saved in a file using the save_Abar command, and
reused by specifying that file in the savefile argument.

2. Methods

In this section, we describe the different computation methods.

2.1. easyeq

This method is used to solve a family of equations, called easyeq, that interpolate between
the Simple equation and the Medium equation:

—Au=v(1 —u) —2pK + p*L
with

2e
—u

2
K:ZBKU*S—I-(l—ﬁK)p , Li:BLU*u*S—I-(l—BL)EU*u

Si=(1-uv, e:= ’g/d:z (1 — u(jz]))o(|z)).

for a soft potential v at density p > 0.

The special choice Sx = 1, = 0 is called the Simple equation (simpleq), and the choice
Br = Br = 1 is called the Medium equation (medeq)

2.1.1. Usage

Unless otherwise noted, this method takes the following parameters (specified via the [-p
params] flag, as a ‘;’ separated list of entries).

(2.1.1)

(2.1.2)

(2.1.3)

e rho (Float64, default: 107%): density p.

tolerance (Float64, default: 10~'!): maximal size of final step in Newton iteration.

e maxiter (Int64, default: 21): maximal number of iterations of the Newton algorithm before
giving up.
order (Int64, default: 100): order used for all Gauss quadratures (denoted by N below).

minlrho_init (Float64, default: —6): to initialize the Newton algorithm, we first compute
the solution for a smaller p, minlrho is the minimal value for log;, p to start this initialization
process.

e nlrho init (Int64, default: 0): number of steps in the initialization process described
above. Set to 0 to disable the incremental initialization process.

bK, bL (Float64, default: 1, 1): the values of Sk and Sr.

eq (String, default: “simpleq”, acceptable values: “simpleq”, “medeq”): A shortcut to
select either the Simple equation (Bx = fr = 0) or the Medium equation (8 = fx = 1).
When this option is set, neither bK nor bL should be set.

The available commands are the following.

e energy: compute the energy e at a given p.
Output: [e] [Newton error €.

e energy_rho: compute the energy e as a function of p. The Newton algorithm is initialized with
the hardcore scattering solution (2.1.26) for the lowest p, and with the previously computed
p for the larger densities.
Disabled parameters: rho.
Extra parameters:

» minlrho (Float64, default: 1075): minimal value for log p.

» maxlrho (Float64, default: 10?): maximal value for log;q p.

» nlrho (Int64, default: 100): number of values for p (spaced logarithmically).
» minrho (Float64, default: 107%): minimal value for p.

» maxrho (Float64, default: 10?): maximal value for p.

» nrho (Int64, default: 0): number of values for p (spaced linearly). If nrho is # 0, then
the linear spacing will be used, and minlrho, maxlrho, nlrho will be ignored. Otherwise,
the logarithmic spacing will be used and minrho, maxrho will be ignored.

[

rhos (Array{Float64}): list of values for p, specified as a ,” separated list. This
parameter takes precedence over minlrho, maxlrho, nlrho, minrho, maxrho, nrho.

v

Output (one line for each value of p): [p] [e] [Newton error €].

e condensate_fraction: compute the uncondensed fraction n at a given p.
Output: [n] [Newton error .

e condensate fraction rho: compute the uncondensed fraction n as a function of p. The
Newton algorithm is initialized with the hardcore scattering solution (2.1.26) for the lowest
p, and with the previously computed p for the larger densities.

Disabled parameters: same as energy_rho.
Extra parameters: same as energy_rho.
Output (one line for each value of p): [p]| [n] [Newton error €.

e uk: compute the Fourier transform «(|k|). The values |k| at which @ is computed are those
coming from the Gauss quadratures, and cannot be set.
Output (one line for each value of |k|): [|k|] [a(]k])]

e ux: compute u as a function of |z|.
Extra parameters:

» xmin (Float64, default: 0): minimum of the range of |z| to be printed.

» xmax (Float64, default: 100): maximum of the range of |z| to be printed.

» 1nx (Int64, default: 100): number of points to print (linearly spaced).
Output (one line for each value of x): [|z] [u(|z])]

e uux: compute 2u — pu * u as a function of |z|.
Extra parameters: Same as ux.
Output (one line for each value of x): [|z|] [2u(|z]) — pu * u(|z])]

e 2pt: compute the spherically averaged two-point correlation function Cy(|z|) at a given p.
Extra parameters: same as ux, plus

» window L (Float64, default: 10%): size of the Hann window used to numerically invert the
Fourier transform in the computation of the two-point correlation function, see (2.2.139).

Output (one line for each value of |z|): [|z|] [C2(|x|)]

e 2pt max: compute the maximum of the spherically averaged two-point correlation function
Ca(|x|) at a given p.
Extra parameters: window_L plus

» dx (Float64, default: 1077): step used to numerically approximate derivatives.
» %0 (Float64, default: 1): initial guess for the maximum is p~/3x0.
» maxstep (Float64, default: co): maximal size of single step in maximization algorithm.

» tolerance max (Float64, default: tolerance): same as tolerance, used for the Newton
algorithm underlying the maximization algorithm.

Output: [|Zmax|] [C2(|Tmax|)]

e 2pt_max_rho: compute the maximum of the spherically averaged two-point correlation func-
tion Cy(|z|) for a range of p.
Extra parameters: same as easyeq_2pt_max plus those of energy_rho.
Output (one line for each value of p): [p] [|Zmax|] [C2(|Tmax|)]
Multithread support: yes, different values of p split up among workers.

e 2pt_fourier: compute the spherically averaged Fourier transform of the two-point correla-
tion function Cs(|k|) at a given p.
Extra parameters:

» kmin (Float64, default: 0): minimum of the range of |k| to be printed.
» kmax (Float64, default: 10): maximum of the range of |k| to be printed.
» 1k (Int64, default: 100): number of |k|’s to be printed.

» window L (Float64, default: 1000): what is actually computed is C convolved with a
Gaussian of variance 1/v/L with I = window_L, see (2.1.67).

Output (one line for each value of |k|): [|k|] [Ca(]k])].
Multithread support: yes, different values of k£ are split up among workers.

e 2pt_fourier max: compute the maximum of the spherically averaged Fourier transformed
two-point correlation function Ca(|kl).
Extra parameters: window L, maxstep plus

» dk (Float64, default: 1077): step used to numerically approximate derivatives.
» kO (Float64, default: 1): initial guess for the maximum is p'/3%0.
Output: [|kmax] [Co(|kmax|)]

e 2pt _fourier max rho: compute the maximum of the spherically averaged Fourier trans-
formed two-point correlation function Cs(|k|) for a range of p.
Extra parameters: same as those of 2pt_fourier max plus those of energy_rho.

Output (one line for each value of p): [p] [[kmax|] [Co(|kmax|)]
Multithread support: yes, different values of p split up among workers.

e momentum distribution: compute the momentum distribution M(|k|) at a given p. The
momentum distribution is computed for k = k; ; (see (2.2.40)).
Extra parameters:

» kmin (Float64, default: 0): minimum of the range of |k| to be printed.
» kmax (Float64, default: 10): maximum of the range of |k| to be printed.

» window L (Float64, default: 1000): what is actually computed is 9t convolved with a
Gaussian of variance 1/v/L where L = \/window L/k2, see (2.1.79).

Output (one line for each value of |k|): [|k|] [M(|k])]

2.1.2. Description
2.1.2.1. Fourier space formulation

The computation is carried out in Fourier space. We take the convention that the Fourier trans-
form of a function f(|x|) is

dm [°°

F(IK) = /RS dx e f(|a]) = T o dr rsin(|k[r) f(r).

In Fourier space, (2.1.1) becomes

k0 =S — 20Axt + p?ALi®

Ay = BrS+ (1 — ﬁk)if, Ap =BS5S+ (1 - 5L)2;

with

Sk = [do e = uay(a) = o) = asoh). Fralk = [k= phalo)

We write this as a quadratic equation for @, and solve it, keeping the solution that decays as
|k| — oo:

A Ak (Jk Ar([k]) ¢
pi(il) =) <f<|kr>+1—\/<f<rk\>+1>2— Aii’,k‘)ﬁ("“’))
that is,
o S(IkI) o (ALUH) (k)
v e i)

5

(2.1.4)

(2.1.5)

(2.1.6)

(2.1.7)

(2.1.8)

(2.1.9)

with

k2 20 —-vV1—2
(k) = a(a) = 2VIZD),
2pAK T
We can write this as a root finding problem:
) S(Ik]) AL(k) _ S(k]
Qu) = — (47 =u
(= k) = g e 1 (R i) =0

Furthermore, using bipolar coordinates (see lemma A3.1), we write S as

N o T y+t
S(|k!):ﬁ(|k])—871T3/O dt oW H (K6, Hyt) = 2y /_ﬂds si(s).

By a simple change of variables,

1
H(y,t) = 4m <]1y>t; + 1y<t> /0 ds ((y +1)s + |y = t|(1 = s))o((y + t)s + |y = ¢|(L = s)).

2.1.2.2. Evaluating integrals

To compute these integrals numerically, we will use Gauss-Legendre quadratures:

1 1 N
IRZCEINCS
1=1

where w; and r; are the Gauss-Legendre weights and abcissa. The order N corresponds to the
parameter order. The error made by the quadrature is estimated in appendix A2. We compactify

the integrals to the interval (0,1): y :=

+
. 1t (=ya(5H) H(k],5Y)
S(k]) =o(k]) — — d J
(D) = o((#1) = 55 [dy -
so, using the Gauss-Legendre quadrature, we approximate
: N (1 -yl H (k]) vt 1
S(|k’) @ |k’ 6 3 Z Y 3 Ys y yj = M- 2 .

Y
This suggests a natural dlscretlzatlon of Fourier space: let
L—r _ 1—y

k; == =
Tl Yi

Thus, defining

and approximate (2.1.9):

T; T,
Ui= Q(XZ —+ 1)(1) (Bz (XH-I)Q)
with S5t (o .
Ag;=BxSi+ (1~ fr)E, B;:="" -)E 1=
N N
i -— Vg 3 , — - i
167T =1 y] 1673p st %
k2
T QPAKZ

This is a discrete equation for the vector (U;)Y,.

(2.1.10)

(2.1.11)

(2.1.12)

(2.1.13)

(2.1.14)

(2.1.15)

(2.1.16)

(2.1.17)

(2.1.18)

(2.1.19)

(2.1.20)

(2.1.21)

(2.1.22)

2.1.2.3. Main algorithm to compute U

1 - We rewrite (2.1.19) as a root finding problem:

= — T; Ty —

which we solve using the Newton algorithm, that is, we define a sequence of U’s:
Ut = g™ — (pEwm)~E)
where D= is the Jacobian of =: e
=
ou;

(DE)i; =

2 - For small values of p, we initialize the algorithm with the hardcore scattering solution

~ 47ra0
Uo(k) = kQ

where ag is the scattering length of the potential v (or an approximation thereof, which need not
be very good). Thus,
(o) _ 4magp
U, = —kg .

This is a good approximation for small p. For larger p, we choose U®) as the solution of
easyeq for a slightly smaller p, and proceed inductively (using the parameters minlrho init
and nlrho_init).

3 - We are left with computing the Jacobian of =:

@ = 0ji 2(X; + 1) <8JT X; + 1) ® <]BZ (Xi+1)2>

T; B, T;0;X; T,
_27@{2- mn 1)3 <]B3i8jTi + T,@jBi — 27}&‘ 1 > 0P (IB%Z‘ (Xi+1)2>

with
Eaj S; — SZ@E

(BkSi + (1 - Br)E)?

0,;B; = (Bp(1 - i) — Brc(1— Br))

Eaj Sl — SlajE

O) e G g O = ORS00
1 (1 —y;)H (K, kj) 1 o (L—y)H(0,k))
iS; = — j) = — ;
%58 167r3pw] y?’ % 1673p j;wj y?’
k2
iX; = — t i
0 2pA% ; O

4 - We iterate the Newton algorithm until the Newton relative error ¢ becomes smaller than
the tolerance parameter. The Newton error is defined as
”[U(n+1) _ U(n) H2
U™,

7

(2.1.23)

(2.1.24)

(2.1.25)

(2.1.26)

(2.1.27)

(2.1.28)

(2.1.29)

(2.1.30)

(2.1.31)

(2.1.32)

(2.1.33)

where || - ||2 is the l2 norm. The energy thus obtained is
P

the Fourier transform 4 of the solution is

and the solution u in real space is obtained by inverting the Fourier transform

y)sin(ja|=L)a(L)

—1kxA
= [= k|)
ul(e])) = 5o [>

~ 772’33| ij 1+ kj)?k; sin(|z|k;)a(k;).

To compute 2u — pu * u, we replace @ with 24 — pa? in the previous equation.

2.1.2.4. Condensate fraction

Finally, to compute the uncondensed fraction, we solve the modified easyeq (see [CJL21])
(A +2u)u, = o(1 —uy) — 20K + pL

where K and L are defined as in (2.1.2)-(2.1.3) in which w is replaced with w,. The uncondensed
fraction is then

P
1= Ouclumo = - /da: o(l2)Dte([]) -

To compute the energy in the presence of the parameter p, we proceed in the same way as for
= 0, the only difference being that k2 should formally be replaced by k2 + 2. In other words,
we consider U; = u,,(|k;|) and define Z(U, ;1) in the same way as in (2.1.23), except that X; should
be replaced by
k? +2u
2pAK i '

We then solve
E(U,p) =0.

By differentiating this identity with respect to u, we find 0,u,,:
D=0,U = —0,=2

and the uncondensed fraction is

1 —_—1q —
n= 2/daz v(z)(DE)19,E| =0
thus 1— —
L (A=) H 0, 50)(D) 19,5 o (55Y)
n=—=51[dy
1673 J y3
which we approximate using a Gauss—Legendre quadrature:
N
n~ 3%3 ij (1= &)k H(0,k5) > (DE); ! 0uZilu=0-

=1
We then compute, using (2.1.28),

T, B. T2
=g = i o (Bi T,) il ® (BZL))
OSihe=o = g g B) T o i T B

(2.1.34)

(2.1.35)

(2.1.36)

(2.1.37)

(2.1.38)

(2.1.39)

(2.1.40)

(2.1.41)

(2.1.42)

(2.1.43)

(2.1.44)

(2.1.45)

2.1.2.5. Correlation function (spherical average)
The two-point correlation function is

a(o) 1= 205

and its spherical average is

Calla) 1= gz | v 31l = Do)

; (56
ik
:E)—2p/dk:e 50(k)

In Fourier space,

SO

1 - de sin(|k||z])
=2 k| —— —|yet) —— k .
Calla) =20 [t (i [oial = e) 52 = 2p [[an SHEED 5

1 - We can compute this quantity by considering a modified easyeq in Fourier space, by

formally replacing v with

X sin(|k||z[)
o+ (kD). g(kl) =
Indeed, if ey denotes the energy of this modified equation,
de de
—o= [dk o(k) + Ag(lk])) = | dk g(|k .
trerleo = | o 008) + Ag((K) / oK) 55175

So, denoting the solution of the modified equation by uy,

Ca(x) = 2pdrex|r=0 = p°¢(0) — PQ/ (ngg (9(k)a(k) + 0(k)Orix(k)[x=0)-

We compute dyuy|y—o in the same way as the uncondensed fraction: we define Z(U, \) by formally

adding Ag(|k|) to v, solve =(U, \) = 0, and differentiate:

MU0 = —(DZ) ' \E|r=0-

2 - We compute 0\Z|r=o:

1 T; 0\ X; T,
Zi=— (T - @(Biil)
O 2(X; + 1) (8* X; + 1 > (Xi+1)2

T

i B, T;0\X; T,
- <Bi3)ﬂfi + T;0\B; — 2) 0P (Biw>

2(Xi + 1)3 X;+1

ith
W EO,\S; — S;O\E

(BkSi + (1 - Br)E)?

O\B; = (Br(1 — Bk) — Br(1—BL))

E0,\S; — S;0\E
(BrSi + (1 — K)E)?

O\T; = (1 - Bk) Ak = BrOrS; + (1 — Br)OL\E

1 — y;)U;0\H (ki, k)
3
Y;

1 &L
OnSi = g(k) = To5- D Wy
j=1

(2.1.46)

(2.1.47)

(2.1.48)

(2.1.49)

(2.1.50)

(2.1.51)

(2.1.52)

(2.1.53)

(2.1.54)

(2.1.55)

(2.1.56)

(2.1.57)

N
ONE = g(0) — —— > (L= ;) U;00H (0, k)

3 wj 3
167p P Y;
k2
OXi = ——5—0Ak,
2PA%(,¢

where OAH is computed similarly to H (2.1.13) but with © replaced by g:

1
ONH(y,t) = 4n <1y>t; + 11y<t) /0 ds ((y +t)s + [y —t|(1 = 8))g((y + t)s + [y — t|(1 — s)).

3 - In order to invert the Fourier transform in (2.1.49) numerically, we will use a Hann
window (see appendix A4)
k
Hy (k) =1y 1 cos®("f).

The parameter L is set using window_L. The computation is changed only in that ¢ is changed

in(|k||z
to Hy, (i) 2l

4 - To compute the maxillnum of (5, we use a modified Newton algorithm. The initial guess
for the maximum is |zg| = p~3x0. The modified Newton algorithm is an iteration:

9Cs(|zn|)

Tptl = Tp + 7]8202(\%])]

in which the derivatives are approximated using finite differences:

|z| + dx) — Ca(|z])
dz ’

_ Co(|z] + dx) + Co(|z| — dx) — 2C(|=|)

oCy(x) ~ 2 52Cs () ~ 02

This is a modification of the usual Newton iteration x,,+9Cs/ 0%C5 which is designed to follow the
direction of the gradient, and thus to move toward a local maximum. In addition, if |0C3|/|0?Cy|
is larger than maxstep, then the step is replaced with tmaxstep. This prevents the algorithm
from stepping over a maximum and land on another, further away. This is useful if one has a
good idea of where the global maximum is, and does not want to get trapped in a smaller local
maximum.

The algorithm is run for a maximum of maxiter iterations, or until |z,+1 — 2| is smaller
than tolerance. If the maximal number of iterations is reached, or if the solution found is not a
local maximum, then the algorithm fails, and returns +oo. The point thus computed is therefore
a local maximum, but it is not guaranteed to be the global maximum.

2.1.2.6. Fourier transform of two-point correlation (spherical average)

The Fourier transform of the two-point correlation function is

de

6v(q)

~

éa(q) = 2p

and its spherical average is

Collgl) = 47r|1q]2/dk 5(lg| — |k|)ea(k) = %’pqp /dk: 5(lg| — \k|)5§(ek).

10

(2.1.58)

(2.1.59)

(2.1.60)

(2.1.61)

(2.1.62)

(2.1.63)

(2.1.64)

(2.1.65)

1 - To compute %(2), one idea would be to proceed in the same way as for the two-point
correlation function, by replacing v with

o+ Mgl(kD), - g(Ik) = gz el = k)

where § is the Dirac-delta function distribution (compare this with (2.1.50)). However, the ¢
function causes all sorts of problems with the quadratures.

2 - Instead, we approximate Cs by convolving it with a normalized Gaussian: let

3
L\2 _L;»
LL(|k]) == (277) e 2"

&(lg)) = / dp Co(lg — pT1(lp) / dk / o gL lla =l kD)

p|?

()FL(\I)D

which by lemma A3.1 is

i [g S
&lla) = [it [[as S T

A se p [laltlk
&5 (lal) = /dk ‘ P ds sI'z (s
2(lql) 50(k) lallk[J)jq -k)

which is the directional derivative of e with respect to © in the direction of 2pg with

that is

L |q‘+|k|d T L T'r(lk T'r(lk
kD) = g [0 ST26) = g Tk = r) = Dol)
Note that
9(0) :==T'(|ql).

To compute this derivative, we replace v with
o+ Ag(|kl)

so, denoting the solution of the modified equation by wuy, for ¢ # 0,

dk
(2m)?

To compute dyiix|r=0, we differentiate Z(U, \) = 0:

dk
(2m)?

Cs(|gl) = 2pdrerlr=0 = o <—/ g([k)a([k]) —/ @(lkl)awx(lkl)lxzo> :
MU|r=0 = —(DZ) "1 0rE|r=o0-
The computation of 0yE|yx—¢ is identical to (2.1.54), but with the g defined in (2.1.71).

3 - To compute the maximum of Cy, we proceed as for Cy, see (2.1.62)-(2.1.63). The only
1
difference is that the algorithm is initialized with |ko| = p3kO.

11

(2.1.66)

(2.1.67)

(2.1.68)

(2.1.69)

(2.1.70)

(2.1.71)

(2.1.72)

(2.1.73)

(2.1.74)

(2.1.75)

2.1.2.7. Momentum distribution

To compute the momentum distribution (see [CHe21]), we add a parameter A to easyeq:
—Auy(|z]) = (1 = ur(lz]))o(|2]) — 20K (|2]) + p*L(|z]) — 2Xa0(q) cos(q -)

(g = tx|x=0).- The momentum distribution is then

Mia) = dreho = =5 [G oI (B)aco

1 - Note that the Fourier transform of 2\ig(q) cos(q - =) is

—(27)%Aiio(q)(6(q + k) + 6(q — k).

The presence of delta functions does not play well with the quadratures. To get around this, we
instead compute a regularization of M(q) by convolving it with a peaked spherically symmetric
function. Let I';, denote the Gaussian with variance 1/ VL

3
L\2 _L;
FL(‘k“) = (271_) (& 2k .

In fact, we will scale L with k, and set L to
L = v/window L/k2.

To compute

M(q) :=M=Tr(q)

we solve the equation
—Aup(|z]) = (1 = ur(lz]))v(lz]) — 20K (|2]) + p*L(|]) ~ 2A/dk do(k) cos(k - x)I'L(q — k).
Note that the Fourier transform of
—2)\/dk to(k) cos(k - 2)T'r(q — k)

—(27m)*Xdio(q)(TL(k + q) + Tr(k — q)).

Since the ground state is unique, M is spherically symmetric. The term I'z(k & ¢) is not, so we
take its spherical average (which will not change the final result): by lemma A3.1,

)3 |k|+r
[da 8(1dl ~)27 Xao(a) T lh +0) + ok - 0) = Cm)” zdo(r) /|| ds 5T, (s).

1
47r2 |k|r k||

In this setup, the approximation of the delta function is thus

- 1 |k|+r 1
5(’k|,7“) = 2k|r/||k|r| dS SFL(S) = W(FL(|]€| - T) - FL(|k| +T))

2 - To compute the momentum distribution at ¢, we define Z(U, \) by replacing T with

1

T; =
" Ak,

(8: = 2027 NllaDd(ks. |a)))

12

(2.1.76)

(2.1.77)

(2.1.78)

(2.1.79)

(2.1.80)

(2.1.81)

(2.1.82)

(2.1.83)

(2.1.84)

(2.1.85)

(2.1.86)

(2.1.87)

Then we solve =(U, \) = 0, and differentiate:

8)\U|)\:0 = —(DE)fla)\E‘)\zo.

Finally,
_ 1 T, B, T, T;
NEilr=0 = =0 Ti|r=0 <2(X7;+1)q> (Bi (Xfrl)Q) + 2(X; +1)3 0P <Bi (Xz,j+1)2)>
with 2(2m))
OATi[x=0 = — Ar, a(lql)o (ks lal)-
2.2. anyeq

This method is used to solve any of the equations in the Simplified approach. Specifically, it

solves the equation
—Au = v(1 —u) —2pK + p*L

with 5
K =y (1 — agu) (BKU xS+ (1— BK);U>

and
L:=1Li1+ Ly + L3
2e
Ly =(1—-apiu) (5L,1U «u*xS+(1— ﬂL,l)?u * u)
4e 9
Ly := —ypo(l — apou) | Br22ux* (u(ux*S))+ (1 — 5L72);u * U
1 e
L3 :==v3(1 — apzu) </8L,32 /dydz u(y)u(z — z)u(z)uly —2)S(z —y) + (1 - 5L,3);U2 * U2>
=2 a1
e=35 [de (1 —u(lz])v(zl).
The parameters a., 5. and 7. can be set to turn (2.2.1) into any of the approximations of the

Simplified approach. For ease of use, there are several predefined equations, given in the following
table.

ag | Br | vk | arLy | Bra | ar2 | B2 | vL2 | ans | Brs | VL3

compleq | 1 1 1 1 1 1 1 1 1 1 1

bigeq| 1 | 1 | 1| 1 | 1| 1| 1] 1] -1]-1]0
fulleq| 1 | 1 [1| 1 | 1| 1t | 1| 1] 1] o1

medeq | 0 1 1 0 1 - - 0 0
simpleq | O 0 1 0 0 - - 0 - - 0

Note that there is no v, 1, whose computation would be rather different. Note, in addition, that
simpleq and medeq coincide with their definitions in (2.1.1). The method used to solve this
equation is very different from easyeq, and is significantly longer to run.

13

(2.1.88)

(2.1.89)

(2.1.90)

(2.2.1)

(2.2.2)

(2.2.3)

(2.2.4)

(2.2.5)

(2.2.6)

(2.2.7)

2.2.1. Usage

Unless otherwise noted, this method takes the following parameters (specified via the [-p
params] flag, as a ‘;’ separated list of entries).

rho (Float64, default: 1075): density p.

tolerance (Float64, default: 107'1): maximal size of final step in Newton iteration.

e maxiter (Int64, default: 21): maximal number of iterations of the Newton algorithm before
giving up.

e P (Int64, default: 11): order of all Chebyshev polynomial expansions (denoted by P below).

e N (Int64, default: 12): order of all Gauss quadratures (denoted by N below).

e J (Int64, default: 10): number of splines (denoted by J below).

e nlrho init (Int64, default: 0): we initialize the Newton algorithm using the solution of
medeq, computed using the methods in easyeq. If nlrho_init is # 0, then the solution of
medeq is first computed for nlrho smaller values of p starting from 10mrirho-init — Thig jg
useful when p is too large for the solution of medeq to be computed directly.

e minlrho_init (Float64, default: —6): see nlrho_init.
e akK, bK, gK, alL1, bL1, alL2, bL2, gL2, alL3, bL3, gL3 (Float64, default: 1, 1, 1,1, 1, 1, 1, 1,
0, 0, 0): the values of ak, Bk, Yk, ar1, Br1, ar2, Br2, VL2, @L 3, BL3s VL3

e eq (String, default: “bigeq”, acceptable values: “compleq”, “bigeq”, “fulleq”, “medeq”,
“simpleq”): A shortcut to select any of the equations defined in the table above. When this
option is set, none of aK, bK, gK, aL1, bL1, alL2, bL2, gL2, aL3, bL3, gL3 should be set.

The available commands are the following.

e energy: compute the energy e at a given p.
Output: [e] [Newton error €.

e cenergy rho: compute the energy e as a function of p. The Newton algorithm is initialized
with the solution of medeq.
Disabled parameters: rho.
Extra parameters:

» minlrho (Float64, default: 107%): minimal value for log; p.

» maxlrho (Float64, default: 10?): maximal value for log;q p.

» nlrho (Int64, default: 100): number of values for p (spaced logarithmically).
» minrho (Float64, default: 107%): minimal value for p.

» maxrho (Float64, default: 10?): maximal value for p.

» nrho (Int64, default: 0): number of values for p (spaced linearly). If nrho is # 0, then
the linear spacing will be used, and minlrho, maxlrho, nlrho will be ignored. Otherwise,
the logarithmic spacing will be used and minrho, maxrho will be ignored.

4

rhos (Array{Float64}): list of values for p, specified as a ‘,” separated list. This
parameter takes precedence over minlrho, maxlrho, nlrho, minrho, maxrho, nrho.

v

Output (one line for each value of p): [p] [e] [Newton error €].
Multithread support: yes, different values of p split up among workers.

14

e energy rho_init_prevrho: compute the energy e as a function of p. The Newton algorithm
is initialized with the solution of medeq for the lowest p, and with the previously computed
p for the larger densities.
Disabled parameters: same as energy_rho.
Extra parameters: same as energy_rho.
Output (one line for each value of p): [p] [e] [Newton error €].

e energy rho_init nextrho: same as energy_rho_init_prevrho except that the energy is
computed for decreasing densities instead of increasing ones. The Newton algorithm is ini-
tialized with the solution of medeq for the largest p, and with the previously computed p for
the smaller densities.

Disabled parameters: same as energy_rho.
Extra parameters: same as energy_rho.
Output (one line for each value of p): [p] [e] [Newton error €].

e condensate_fraction: compute the uncondensed fraction n at a given p.
Output: [n] [Newton error €.

e condensate _fraction rho: compute the uncondensed fraction n as a function of p. The
Newton algorithm is initialized with the solution of medeq.
Disabled parameters: same as energy_rho.
Extra parameters: same as energy_rho.
Output (one line for each value of p): [p] [n] [Newton error €.
Multithread support: yes, different values of p split up among workers.

e uk: compute the Fourier transform a(|k|). The values |k| at which @ is computed are those
coming from the Gauss quadratures, and cannot be set.
Output (one line for each value of |k|): [|k|] [a(|k])]

e ux: compute u as a function of |z|.
Extra parameters:

» xmin (Float64, default: 0): minimum of the range of |x| to be printed.

» xmax (Float64, default: 100): maximum of the range of |z| to be printed.

» nx (Int64, default: 100): number of points to print (linearly spaced).
Output (one line for each value of z): [|z] [u(|z])]

e 2pt: compute the spherically averaged two-point correlation function Cy(|z|) at a given p.
Extra parameters: same as ux, plus

» window L (Float64, default: 10%): size of the Hann window used to numerically invert the
Fourier transform in the computation of the tow-point correlation function, see (2.1.61).

Output (one line for each value of |z|): [|z]] [Ca(|x])]

e 2pt max: compute the maximum of the spherically averaged two-point correlation function
Cs(|x|) at a given p.
Extra parameters: window_L plus

» dx (Float64, default: 10~7): step used to numerically approximate derivatives.
» x0 (Float64, default: 1): initial guess for the maximum is p~/?x0.
» maxstep (Float64, default: co): maximal size of single step in maximization algorithm.

» tolerance max (Float64, default: tolerance): same as tolerance, used for the Newton
algorithm underlying the maximization algorithm.

15

M3 [|$max|] [C2(|$max|)]

2pt_max_rho: compute the maximum of the spherically averaged two-point correlation func-
tion Cy(|z|) for a range of p.

Extra parameters: same as anyeq_2pt_max plus those of energy_rho.

Output (one line for each value of p): [p] [|Zmax|] [C2(|Tmax|)]

Multithread support: yes, different values of p split up among workers.

2pt_fourier: compute the spherically averaged Fourier transform of the two-point correla-
tion function Cs(|k|) at a given p.
Extra parameters:

» kmin (Float64, default: 0): minimum of the range of |k| to be printed.
» kmax (Float64, default: 10): maximum of the range of |k| to be printed.
» 1k (Int64, default: 100): number of |k|’s to be printed.

» window L (Float64, default: 1000): what is actually computed is Cy convolved with a
Gaussian of variance 1/v/L where L = y/window_L, see (2.2.120).

Output (one line for each value of |k|): [|k[] [C2(|k])].
Multithread support: yes, different values of k£ are split up among workers.

2pt_fourier max: compute the maximum of the spherically averaged Fourier transformed
two-point correlation function Ca(|kl).
Extra parameters: window_L, maxstep plus

» dk (Float64, default: 10~7): step used to numerically approximate derivatives.
» kO (Float64, default: 1): initial guess for the maximum is p'/3k0.
Output: [[kmax|] [CA'Z(lkmaxm

2pt_fourier max_rho: compute the maximum of the spherically averaged Fourier trans-
formed two-point correlation function Cy(|k|) for a range of p.
Extra parameters: same as those of 2pt_fourier max plus those of energy_rho.

Output (one line for each value of p): [p] [[kmax|] [Co(|kmax|)]
Multithread support: yes, different values of p split up among workers.

momentum distribution: compute the momentum distribution M(|k|) at a given p. The
momentum distribution is computed for k = k; ; (see (2.2.40)).
Extra parameters:

» kmin (Float64, default: 0): minimum of the range of |k| to be printed.
» kmax (Float64, default: 10): maximum of the range of |k| to be printed.

» window_L (Float64, default: 1000): what is actually computed is 9t convolved with a
Gaussian of variance 1/v/L where L = v/window L/k?, see (2.2.143).

Output (one line for each value of |k|): [|k|] [M(|k])]

compressibility_rho: compute the compressibility x as a function of p. The Newton
algorithm is initialized with the solution of medeq. Disabled parameters: same as energy_rho.
Extra parameters: same as energy_rho.
Output (one line for each value of p): [p] [x].

save_Abar: compute the matrix A. This matrix is used to compute observables for compleq.
This command is useful to output the value of A to a file once and for all, and use this file
to run commands without recomputing A.

16

Disabled parameters: rho, tolerance, maxiter, minlrho_init, nlrho_init.

Output: [A] (the output is not designed to be human-readable; it is obtained through nested
for loops; for details, see the code).

Multithread support: yes, the first indices are split up among workers, which produces NJ

jobs.

2.2.2. Description
2.2.2.1. Fourier space formulation

The computation is carried out in Fourier space. We take the convention that the Fourier trans-
form of a function f(|x|) is

kD) = [do e pjal) = o [ar S2UE

_mo r

f(r).

We define a Fourier-space convolution:

Fealkl) == [s Fk =)aln).

In Fourier space, (2.2.1) becomes
K*a(|kl) = S(IKI) — 20K (|K]) + p* L(|K])
with
S(Ik]) = /R3 dz ™ (1 —u(|z)))o(|z|) = o(k) — @b (k)

pK = vk (BrpS + (1 — Br)2e)tt — yxax@i((BxpS + (1 — Bi)2e)id)

pL1 = (BrapS + (1 — Br1)2e)a® — ap16#((Br1pS + (1 — Br.1)2e)d?)

pLo = —’yL72(ﬁL7g2p(ff (715’))+(1—,8L72)4eﬁ>@11)ﬁ+’yL,2aL727j§<((BL722p(7ff (QS))+(1—,BL,2)461]§<?1)’&)

A A A A

.) o .1 .
pLs = vr3(1 — Bra)e(id)?* — vy sar3(1 — Bra)ik(e(aka)?) + vr3BL 3ls — —71 30 381 30413

2p
with) d !
B 4 q q NVIT VTN SO pi (B — (g —
(kD) 2= 5 [Gy sy oIk = Doilla) (o Dpik = a)S(1d = a)
Therefore,
Qu) =0
with

2 ~
0w = a1 (1) — (5 + 2ec(0) + 27208) i) + (88D + 3728 + G(k)

with 1 1
OK = ;’}/K(BK[)S =+ (1 — IBK)2€), or,1 = ;(BL,IPS + (1 - BL,l)Qe)
1 A NN
fi= ?’YL,z(ﬁLQP(PU*(PUS)) + (1 — Br,2)2epuxpt)

2e, . . A
for=7yr3(1— ﬂL,3)E(PU*PU)2 + 70,381,303

17

(2.2.8)

(2.2.9)

(2.2.10)

(2.2.11)
(2.2.12)
(2.2.13)
(2.2.14)

(2.2.15)

(2.2.16)

(2.2.17)

(2.2.18)

(2.2.19)

(2.2.20)

(2.2.21)

2 . A . 1 . A)
G = p*g’YKOtKPU*((ﬂKPS + (1 = Bk)2e)pa) — EOZLJPU*((BLJPS + (1= Bra)2e)pi?)

2 . . 1 o
+;aL,2pu*(f1pu) — —ag 3pUk fo.

2p

Therefore,

pi=1+=V1+? = (1+()
with) 2 1 1
f:z(aK—aL,1—|—+f1>, C2=<5'—0L,1+2f2+G>

oL, 2p oL,
We rewrite (2.2.23) as

B 14¢ 14¢
RSy ® ()

with

2.2.2.2. Evaluating integrals

To evaluate integrals numerically, we will split integration intervals over splines and use Gauss-

Legendre quadratures. More specifically, to compute integrals of the form

[s F00 R = oz [rw 0.0

we first compactify space to (—1,1] by changing variables to 7 = 1—3:

1 _r 2
/(;f)s fUk), k) = 7_‘_12/_1d7' ELT;J(U(L;),}J)

We then split (—1,1] into J sub-intervals (given by the parameter J), called splines:

J-1

(1,1 = [(7, 741,

J=0

The 7 are taken to be equally spaced, but the code is designed in such a way that this could be

changed easily in the future:

2j

.= _1 -

T + 7
In these terms,
J-1
dk Ti4+1 (1 _ 7.)2 L 1.
/(277)3 f(U(k), k) = / dr (14_7)49((](@7@)-

1=0 7T

We then change variables to r:

T+ 1 —=9(r)

N4 T o _
sin 2 "1+ ()

= 5 7)4_

18

(2.2.22)

(2.2.23)

(2.2.24)

(2.2.25)

(2.2.26)

(2.2.27)

(2.2.28)

(2.2.29)

(2.2.30)

(2.2.31)

(2.2.32)

(2.2.33)

(the reason for this specific change of variables will become clear at the end of this paragraph
and in the next one) and find

J-1

Tia1 —1 1
[oy F0 @0 = SBR[cost3) 1+ 0 HO0H0), 9,

=0

We then approximate the integral using a Gauss-Legendre quadrature of order N (see appendix-
A2):
dk k~J1”“_T’ 01(2;)) 202 (2) £ (Uy 5,9

/(QW):s f(k) le_% ZWJCOS 1+ 9(25))707 () f (Urg, D))
with ,
24 (141 — 1) sin(%) — (1141 + 7a)
2 — (m41 — 1) sin(52) + (41 + 1)
The choice of the change of variables (2.2.33) is made so that U is evaluated at k; ;, which are
the momenta that appear naturally in the Chebyshev polynomial expansion below (2.2.40). In
this way, we can compute arbitrary integrals of functions of U by just computing the values of
Ul,j-

Ul,j = U(]{IZJ),]{7[7]' =

2.2.2.3. Chebyshev polynomial expansion

In the case of easyeq, we saw that using Gauss quadratures reduced the computation to evaluating
U at a fixed set of discrete momenta. This is not the case here, due to the presence of more
complicated convolutions of U. Instead, we will approximate U using polynomial approximations.
We will now discuss this approximation for an arbitrary function a(|k|), as we will need it for
other functions than simply U.

1 - Asin the previous paragraph, we compactify [0, 00) to (—1, 1] via the change of variables
r— ﬁ, and split the interval into splines. Inside each spline, we use a Chebyshev polynomial
expansion. However, we need to be careful in the first spline, which encapsulates the behavior at
|k| — oo: U decays to 0 as |k| — oo, and this behavior cannot be reproduced by a polynomial
expansion. To avoid this, if a ~ |k|7", we expand |k|"*a instead of a. Actually, to simplify
expressions in the presence of the compactification, we will expand 27+(1 + |k|)"*a, which makes
no conceptual difference. In the case of a = U, we will use v = 2, which we know holds for the

Simple equation [CJL20]. Putting all this together, we write, for 7 € (—1,1], if |k| = 1+T,

- 1 2r—(r+
27 (1 + k) allh)) = o oli5 anWZF T, (Ant)

in which 1., <7<, € {0,1} is equal to 1 if and only if 7, < 7 < 744, and

(Va) R 2- 6”70 " COS(TLQ) 2—(Tl+1—7'l)COS(@)—(TH_l—‘rTa)
Fraa)=—2 /0 v (1+ =5 cos(6>+m—l;ﬂ)ua“(2+<n+1—n>cos(0>+<n+1+n>)

(see appendix Al for a discussion of the Chebyshev polynomial expansion and the error of its
truncations).

2 - In order to compute an approximation for a using (2.2.37), we will truncate the sum over
n to a finite value P (given by the parameter P). In addition, to compute the integral in (2.2.38),
we will use a Gauss-Legendre quadrature of order N (given by the parameter N), see appendix A2:

N
(Va) ~(va) L 2 — 5n,0) nm(l+xz;) az;
Fl,n (a) = ‘3:l,n (a) == 9 ij cos(—5)(1 _ Tz+12—n sin(T%) + n+1+n)ua

j=1 2 2

19

(2.2.34)

(2.2.35)

(2.2.36)

(2.2.37)

(2.2.38)

(2.2.39)

With . T
2+ (141 — m)sin(5%) — (141 + 7a)

2 — (ms1 — m) sin(5?) + (41 +7)
and (xj,w;) are the abcissa and weights for Gauss-Legendre quadratures.

al,j = a(kld'), li =

3 - All in all, we approximate
- P
— Va a 27— =+
0352~ (147" D Nrcren,, O 81 (@) T (T

with § defined in (2.2.39). Furthermore, using the Chebyshev polynomial expansion and Gauss-
Legendre quadratures, we can compute all the observables we are interested in by computing
U;; = U(ky,;). With this in mind, we will represent the function U as a vector of dimension N.J
whose components are U ;.

2.2.2.4. Convolutions
Using the Chebyshev polynomial approximation, we can compute convolutions as follows.

1 - First, we rewrite the convolution as a two-dimensional integral, using bipolar coordinates

(see lemma A3.1):
|+t

(atb)(|k]) = M;W /OOo dt ta(t) /WM ds sb(s)

We change variables to compactify the integrals 7 = %i’ o= i%r;’:
2(1 —7) okl 9(1 — o)
(asb)(K]) = GaEn [e S
A 2|k’ 1 +7_ 147 o ([k|7) (1 +O’)3 140
i 1= k= I
— I¥7 1
a(|kl,7) = ——1r, (&, 7) = —”
1+ [k| + 155 1+ ||k — 1+T

Therefore, using the approximation (2.2.41), if a; ; := a(k; ;) and by ; := b(k; ;) (2.2.40),

(a%h) ([k1]) = (a @ b),, Z Z S (@) (D) AT (k)

n,m=010"1"=0
with
I/a,ub (’k‘) Tz/+1 1 — 7') T (27'—(Tl/+7'l/+1)).
l’"l” 47r2|kl,g| (1 +T)3 va N T Ty
]l mln(Tl”-Q»l»a"r('k':T)) 2(1 — 0') (20_(Tl”+7-l”+1))
a_(|k|,m)<mm a4t (|kl,7)>7m 3— m —
o : max (1,0 (|k|,T)) (1 —I-O')‘i " T

(we need the indicator functions to ensure that the bounds of the integral are correct). Note that
A is independent of a and b, and can be computed once and for all at the beginning of execution
for all values of k;; (2.2.40). We then compute the integrals using Gauss-Legendre quadratures
(as is proved in the next paragraph, the integrand is non singular provided v,, v, > 2).

2 - Note that these integrals are not singular as long as v,, 1, > 2: indeed (since the only
possible problems occur at —1, it suffices to consider the case with only one spline), a—, ey > —1
for 7 > —1, and

ax(k,7) =-1+(1+7)+ g(l +7)2+0(1+7)°

20

(2.2.40)

(2.2.41)

(2.2.42)

(2.2.43)

(2.2.44)

(2.2.45)

(2.2.46)

(2.2.47)

and (Ikl7) (Ikl,7)
OH. sT _ Oé+ \T

[g [0 o < [0 L

a([k|,7) (14 0a)3—w a_(|k|7) (14 0)3—w

which, if v, = 2, yields
1+ aq(|k],7) 2
41 ———2) =4|k|(1 1
Og<1+a_(|k:|,7') lk|(14+7)+ 01 +71)
and if v, > 2, yields
4

vy —

> (L (K], 7)) 2 = (1 a (k] 7)) %) = %“_2\k|<1 + o) (L4 0L+ 7)).

Therefore,

2(1— 1) /M(l’flﬂ 2(1—0) 8 .
——T.(7 do ———"Tn(o)| < —|k|(1 =) A+ 7)1 +0(1 +7
(1_|_7-)371/a n) o ([k7) (1_‘_0)37% m() Cub| |()() (())

where ¢ := 1 and ¢,, := v, — 2 if 15, > 2. The integrand is, therefore, not singular as long as

Vg, Vp = 2.

3 - Evaluating convolutions at k£ = 0 is not immediate, as the formula for A(0) involves a
bit of a computation. To compute A(0), we expand

K[+ 7)?
2

a_(k|,7) = +O(K), a(lkl,7) :T+W+O(k2)

SO

2
(Vasvp) _ L [Tt (1—7) 27— (¢ +7e41) 27 —(T¢+7¢41)
Agimicrm(0) = ﬂczclﬁ /T< . (14 7)tmva=n Tl TC+1=T¢)T TC+17T¢)

which we then compute using a Gauss-Legendre quadrature. We can then evaluate convolutions

at k= 0: P
. E (Va (Vb) (Vaa’/b)
(ab) = 47r2!km! 2 % (©) 41 (©)

nm=01[,1'=

Q

(axb)(0)

4 - Let us now compute some choices of a, b more explicitly.

4-1 - Let us start with 1; ,%a where 1;,, is the vector which has 0’s everywhere except
at position (I,n). We have

9_5§ cos mr(1+xn)
S'IVl)(]llyn) = 61/71 e Wn Ti41—T (7ra2:)T +T
2 T () + By
SO
Ir(1+zn)
2 — 51 0. cos(—5) (1w
(]ln roa ml - ZZ Wn Ty 1 =Ty . Ty 1T Al”ll’l/a ()%’l ()
7 (1= Ty () 4 T
4-2 - We now turn to a*?. Let
k| +t "
T, k) = / g5 220
1= ||
We have] .
¥ = —= dt ta(t)Y (¢, |k]).
=z [dt ta)T(KD

21

(2.2.48)

(2.2.49)

(2.2.50)

(2.2.51)

(2.2.52)

(2.2.53)

(2.2.54)

(2.2.55)

(2.2.56)

(2.2.57)

(2.2.58)

Following the integration scheme (2.2.35),

J-1 N
1
(Cl © U)l,i = 3277_‘_ (Tl/+1 - Tll Z wj COS()(1 + 191/(x]))2191/(xj)al/,jT(ﬁ(a;j), kl,i)‘ (2.2.59)
I'=0 7j=1
At k=0,
1 J-1 N
(av) = 5o (rr41 = 7)Y wjcos(52) (1 + 9y () Oy () ar ;T (9(x5), 0) (2.2.60)
I'=0 7j=1
with
T(t,0) = 2t0(t). (2.2.61)

The quantities Y (¥(x,,), k1;) and Y (¥J(xy),0) are independent of a and can be computed once and
for all at execution. The integral in (2.2.57) is computed using Gauss-Legendre quadratures, but
without splitting into splines. To maintain a high precision, we set the order of the integration
to JxN.

4-3 - Finally,
T4l — T
(L, ©0)1 =35, Un cos(5™) (1 + I (20)) 2O (20) (D), i) (2.2.62)
and 2
(1y,0) = %wn cos(T2n) (1 + Dy () 20y () Y (O (1), 0). (2.2.63)

2.2.2.5. Evaluating I3

The only term in (2.2.1) that does not involve just convolutions (whose computation was described
above) is I3 (2.2.16). To evaluate it, we first change variables, using a generalization of bipolar
coordinates (see lemma A3.2):

L (1K) ! /ood /'th / d /kHtld / 49 sts' VU (s)U (U (5)U (1)
= t S ' S sts't S t S t)-
’ CrPe2k Jo T Sy Ikl (2.2.64)
'S(%(S,t, Sla t,, 9, |k‘))
with
R(s,t, s, 1',0,|k]) = flkl (\kl (P + 2+ ()2 + () — |k = (s> =) ((s)* = ()?)
(2.2.65)
1
—/(4]k[2s2 — (|k[2 + 52 — £2)2) (4]k[2(s")2 — (|k[2 + ()2 — (¥')2)?) cos 9) ’
We change variables as in (2.2.43):
. 1 Loo—7) /a+(’”> 20 —0). . Lo o1 —7)
(k)= —— | dar 20U (iz do 2= "y(i=e dr’ -~ /.
() = s |, % G o U oR (M)/_l T ATy
(2.2.66)
, a (k|7 2(1 _ O_I) , 2m
1—1 1—0 1—7’ 1— 0’

22

We expand U and S into Chebyshev polynomials as in (2.2.37), and split the integrals into splines:

J—1 o) 4
Bk~ @ es); = > > AL, (kgD [T (51,) 81,,)

A1y As=0n1,,ns=1 i=1

with Uy ; := U(ky;), S := S(k;;) and

ﬂw 1 -1 e
A)\17n1;-~~;)\5,n5(|k;|) = W /TA1 dr (1 + 7_)3*1/Tn1(T>‘1+11_TA11)
min(7x, 1,04 (|&[,7)) 2(1 — U)

(20—(7,\2+T,\2+1))
(1+0)3v 7" Doniy

']la(|k|a7')<7'>\2+1]la+(|k|77')>’f>\2/

max(7xy 00— (|k[,7))

./TA:H—Id/ 2(1_T/) T (27',_(T>\3+T>\3+1)).

N e

A3

min(7 41,04 ([k[,7)) , 2(1—o') 201_(7/\4_”%4“))

Lo (k) 1 ' o (
_ s <Tx 11 Oé+(|k|,7’)>T)\ /\3— n4 —
! * Jmax(ry . ([k].7)) (140')5 AT

2 v _
/0 d@(2 T (2%7(T>\5+T>\5+1))1

n 2> 1-%
2+ Ry TA5+17TAs A5 <1 <TAs+1

in which R is a shorthand for m(%’ L‘r—:, L—rg:, %’ 0,|k|). Note that A is independent of U,
and can be computed once and for all at the beginning of execution. Since the tensor A is quite
large (it contains (N.J)® entries), and its computation can be rather long it can be inconvenient
to compute A at every execution. Instead, one can use the save_Abar method to compute A and

save it to a file, which can then be recalled via the -s option on the command line.

2.2.2.6. Main algorithm to compute U
We are now ready to detail how U = pu is computed. All of the observables we are interested in

are approximated from the values Uy ; := U(k; ;) (2.2.40).

1 - The equation for (U ;)ieqo,.,7—1}.je{1,,N} 1S obtained by approximating (2.2.25) ac-
cording to the prescriptions detailed above:

U = 1+ Y, (1+,)
BT (X r 1)\ F)?
1 k7 1 1
Xpj = L, Kij =Ly + o+ Lj), Y= L, Suj = Laj + 505 + G
1) . 1
Sl,j =0 — ;(U O] U)l,j, V5 = ’U(kl’j), E:= 1}(0) — ; <UU>

Hu:;MAMAUQW$m+G—ﬁmmw@UM)
Kij:=vx(BxSi; + (1 = Br)E), Lij:=~v01(Br,1S8; + (1 = Br1)E)

E
Jij =31 — ﬂL,S)?(U O U); +70,38L3(U* @ S)y;

23

(2.2.67)

(2.2.68)

(2.2.69)

(2.2.70)

(2.2.71)

(2.2.72)

(2.2.73)

(2.2.74)

Gy = in(U O (xS + (1 - Br)E)D))1,

1 2 1
—;OzL,l(U ® ((BraS+ (1 — Br1)E)U?),,; + ;OZL,Q(U ® (IU));; — %ang(U o),

(see (2.2.45), (2.2.67) and (2.2.54) for the definitions of ®, ® and (-)).

2 - We rewrite (2.2.69) as a root finding problem:

— , L+ Yy, 14V,
=15(U) =T = 2(X; +1) ? ((XZ’jHJ)Q) -

which we solve using the Newton algorithm, that is, we define a sequence of U’s:
Ut = g™ — (pEwm))-EU)

where D= is the Jacobian of =: _
=15

(DE)jiri = U,

3 - We initialize the algorithm with the solution of the Medium equation, which is com-
puted using the easyeq method. However, easyeq only computes 4 at the momenta given by the
Gauss-Legendre quadratures (2.1.17). To obtain a value for 4 at k; ;, we use a linear interpolation
(code is provided for a polynomial interpolation, which has not performed as well). The param-
eters tolerance, maxiter are passed on to easyeq as is, and the order of the Gauss-Legendre
quadratures is set to JxN.

4 - We are left with computing the Jacobian of =:

0= 1 (1 +Y; ')81/ X7 14Y; 5
a/ E L= 5] — 6 /6‘ . 5J) 5J _ a/ Y . @ (¥)
Ii—=l,j aUl’,i 1,I' 045 + Q(Xl,j T 1) (Xl,j 1 illjg X +1)2

(1 —I—Yl,j) 2(1 +Yl7j) 14Y,;
2(Xp; +1)3 \ Xy +1 OriXij = Oridg | OF ((Xz,j+1)2>
with . o L
il
Op Xy = L, (O ,iKy; — Oy iy j + Oy i1 ;) —]Lzl,j X1
1 1 Ay iLy;
O Yy j=— <al',z'Sz,j — Ol + 500 + 31',z'Gz,j> — =Y
L 2 Ly

1 1
O iSi,; = —;(ﬂm ©v)j, OriE= > (L iv)

Oy iKij == v (B Oy iS1; + (1 — Pr)0r;E), Oyl :=v01(Bra0riSi;+ (1 — Br1)oy:E)
1
8[/’1‘]110‘ = ;’YL,Z (/BL,Q(]IZ’,i ® (US) +UO® (]ll/ﬂ-S + U@l/,iS))lJ

+(1 — ,8L72)(8l/7iE(U ® [U)l,j + 2E(U ®]11/72')17]'))

24

(2.2.75)

(2.2.76)

(2.2.77)

(2.2.78)

(2.2.79)

(2.2.80)

(2.2.81)

(2.2.82)

(2.2.83)

(2.2.84)

1
Opidij = ;’VL,S(l — BL3) (O E(UeU)7; +4E(U 0 U);(U 6 1p,);)

(2.2.85)
+y13803(41y; @ U @ S+ U @ 9y ,S),
2
8[/71‘Gl’j = ;’YKO[KBK (]lllﬂ' ® (SU) + U © (S]lllﬂ‘ + al/J‘SU))l’j
2
oo (1= fi) (O E(U©U)y; + 2E(Ly,; © U)yy)
1
—;aL,lBL,l (]ll/J‘ O) (SU2) + UG (85/71'SU2 + QS[U]IZ’J))ZJ (2.2.86)
1
—;amu — Br1) (Ely; ©U* + UG (9p,EU + 2EULy),
2 1
+oen2((lr; © AU); + U @ MU+ Ty = 5 ars(le © T+ U© O i)
5 - We iterate the Newton algorithm until the Newton relative error € becomes smaller than
the tolerance parameter. The Newton error is defined as
_) — U, (2.2.87)
[T
where || - ||2 is the [norm. The energy thus obtained is
e= g]E (2.2.88)
the Fourier transform 4 of the solution is
[U .
ik) ~ =22 (2.2.89)
p
where k; j was defined in (2.2.40), and the solution u in real space is obtained by inverting the
Fourier transform, following the prescription of (2.2.35):
J—1
w(lz]) = / b ikl ~ 3 T Zw cos(ZEL) (1 + V()20 (2;)Up; sin(Wy () [z]). (2.2.90)
(27T)3 — 167 — J J J 2] J
2.2.2.7. Condensate fraction
To compute the condensate fraction, we solve the modified anyeq (see [CJL21]):
(=A +2p)uy = (1 —uy)v — 2pK + p*L. (2.2.91)
where K and L are defined as in (2.2.2)-(2.2.7) in which w is replaced with w,. The uncondensed
fraction is then
N = e umo = —g / d v(2)y1uy ()] y—o- (2.2.92)

To compute the energy in the presence of the parameter u, we proceed in the same way as for
p = 0, the only difference being that k2 should formally be replaced by k2 + 2. In other words,

25

we consider Uj; = u,(|k;j|) and define Z(U, 1) in the same way as in (2.2.76), except that X;

should be replaced by
1 kl2 S+ 2
l:] Ll,‘] < Z’J l’.j + 2p + l’j

We then solve
E(Up,p) =0

By differentiating this identity with respect to u, we find 0,u,,:
——19 —
OUlp=0 = —(DZ)" uE|u=0
and

1
pLy;

o E‘ 0= (1 +Yl,j)aﬂxl7j (1+Yz,j2) + (1 +Yl,j)
p=lp= 2(Xl,j+1)2 (X,;+1) (Xl,j+1)

2
1+Y; 5
48qu’j8® (W) , 8MXl,j -

We then approximate .

(see (2.2.54)).

2.2.2.8. Correlation function (spherical average)
The two-point correlation function is

ex(z) =2 53&)

and its spherical average is

Ca(ja]) = 4;, / dy 8(jz] - [y)ea(v).

In Fourier space,

hw O€
ikx VY
co(x) = 2p/dk5 e 5o 0R)

SO

_ ! i) Fe o [g sinlls]) oe
€ute) =20 [k (g [s b) s =20 [s S s

1 - We can compute this quantity by considering a modified anyeq in Fourier space, by
formally replacing ¢ with

X sin(|k||z|)
o+ Ag(lkD), glk]) == TR,
|||
Indeed, if ey denotes the energy of this modified equation,
Drexlrco = /dk 0 g\ (o(k) + Ag([K])) = /dk (k) =28
AeX[A=0 = 3o (k) A g = 9 so(k)”

So, denoting the solution of the modified equation by uy,

Cafe) = 2p0nerlr-a = 9(0) = 67 [o5 (aR)a0) + 5()0xA (o)

26

(2.2.93)

(2.2.94)

(2.2.95)

(2.2.96)

(2.2.97)

(2.2.98)

(2.2.99)

(2.2.100)

(2.2.101)

(2.2.102)

(2.2.103)

(2.2.104)

We compute dyuy|y—o in the same way as the uncondensed fraction: we define Z(U, \) by formally
adding Ag(|k|) to v, solve =(U, \) = 0, and differentiate:

MU0 = —(DZ) " \E|r=o-

2 - We compute 9)\Z|r=0:

1 14+ Y)X, _
OrEtj = Oupbi + 2 <(1)Ky _ 8)\Yl,j> @ (%)

(Xp; +1) X +1 X, +1)2
(1+Yy,) (2(1+Yy) "
2%+ 17\ X5 +1 OnXij = Yy | 0% ((Xz,j+1)2>
with) 1
ONStj = 815 — ;(U © g, WE=g(0) - p (Ug)
1 LN
0Ky = — (\Kij — DLy + ;) — 2%
T Ly ’ ’ , o
1 1 ML ;
Li; 2 L

WK ==Y (BrO\S; + (1 — Br)OAE), O\Lij :=v£,1(Br,10:S; + (1 — Br,1)0\E)
1
Ml = P (BL2(U® (U0xS))1; + (1 — Br2)ZE(Uo U);)

1
OAJZJ = ?fyL,3(1 — BL73)6)\E(IU O] U)lQ,j + ’YL,3BL,3(U®4 & (%S)l,j

2 2 1
"Gy = ;’YKOZK/BK (U e (0x80)),; + ;VKOéK(l —Br)OLEU©U),; — ;aL,l/BL,l (Uo GASUQ)ZJ

1 2 1
—;OéL,l(l — BLJ)&AIE (U ® (UQ))l,j + ;OéLg[U ® (a,\]HU)l’j — 2prdL73(IU ® 8)\J)l,j.

To evaluate (U® g) and (Ug), we proceed as in (2.2.59) and (2.2.60). To do so, we replace v with
g in the computation of Y.

3 - In order to invert the Fourier transform in (2.2.101) numerically, we will use a Hann
window (see appendix A4)
k
Hp (k) =]l|k|<% COSQ(%).

The parameter L is set using window_L. The computation is changed only in that ¢ is changed

to Hy (i) el

4 - To compute the maxignum of Cy, we use a modified Newton algorithm. The initial guess
for the maximum is |zg| = p~3x0. The modified Newton algorithm is an iteration:

9Cs(|zn)
|02Ca(|zn])]

Tntl = Tp +

in which the derivatives are approximated using finite differences:

~ Cy(|z| + dx) — Co(|x]) ~ Co(|z] + dz) + Co(|z| — dx) — 2Cs(|z|)

802 (x) dr) dl‘z

6202 ((L‘)

27

(2.2.105)

(2.2.106)

(2.2.107)

(2.2.108)

(2.2.109)

(2.2.110)

(2.2.111)

(2.2.112)

(2.2.113)

(2.2.114)

(2.2.115)

(2.2.116)

This is a modification of the usual Newton iteration x,,+9Cs/ 9%Cy which is designed to follow the
direction of the gradient, and thus to move toward a local maximum. In addition, if |0Cs|/|9*Cs|
is larger than maxstep, then the step is replaced with +maxstep. This prevents the algorithm
from stepping over a maximum and land on another, further away. This is useful if one has a
good idea of where the global maximum is, and does not want to get trapped in a smaller local
maximum.

The algorithm is run for a maximum of maxiter iterations, or until |z,+1 — 2| is smaller
than tolerance. If the maximal number of iterations is reached, or if the solution found is not a
local maximum, then the algorithm fails, and returns +o0o. The point thus computed is therefore
a local maximum, but it is not guaranteed to be the global maximum.

2.2.2.9. Fourier transform of two-point correlation (spherical average)
The Fourier transform of the two-point correlation function is

Ca(q) :==2p 55(2)

and its spherical average is

Callal) == gz [b dllal = kDeath) = 50y [ak o1 = k)

oe
do(k)

1 - To compute 55—(6), one idea would be to proceed in the same way as for the two-point

correlation function, by replacing v with

. 1

0+ Ag(kD), g(IkD) = e 5(lq| — [kI)
where 0 is the Dirac-delta function distribution (compare this with (2.2.102)). However, the §
function causes all sorts of problems with the Chebyshev polynomial exansion and the quadra-

tures.

2 - Instead, we approximate Cs by convolving it with a normalized Gaussian: let

3
L\2 _L.2
rulli) = (o) e

&(lg)) = / dp Co(lg — p)T(lp) / dk / o gL lla =l kD)5

p|?

()FL(\PD

which by lemma A3.1 is

N e S
Slla) = [it [[assHE T

) Se p lq|+]k]
&y (lq) = /dk ‘ _r ds sI'7 (s
2(lq) 5008 TallF] Sy @)

which is the directional derivative of e with respect to ¢ in the direction of 2pg with

that is

1 lq| K] 1

ds sT'p(s)

g([k[) == = s
2lqllk] Jyjq1-m 2|k|rL

Tkl =7) = TL(k[+ 7).

28

(2.2.117)

(2.2.118)

(2.2.119)

(2.2.120)

(2.2.121)

(2.2.122)

(2.2.123)

(2.2.124)

Note that
9(0) :=Tr(lql)-

To compute this derivative, we replace v with
o+ Ag(|k|)
so, denoting the solution of the modified equation by wuy, for ¢ # 0,

QA:Q(|qD = 2p8)\€)\‘)\:0 = p2 <_/(2dﬂl_€)3 g(]k!)ﬁ(]k\) - / (;:;3

oKD)
To compute d\iiy|r=0, we differentiate Z(U, \) = 0:
MU|r=0 = —(DZ)"10rE|r=o0-
The computation of 9)\Z|x—¢ is identical to (2.2.106), but taking
gij = 9(|kw5))-
with g defined in (2.2.124).

3 - To compute the maximum of Cy, we proceed as for Cy, see (2.2.115)-(2.2.116). The only
1
difference is that the algorithm is initialized with |ko| = p3kO.

2.2.2.10. Correlation function of uncondensed particles (spherical average)
To compute the correlation function among uncondensed particles, denoted by ~2(|¢|), we solve
the modified anyeq (see [Ja23]):

Ay = (1= up)o = 20K + 9L = 5 Hesu(|EDa(lE] — Jo)

where K and L are defined as in (2.2.2)-(2.2.7) in which v is replaced with u,. In Fourier space,

sin[kl1¢])

The uncondensed correlation function is then
p
92(1€) = Byelymo = = [do v()ymu () imo.

To compute the energy in the presence of the parameter u, we proceed in the same way as for
u = 0, the only difference being that the term

sin(|&[|€])
|K[[¢€]

should formally be added to the right side of (2.2.18). In other words, we consider U;; = u,(|k;,])
and define =(U, p1) in the same way as in (2.2.76), except that Y; ; should be replaced by

ng(kl) == —p2pu([¢])

1

1
Y, ;= L. <Sz,j L+ 50+ Gy + MQ(’%)) :
5J

We then solve
E([U!M M) =0

By differentiating this identity with respect to u, we find 0,u,,:

auU|u=0 = _(DE)_lauE|u=0

29

(2.2.125)

(2.2.126)

(2.2.127)

(2.2.128)

(2.2.129)

(2.2.130)

(2.2.131)

(2.2.132)

(2.2.133)

(2.2.134)

(2.2.135)

(2.2.136)

and

_ 0, Y1 14+Y, (1+Y;)0,Y1; 14+Y, 9(ky ;)
Oulu0 = C2(Xy; + 1) <(Xz,j+f>2) C2(X; +1)3 o2 <(Xz,j+f>2) + Oy = '

We then approximate)
Y2(§) ~ -3 (v0,U)

(see (2.2.54)).

In order to avoid numerical oscillations due to the sin function, we will use a Hann window
(see appendix A4)
2/ mlk
Hy (k) := 1z cos (Tl
The parameter L is set using window_L. The computation is changed only in that g is changed

to Hy(k)g(k).

2.2.2.11. Momentum distribution

To compute the momentum distribution (see [CHe21]), we add a parameter A to anyeq:
—Auy(Jz]) = (1 = ur(lz]))o(|2]) = 20K (|2]) + p*L(|2]) — 2Xt0(q) cos(q -)

(g = Ux|r=0). The momentum distribution is then

M(q) = Oxelr=o0 = —g/ (2dﬂ]_§)3 (k) Oxtin (k)| r=0-

Note that the Fourier transform of 2Aig(q) cos(q -) is
—(2m)° Nt (q) (6(q + k) + (g — k).

The presence of delta functions does not play well with the Chebyshev polynomial expansion and
the quadratures.

1 - We will consider two different ways of getting around this.

1-1 - One idea is to compute a regularization of M(q) by convolving it with a peaked
spherically symmetric function. Let I';, denote the Gaussian with variance 1/ VL:

ruih = (5)k

2
In fact, we will scale L with k, and set L to

L = v/window L/k?

To compute
M(q) := M =+T'r(q)

we solve the equation
—Auy(|z]) = (1 = ur(|z]))o(|]) — 2pK () + p* L(|z]) — 2/\/dk it (k) cos(k - x)I'r(q — k).
Note that the Fourier transform of

—2)\/dk to(k) cos(k - 2)T'r(q — k)

30

(2.2.137)

(2.2.138)

(2.2.139)

(2.2.140)

(2.2.141)

(2.2.142)

(2.2.143)

(2.2.144)

(2.2.145)

(2.2.146)

(2.2.147)

is

—(2m)°Xao(q)(Tr(k + q) + Tr(k — q)).
Since the ground state is unique, M is spherically symmetric. The term I'z,(k £ ¢) is not, so we
take its spherical average (which will not change the final result): by lemma A3.1,

T 3 |k|+r
4737«2 dq 8(1q] — 7)) Xio(@) (CLlk +) + Tk — q)) = — 2)\ao(r)/” " s sTL(s).

k|7 k| —r|
In this setup, the approximation of the delta function is thus
1

- 1 |k|+r
S(|k|,r) == STl Ak|—r| ds sI'r(s) = W(FL(W —r)=Tr(k| +7)).

To choose this method, set window_L to a finite value.

1-2 - Another approach is to contruct a discrete analog of the delta-functions in (2.2.142).
The starting point we take is, for ¢ # 0,

/ dk f(k[)0k —q) = 47T|1q| / dks F(IKNS(k] — lal) = £(lal)

so, when approximating the integral according to (2.2.35), we find
J—1
T .
g 2 ng cos(T) (1 + 1)0 (@) F(91())3(0,). la) = fla)
1=0

where ¢ is the approximation of the delta-function. Since
191(.%]') = kl,j
(see (2.2.33)), we define the approximation of the delta function as

. 8
6 (ki g, k) == 51,1'53',@; (T2 —) wj cos(552) (1 + ki y)?) '

To choose this method, set window_L to Inf. This method seems to yield some fairly poor results!

2 - To compute the momentum distribution at ¢, we define Z(U, \) by formally adding

—2(2m)* Niio(|q])d (K15, |al)
to Gy j, which corresponds to replacing Y with
1

Ly,

1
1y = g (St = Lag+ 335+ Gug — 22nalla) 3k)).

Then we solve =(U, \) = 0, and differentiate:
MW\U|a=0 = —(DE)fla)\E‘)\zo.

Finally,
= — 1 1Yy, (1+Yi) 1+
Z1sli=0 = ~0i¥15lr=0 (2(3&1,]- T’ (i) + 2, + 1P (w5)

2(2m)3
Ly ;

)

with

N\Yjlr=0 = — a(lgl)o(kuj, lal)-

31

(2.2.148)

(2.2.149)

(2.2.150)

(2.2.151)

(2.2.152)

(2.2.153)

(2.2.154)

(2.2.155)

(2.2.156)

(2.2.157)

(2.2.158)

(2.2.159)

2.2.2.12. Compressibility
The compressibility is defined as
1 1
" P03(pe) B (e) — Drogple)
We approximate these derivatives by finite differences:

f(pj+1) + f(pj—1) — 2f(pj)
(log pj+2 — log pjt1)(log pj1 — log p;)

X :

O o f (p) =

and

L flpjr1) — flpj) | fps) — fpj—1)
Gogpf(P) = 5 <10g;j+1 - 10%“;?]' * Ing])j - 10gjpj—1> '

2.3. simpleq-Kv

The method is used to compute observables for the simple equation

CAu=o(l —u) — deut 2epuru, e=" /d:p (1 = u(lz)))o(lz]).

2

One can show [CJL21, Theorem 1.6] that the condensate fraction is

_ p [v(z)Ru(z) dx
1—p [v(z)R(2u(z) — pu x u(z)) dz

n
with
R=(—A+v+4de(l - pux))~L.
Similarly, the two-point correlation function is [CHe21, (45)]

5 AU(1 —u) — 2pu * Rv + p?u* u * Ko

Co=p*(1—u)+p 1—p [dx v(z)R(2u(z) — pu* u(z))’

Thus, using the fact that £ is self-adjoint, we can compute these observables of the simple equation

directly from the knowledge of Ruv.

2.3.1. Usage

The computation uses the same approximation scheme as anyeq, as well as using the solution
of anyeq. As such, it takes a similar list of parameters: rho, tolerance, maxiter, P, N, J,

minlrho_init, nlrho_init.

The available commands are the following.

e Kv: compute Rv as a function of |z|.
Extra parameters:

» xmin (Float64, default: 0): minimum of the range of |z| to be printed.

» xmax (Float64, default: 100): maximum of the range of |z| to be printed.

» 1nx (Int64, default: 100): number of points to print (linearly spaced).

Output (one line for each value of |z|): [|z|] [Rv]

e condensate-fraction: compute the uncondensed fraction as a function of p

32

(2.2.160)

(2.2.161)

(2.2.162)

(2.3.1)

(2.3.2)

(2.3.3)

(2.3.4)

Extra parameters:

» minlrho (Float64, default: 107%): minimal value for log; p.

» maxlrho (Float64, default: 10%): maximal value for log; p.

» nlrho (Int64, default: 100): number of values for p (spaced logarithmically).
» minrho (Float64, default: 107%): minimal value for p.

» maxrho (Float64, default: 10%): maximal value for p.

nrho (Int64, default: 0): number of values for p (spaced linearly). If nrho is # 0, then
the linear spacing will be used, and minlrho, maxlrho, nlrho will be ignored. Otherwise,
the logarithmic spacing will be used and minrho, maxrho will be ignored.

v

(3]

rhos (Array{Float64}): list of values for p, specified as a *,” separated list. This
parameter takes precedence over minlrho, maxlrho, nlrho, minrho, maxrho, nrho.

v

Output (one line for each value of p): [p] [1]

e 2pt: compute the two-point correlation as a function of |z|.
Extra parameters: same as Kv.
Output (one line for each value of |z|): [|z|] [C2]

2.3.2. Description
In Fourier space (2.2.8),

R = /dx e (—A + de(1 — pux) +v) f = (k* + de(1 — pa(|k|)) + 0%) f

where % is defined in (2.2.9). We follow the same approximation scheme as anyeq:

R f(kg) ~ (k7 + de(1 = Upy))fig + (0 © iy

with f,; == f(ki;), Up; == pu(|k;;|), © is defined in (2.2.45), and k;; is defined in (2.2.40).
Therefore, we approximate the operator /1 by a matrix:

J-1 N
R f (k) ZZMl,jl ifui
=0i=1
with, by (2.2.45) and (2.2.39),
M jr i = O 105i(ki; + de(1 — Ulj))
2_5771,0 m7r(1+:c2)
oVt) 5> W; COS(——5—)
Fu o) AR (ki) = .
4”2“‘?17”71;01;) P it (1 — e =T i (mey 4 Ty

Defining 1, ; as the vector whose only non-vanishing component is that indexed by ', which is
equal to 1, we can rewrite

My ji == 0p 1854 (k7; + 4e(1 = Up;)) + (0 © L)

Thus
fv~ M .

33

(2.3.5)

(2.3.6)

(2.3.7)

(2.3.8)

(2.3.9)

(2.3.10)

To compute (2.3.2), we write

n

)
5| —

™)
JlE

)
<>
—
oy
SN—
bR
S
—
5
S~—

1= p [2y (2a(k) — pi? (k) Ro(k)
which we approximate as
(UM
T T T (2U — U2) M- To)
where (-) is defined in (2.2.54). We can thus compute 7 using the solution U computed by anyeq.

To compute (2.3.4), we write

Ru(z)(1 = u(@) + [g5 (—2pUR0 4 p*02RD)
1—p [g5 (2u(k) — pa2(k))Ro (k)

Cy = p*(1 —u(x)) + p?

which we approximate as

o (M~1o) (1= p~ 1 (e7™42U)) + ((—2UM v + UM ~'v))
1—((2U - U2)M~1v) '

Comp® —p <e‘“‘WU> +p

We can thus compute C using the solution U computed by anyeq.

2.4. simpleq-hardcore

This method is used to solve the Simple equation with a hardcore potential:
(—A 4+ 4de)u(x) = 2epu x u(z) for |z| > 1
u(z) =1 for |z] <1

with
47rp8u\‘x|\1

2(1— Smp+p? f‘m|<1 dr u*u(z))

This equation is solved in z-space, and as such is very different from easyeq, and significantly
longer to run.
2.4.1. Usage
Unless otherwise noted, this method takes the following parameters (specified via the [-p
params] flag, as a ‘;’ separated list of entries).
e rho (Float64, default: 107%): density p.
e tolerance (Float64, default: 10~!!): maximal size of final step in Newton iteration.

e maxiter (Int64, default: 21): maximal number of iterations of the Newton algorithm before
giving up.

P (Int64, default: 11): order of all Chebyshev polynomial expansions (denoted by P below).
N (Int64, default: 12): order of all Gauss quadratures (denoted by N below).
J (Int64, default: 10): number of splines (denoted by J below).

34

(2.3.11)

(2.3.12)

(2.3.13)

(2.3.14)

(2.4.1)

(2.4.2)

The available commands are the following.

e energy_rho: compute the energy e as a function of p.
Disabled parameters: rho.
Extra parameters:

» minlrho (Float64, default: 1075): minimal value for log p.

» maxlrho (Float64, default: 10%): maximal value for log; p.

» nlrho (Int64, default: 100): number of values for p (spaced logarithmically).
» minrho (Float64, default: 107%): minimal value for p.

» maxrho (Float64, default: 10%): maximal value for p.

» nrho (Int64, default: 0): number of values for p (spaced linearly). If nrho is # 0, then
the linear spacing will be used, and minlrho, maxlrho, nlrho will be ignored. Otherwise,
the logarithmic spacing will be used and minrho, maxrho will be ignored.

[

rhos (Array{Float64}): list of values for p, specified as a ‘,’ separated list. This
parameter takes precedence over minlrho, maxlrho, nlrho, minrho, maxrho, nrho.

v

Output (one line for each value of p): [p] [e] [Newton error €.
Multithread support: yes, different values of p split up among workers.

e condensate fraction rho: compute the uncondensed fraction n as a function of p.
Disabled parameters: same as energy_rho.
Extra parameters: same as energy_rho.
Output (one line for each value of p): [p] [n] [Newton error €.
Multithread support: yes, different values of p split up among workers.

e ux: compute u as a function of |z|.
Extra parameters:

» xmin (Float64, default: 0): minimum of the range of |x| to be printed.
» xmax (Float64, default: 100): maximum of the range of |z| to be printed.
» nx (Int64, default: 100): number of points to print (linearly spaced).

Output (one line for each value of x): [|z|] [u(]z])]

2.4.2. Description

In order to carry out the computation of the solution of (2.4.1) and compute the condensate
fraction at the same time, we will consider the equation with an added parameter p > 0:

(—A 4+ 4e)u =2epuxu, €:=e+ g (2.4.3)

for |x| > 1.

2.4.2.1. Energy

To compute the energy e of this equation, with the extra parameter u, we consider the limit of
the soft sphere potential A1 ;<1 (see (2.1.1) with 8 = B, = 0):

(A +2p+4de)u(r) = sx(z) +2epuxu, sx(z) = A1 —u(®)) <1, 2; = /dm sx(x). (2.4.4)

35

Furthermore, since Ou need not be continuous at |z| = 1, by integrating —Awu over a thin spherical
shell of radius 1, we find that, for |z| < 1,

—Au(r) = =6(|z| — 1)0u||z\a (2.4.5)
so, formally,
Soo(@) = L131<1(2€(2 — pu s u(x)) + 2p) — 0(|z] — 1)Oulz\a (2.4.6)
and
2: = /dw Soo() = 2€ (8; - p/|$|<1 e u(m)) + 8%,& — 47 0u |5\ 1 (2.4.7)
Therefore,

27 (3 — Ouljpp1)

6= —— . (2.4.8)
1-— %p—f—p?fmddx u* u(x)
2.4.2.2. Integral equation
We turn the differential equation in (2.4.3) into an integral equation. Let
w(|z]) = |z|u(x) (2.4.9)
we have, for r > 1,
(=% + 4€)w(r) = 2epru * u(r). (2.4.10)
Furthermore, the bounded solution of
(=02 + ®)w(r) = F(r), w(l)=1 (2.4.11)
is © 1
w(r) = e @D +/ ds Fls+1) (e*a‘(’"*l)*s‘ — efa((rfl)ﬂ)) (2.4.12)
0 2
so, for 7 > 1,
1 oo
u(r) = ;e*2ﬁ(’”*1) + %pfk/o ds (s+ 1)(uxu(s+1)) (e*ZﬁW*l)*s‘ - 672\&((’"*1)“)) . (2.4.13)
In order to compute the integral more easily, we split it:
1 oyee-1y , pe [T : —2,/e(r—1)
u(r) = ~e + Yy ds (s+1)(u=u(s + 1)) sinh(2/es)e
" rveJo (2.4.14)
+ sinh(2y/e(r — 1)) / ds (s+1)(uxu(s+1))e Ve,
7’\/% r—1
We change variables in the last integral:
L oyee-ny , pe [T : —2/e(r—1)
u(r) = —e + — ds (s + 1)(u*u(s + 1)) sinh(2y/es)e
" rvedo (2.4.15)

pe L _aye(r—1) /oo —2\/eo
+2r\ﬁ <1 e) ; do (o +7r)(uxu(oc+r7))e .

36

2.4.2.3. The auto-convolution term

We split
u(r) = Lpsqug(r — 1) + 1,«.

in terms of which
uxu =T, xLcq 4+ 2L,<q * (up(r — Dlpsq) + (Lpsqug (r — 1)) * (ug(r — 1)151)

In bipolar coordinates (see lemma A3.1),

2
]1r<1 *]17«<1 7T/ dt t/ ds S]ls<1
|r—t|

and, if » > 0 and ¢t > 0, then

- Ir—t| 2

Therefore, if r > 1
o (1 1— (r—t)? ™
Lrci* Loca(r) = Lrca—— dt t(2) = Lrcars (r—2)%(r +4)
r—1

and if r < 1,

2 1—(r—1t)?
La*Tralr)=— / dt t <]lt<1r2rt +]lt>lr()>
0

SO

4
1< x1,<i(r) = §7r(1 —)4+ %r(i&ﬁ —48r 4 17r%) = —

Thus, (2.4.20) holds for all r. Furthermore,
A 00 r+t
201 * (ug (r — Dlysg) = / dt tuy (t — 1)/ ds sls<1
T |r—t|
so, if r > 0 then, by (2.4.19),
2 r+1 5
Oyey # (s (r — 1)Lyor)(r) = / dt tus (6~ 1)(1— (r — 1)?).
T Jmax(1,r—1)
Finally, if r > 0 then
I 00 r+t
(Lrsquy(r—1)) * (us-(r — DLpsq)(r) = / dt tuy (t — 1)/ ds suy(s—1).
T J1 ax (1,|r—t|)

Thus, by (2.4.20), (2.4.24) and (2.4.25), for r > —1,

uxu(l+r)=1,<— (7“—1) (r+5)+ t (t+ Dug(t)(1 — (r —t)?)

12 max(0,r— 1)

- r4+t+4+1
+ 2 / dt (t+)us(t)/ ds (s + 1)u(s).

r+1Jg max (0,|r—¢|—1)

We then compactify the integrals by changing variables to 7 = %—jrt and o = }—;5:

2—r
’or

(1 47) = Loy X (r — 1)2(r + 5) + - /mm(l dr
k)= — -
w T<112r " r1) T a3t

up(355) (1= (r = 155)%)

32 (! 1 o in(LB4 (7)) 1 B
+ /_1 dr (u+(i+:)/ do 7)3u+(i+—g)

r+1 1+ T)3 a_(14r,7) (1 to

37

r+t min(1,r+t) 1— (T‘ _ t)2
/ ds slgc1 =]1r—1<t<r+1/ ds s = 1, _1<i<ry1 <1t<1—r27“t +]1t>1—r) :
|

(2.4.16)

(2.4.17)

(2.4.18)

(2.4.19)

(2.4.20)

(2.4.21)

(2.4.22)

(2.4.23)

(2.4.24)

(2.4.25)

(2.4.26)

(2.4.27)

with
—p— =1 2_|7a_1—77

147 147
a_(14+r71) = —"7T—, T, T) =
() S By (r,7) Py

(note that a_ is the same as defined for fulleq). Finally, note that, if g4 < 1, that is, if
|r — ;—:\ > 1, then
,8+(’I“,7'):Oé+(| 1+~,—|_1+1+7’)
where .
L-Ir— 5

1+|T*1+77_

oy (r,7) =

is the same as is defined for anyeq (2.2.44).

2.4.2.4. Chebyshev polynomial expansion
We use the same interpolation as we used in anyeq: (2.2.37)

J

|
—

oo

1 1-7 (vu) 27— (T14+7141)
(1 n 7‘)1’“ U+(1+77-) =]ln<7'<n+1 z Fl,n (u+)Tn(#)
=0 n=0
(J is set by the parameter J) with
(vu) - 2- 5”70 " COS(?’LH) 2—(1j41—7) cos(0)—(T141+7a)
Fi (us) = T /0 “ (14 5 cos(f) + ‘TZLQJFTZ Yvu i 2+ (7141 —m) cos(0)+(Ti41+7))

and we take v, to be the decay exponent of u, which we will assume is v, = 4. In particular,
by (2.4.27),

wsu(l+7) =1, B0 +ZZF —i—ZZF V“) Fl(’ “)(u+)Bl(i);l,’m(r)
Ll n,m
with -
BO(r) = —(r —1)%(r +5)
12
B(l)(r) 1 " 87 min(ﬂ+h?) dr 1 (1 - (T . 1,77-)2)1-, (27'—(Tl+7'l+1))
bn T Tl<2;T 1> o r+1 max(7,—51) (1 + 7')371/“ T " M1
(2) e 32w T 1 27— (114+7141)
Bl,n;l’ m(T‘) T r+1 /n i (1 + 7')3_Vu Tn(Tl+11*7fl+1)]171/<0¢+(|7’_%|_1+77 —(14r7)
. /min(Tl/_;,_l»OH-(I 1+: _12+TT 7)) do 1 m(2cr—(n/+n/+1))
max (7 ,a— (147,7)) (1+ 0)3_Vu T
Thus, by (2.4.15), for r > 0,
uy(re,e) = DO(r e e +ZZF (uy)D ln (r,e,e) —i—ZZF(V“)(u+)Dl(72n);l,7m(r, €, €)
LI’ nm
with
DO(r,e,¢) im ——e e 4 PC__ / " bs (5 + 1)BO (5) sinh(2y/Es)e 2V
T r+1 (r+1)ve Jo

1—r
pe _—AyJfer (0) —2./eo
+L<172(r—|—1)ﬁ (1 e)/0 do (0 4+7+1)BO(g +r)e

38

(2.4.28)

(2.4.29)

(2.4.30)

(2.4.31)

(2.4.32)

(2.4.33)

(2.4.34)

(2.4.35)

(2.4.36)

(2.4.37)

(2.4.38)

Dl(,ln)(ra e,€) = ds (s+1)B ()() sinh(2y/es)e”

r+1\f/

+ pe —dy/er (1) —2y/ec
YT +r+1)B + .
s e (¢ >/0 do (o +r+ DBy +r)e

€ ' M - €T
Dl(,Qn);l’,m(T’ e €)= O‘—%pl)\ﬁ/o ds (s+1 Bl(Qn)l, (s)sinh(2v/es)e 2ve

e (g [T @) 2o
+2(r—|—1)\/5<1 c)/0 do (0 +7+1)B; (0 +1)e :

2.4.2.5. Energy

We now compute the approximation for the energy, using (2.4.2).

1 - We start with Qulj,\ - By (2.4.15),

8u\\x|\1 =—(1+ 2\/2) + 2pe/ do (o4 1)(u*u(o + 1))6—2\/&
0

which, by (2.4.33), becomes

6u|‘x|_‘1 (1+2f +’Y (e, e —I—ZZF (e,e)+
+ Z Z F(Vu Fl(/)(u+)7l(,?1);l’,m(e7 €)
LI nm
with

1
7O (e, €) := 2pe/ do (o + 1)BO(g)e 2V
0

(e €) = 2p6/ do (o +1)BY (0)e 2V
? 0 3

and

0

2 - Let us now turn to f‘ dx u* u(x). We have

z|<1

1
/ dzr u*u(zr) = 47r/ dr 2w u(r)
|z|<1 0
so, by (2.4.33),

[e o) =700+ R w0+ 2 R R w3)
lz|<1

Ll nm

with

(2.4.39)

(2.4.40)

(2.4.41)

(2.4.42)

(2.4.43)

(2.4.44)

(2.4.45)

(2.4.46)

(2.4.47)

(2.4.48)

and

3 - Thus,

e = 2mp-
Cle) =1 (e.e) = X0 X Fin ()i (e €) = S Yo Fin () By i)y (5 €)
1—87p+ p? (’_Y +ZlZnFl,n (U+)%,n+2u/ Zn,mFl(,l::)()F(Vu)(“wL)'Yl(n)z')

C(e) :=§u+(+2Ve) = (e—e)+1+2\f

2.4.2.6. Newton algorithm
In this paragraph, we set € = e, that is, p = 0.
1 - As we did for anyeq, we discretize the integral in (2.4.32) by using a Gauss-Legendre

quadrature, and truncate the sum over Chebyshev polynomials to order P. We then reduce the
computation to a finite system of equations, whose variables are

2+ (m1 —) sin(5) — (741 + 7a)
2 — (Tl+1 — Tl)Sin(%) + (Tl—i-l + Tl)

e, wuji=uy(r;), 1=

where x; are the abcissa for Gauss-Legendre quadratures (see (2.2.40)). In other words, we define
a vector U in dimension NxJ+1, where the first NxJ terms are u; ; and the last component is e.
We then write (2.4.37) as, for [€ {0,---,J — 1}, j € {1,---,N},

Ein+;(U) =0, Enj1(U)=0

(note that Z;n4; corresponds to the pair (I,7)) with

Ein+4(U) := ulJ—HD) (ri5,€) +ZZ& Tl,ja e)+

i Z SO @S DY (1)

1 nm

Eng+1(U) = —e+
Cle) — g0 (e) = 3y 3, S (Wl (€) = Sy S S) FH) (Wal (&)
1= Smp+ 07 (50 + X0, 810 (Wal) + X o S B WG)

where § is defined in (2.2.39), and D@, g, g are defined like D@, ~() and () except that
the integrals over bounded intervals are approximated using Gauss-Legendre quadratures, and
the integrals from 0 to co are approximated using Gauss-Laguerre quadratures. Gauss-Legendre

+27mp

40

(2.4.49)

(2.4.50)

(2.4.51)

(2.4.52)

(2.4.53)

(2.4.54)

(2.4.55)

(2.4.56)

and Gauss-Laguerre quadratures and their errors are discussed in appendix A2. The orders of
the quadratures are given by the variable N.

2 - We then solve Z = 0 using the Newton algorithm, that is, we define a sequence of U’s:

yt — yn) _

where D= is the Jacobian of =:

(DZ)ap =

We initialize the algorithm with

v, =

N+ (1 +rﬁj)2

1

)

(DEWU™)~'=W™)

024
aUs

(0)
JN+1 = TP-

3 - We are left with computing the Jacobian of =:

() _ —5”,5N+223l (Ly)D

8ullai lll

where 1y ; is a vector whose only non-vanishing entry is the (,

l// (7’[’]’, 6)+

+2 57 3 5 (w)

U n,m

(Vu)

ll//

2
1l')Dl(”?n;l”',

i)-th, which is 1,

m(TLjs€)

8E]N+1 (U) _
Bul/,i
oy T Z TS W)0(€) =2 Do i’ (0575 ()81 ()
L= Smp 402 (80 + 30 50, 810 (Wal) + X Yo Ston W WG i)
02 <Zl Z gl(V (]ll/)gl n + 2 El N Zn m S(VU)()ggll//u) (ﬂl/ i)gl(i?'l”)
~(Ens(U) +e)—)) [,y 2) (1= (2) ‘
L= o+ 0 (80 + 0 X2, 81 (0l + X X B1 SE (080,

9Ein+;(U)
Tj = 0D (ry 4, €) +ZZSZ

02Zn7+1(U)

=1
Oe +

8 Dl’ (Tl,ja €)+

Ul n,m

(Vu)

l//

2
)ae]D)l(/ ,L;l”,m (Tl,j) 6)

0.C(e) — 8ea® (e) — 3 32, F1) (w)Deatl) (e) - zll,znma”“m%/“()eg,(g

l/

+2mp

To compute 9.D and 9.9, we use 9, =

1_§ﬁp+p (59 + 5 5, 8wl

2\/ af

aC(e)
dv/e

41

+ angz

and

=2

(W35

(1)

(2)
91 nlr,

")

(e).

(2.4.57)

(2.4.58)

(2.4.59)

(2.4.60)

(2.4.61)

(2.4.62)

(2.4.63)

(2.4.64)

(0)
oD (re) 2r 2
ove r+1

min(1,r)
" i 1 /0 ds (s +1)BO(s)e 2V (1 — 2v/er) sinh(2v/es) + 2y/es cosh(2+/es))

1—r
L (0))
+]]-7"<12(T 1) /0 do (o +r+1)BY (0 +7r)
. ((1 — 2\/E0'> (1 _ 6—4\/ET> 6—2\/50 + 4\/ET€—2\/E(27’+0)>

8Dl(’1n) (r,e) p
ove — r+1

/07“ ds (s+ 1)Bl(2 (s)e2vVer ((1 — 2v/er) sinh(2v/es) + 2v/es cosh(2y/es))

P > (1) _
+2(7‘—}-1)/0 do (0 +r+1)B; (o +7)

. ((1 —2y/e0) (1 — 6_4\/ET> e~ 2Ver 4 4\/57"6_2‘/5(2””’))

8Dl(72n);l,7m(r, e)
NG

— f:l / ds (s+1)B, (s)e 2V (1 — 2y/er) sinh(2y/es) + 2y/es cosh(2v/es))
'I" 0 ARt A

14 > 5
1) /o 4 (0 + 7+ 1By (0 +7)
: ((1 —2V/eo) (1 - e“WET) em2Ver 4 4\/gre—2x/€(2r+a)> .
Furthermore, " X
7\ (e) ~
=4 DB () (1 — 2\/ec
L = apve [do (54 DEO0)(1 - veo)e
Oy () o0 "
,M = 4 1 B 1 _ —2\/Eo'
ae =dpe [do (04 DB)(1 - Veo)e
and o
Vst m (€) o0 9 s
“ove /0 do (0 + 1) By, (0) (1 = Vea)e >V,

Finally, to get from D to D and ~ to g, we approximate the integrate using Gauss-Legendre and

Gauss-Laguerre quadratures (see appendix A2), as described above.

4 - We iterate the Newton algorithm until the Newton relative error € becomes smaller than

the tolerance parameter. The Newton error is defined as
||[U(n+1) _ U(n) ||2

U™
where || - ||2 is the lo norm. The energy thus obtained is
e=Ujns1-

42

(2.4.65)

(2.4.66)

(2.4.67)

(2.4.68)

(2.4.69)

(2.4.70)

(2.4.71)

(2.4.72)

2.4.2.7. Condensate fraction

To compute the condensate fraction, we use the parameter p in (2.4.3). The uncondensed fraction

is

n = Ope|u=o-

To compute J,e, we use

which we

2(U) =0

differentiate with respect to u:

We are left with computing 9,=:

0= N, (U v
L]()—OD Tl],ee +ZZS(“ 8]D)l, (rij,e,€)+

+ Z Z gl(’lj:l) (u)gl(’ljzln)@ (u)au]D)l(/Q}L;l//7m (Tl’j, €, 6)

o

U1 nm

OEns41(U) _

O

9,0(€) — 3,80 (e,€) — 3, gl () ugln(e €)= ang(l’u)<)g("u)()9

Dy (€2 €)

=2mp

1—%7rp—i—p (g(o)"‘ZIZ %’(Vu()gln—’_le’ang(Vu()S(Vu()gl(rzl’

We then use 9, = 4\/8\/ and

(0)
oD (r) 2 o2V
0\/€ r+1
n=0
+ (r+1

1—r
P B()
+1, +r4+1 .
<12(r 0 /0 do (c+7r+1) (c+7)

oD (r)

NG

r+1

: ((—1 —2/eo) (1 -

r+1

/ do (o + 7+ 1B (0 +7r)-

: ((—1 N (1 -

43

6—4\/&) —2\[a+4\[7ﬁ6

e \f) _2\[‘7+4f7“e

")

min(1,r)
L) /0 ds (s + 1)BO(s)e 2Ver((—=1 — 2y/er) sinh(2v/es) + 2v/es cosh(2v/es))

2r+0)>

=P /0 " s (s + 1B (s)e™ 2V (=1 — 2y/er) sinh(2V/es) + 2y/es cosh(2y/es))

2r+a))

(2.4.73)

(2.4.74)

(2.4.75)

(2.4.76)

(2.4.77)

(2.4.78)

(2.4.79)

(2.4.80)

2
aDl(,n);l/,m(T)
O/e
n=0
__r [(2) 2 -
= ds (s+1)B,; ., (s)e —1 — 2+y/er)sinh(2+/es) 4+ 2+/es cosh(2+/es
r+1/0 (5 + 1) By (5) ((Ver) sinh(2V/es) + 2V/es cosh(2v/es)) (2.4.81)
N (2)
0t /o do (7 47+ 1By (o + 1)
. ((—1 —2y/eo) (1 — 674\/&) e2Ver 4 4\/57’672‘/5(2””)))
(0) 1
Chhud —4pe | do o(o+1)BO(g)e 2Ver (2.4.82)
0v/e 0
n=0
9~ 0o
afil/’g = —4,06/0 do (o + l)aBlEln)(a)e_Q\/é" (2.4.83)
n=0
and
o2, o0
% = —4pe/0 do (o + 1)031(,31);1',m(0)6_2\/éa' (2.4.84)
n=0
2.5. simpleqg-iteration
This method is used to solve the Simple equation using the iteration described in [CJL20].
The Simple equation is
—Au =S5 —4deu+ 2epuxu (2.5.1)
2e
S:=01-uv, p:= . (2.5.2)
Jda (1= u(lz]))v(|z])
for a soft potential v at fixed energy e > 0. The iteration is defined as
2
¢ (2.5.3)

—Auy, =S, — deu, + 2epn_1Un—1 * Up—1, U9 =0, pp_1= fdaz A= un (D)ol
e

2.5.1. Usage
Unless otherwise noted, this method takes the following parameters (specified via the [-p

params] flag, as a ‘;’ separated list of entries).

e ¢ (Float64, default: 10~%): energy e.
e maxiter (Int64, default: 21): maximal number of iterations.
e order (Int64, default: 100): order used for all Gauss quadratures (denoted by N below).

The available commands are the following.

e rho_e: compute the density p as a function of e.

Disabled parameters: e.
Extra parameters:

44

» minle (Float64, default: 107%): minimal value for log;, e.
» maxle (Float64, default: 10%): maximal value for log; e.
» nle (Int64, default: 100): number of values for e (spaced logarithmically).

maxle—minle

» es (Array{Float64}, default: (10™™e+t™ e "), list of values for e, specified as a
‘,’ separated list.

Output (one line for each value of e): [e] [p].

e ux: compute u as a function of |z|.
Extra parameters:

» xmin (Float64, default: 0): minimum of the range of |z| to be printed.
» xmax (Float64, default: 100): maximum of the range of |z| to be printed.
» nx (Int64, default: 100): number of points to print (linearly spaced).

Output (one line for each value of x): [|z|] [wi(|x])] [we(|x])] [us(|x])] -

2.5.2. Description

In Fourier space
Un(|k]) == /d:c e’kwun(|x\)
(2.5.3) becomes

(k2 + 4e)tin(|k|) = S (|k|) + 2epn_iiin_1(k)?, pp:=

with

$u([K]) = o(k]) - (2;)3 / dp an(lp))o(1k — pl).

We write S, in bipolar coordinates (see lemma A3.1):

Sullk) = (1K) = s ["t tan (0 H (K] 1)
with "
H(y,t) = 21/ / » ds sv(s)

(note that this agrees with the function (2.1.12) defined for easyeq). We also change variables
to

1 til—y

VTR rr T Yy
.) 1L (L=y)an (5D H (K], Y
SullkD) = (kD) — sz | T

We approximate this integral using a Gauss-Legendre quadrature (see appendix A2) and discretize

Fourier space:

@

-y _rit 1
“1ra YT
where z; are the Gauss-Legendre abscissa, and

i -

N o 1oy 1-y;
. R 1 (1 = yj)tn (=) H (ki —)
j=1 J

45

(2.5.4)

(2.5.5)

(2.5.6)

(2.5.7)

(2.5.8)

(2.5.9)

(2.5.10)

(2.5.11)

(2.5.12)

so if

we have N
3" AijUj(n) = b
j=1
i wi(1 — g) H (s, 522)
Aig 1= (K2 +4€)855 + ——— (;W)Sy? “
and

bgn) = v; + 2epp_1U;(n — 1)2

in terms of which

U=A"p™.
Finally, we compute p,, using the second of (2.5.5):
o 1y 1y,
2 5,(0) ~9(0) — i (1 —yy)an (=) H(O, 52
= — , ~ D —
. Sy (0) ! 2(2m)? =1 ’ v;

3. Potentials

In this section, we describe the potentials available in simplesolv, and provide documenta-
tion to add custom potentials to simplesolv.

3.1. Built-in potentials
3.1.1. exp

In z-space,

v(|z]) = ae” 17

The constant a is specified through the v_a parameter, and can be any real number. Note that
v 2 0 if and only if @ > 0. This is the potential that is selected by default.

1 - In Fourier space,

8ma

mw=/ma%wm:u+ﬁy

In particular, v is of positive type (that is, v > 0) if and only if a > 0.
2 - The zero energy scattering solution, that is, the solution of

(-A4+v)p=0, lim ¢p=1
|z| =00
iS r T
o) clo(2v/ae™2) + 2Ky(2y/ae™ 2) . 2K (2v/a)
)= = —— = 7
r ’ Ip(2+/a)
where Iy and K are the modified Bessel functions, and the square root is taken with a branch
cut on the negative imaginary axis. In other words, if a < 0, \/a = i4/]a| and [DLMF, (10.27.6),

(10.27.9), (10.27.10)]

Io(iz) = Jo(z), Ko(iz) = —g(Yo(x) +ido(z))

46

(2.5.13)

(2.5.14)

(2.5.15)

(2.5.16)

(2.5.17)

(2.5.18)

(3.1.1)

(3.1.2)

(3.1.3)

(3.1.4)

(3.1.5)

https://dlmf.nist.gov/10.27#E6
https://dlmf.nist.gov/10.27#E9
https://dlmf.nist.gov/10.27#E10

where Jy and Y[are the Bessel functions, so

R lale™2) — Yo (2y/]ale”?) C/:M. (3.1.6)

r ’ Jo(2+/]al)

The scattering length is [DLMF, (10.25.2), (10.31.2)]

P(r) =

o _ 2K0(2v/a)
apg = rll{go 7“(1 — 1/)(7’)) = log(a) + 2’}/ + W (317)
where v is the Euler constant, which, for a < 0, is

TYo(2v/]al)
ap = logla| + 2y — ————. (3.1.8)

Jo(2+/]al)

3.1.2. tent
In z-space,

olle]) = 1upa 2™ (12121 (12l 4y (3.1.9)

The constants a and b are specified through the v_a and v_b parameters, and a € R, b > 0. Note
that v > 0 if and only if @ > 0. Note that

a
v(|z|) = 73]1\x|<§ *]l|x|<g (3.1.10)
(this is more easily checked in Fourier space than explicitly computing the convolution).
In Fourier space,
2
, b3 sin(M) — kb COS(@)
. k
o(|k]) = /dw ey (|z)) = ag (47r 2 (‘k‘f)g 2 : (3.1.11)
8
Note that this is (1, ,_»)2. In particular, v is of positive type (that is, & > 0) if and only if
b lz|< 5
a > 0.
3.1.3. expcry
In z-space
v(|z]) = eIl — g0l (3.1.12)

The constants a and b are specified through the v_a and v_b parameters, and a € R, b > 0. Note
that v > 0 if and only if a < 1 and b > 1.

In Fourier space

o([k[) = /dw eikxvﬂx’) = 8r ((1 +1k:2)2 - (b2 ibk2)2> (3.1.13)

In particular, ¥ is of positive type (that is, © > 0) if and only if ab < 1, a < b and a < b3. If
a<1,b>1andab>1, then © has a unique minimum at

(3.1.14)

47

https://dlmf.nist.gov/10.25#E2
https://dlmf.nist.gov/10.31#E2

3.1.4. npt

In z-space

2ol

v(|z]) = z%e”

Note that v > 0.
In Fourier space

1— k2

a(|k) = /dx) = 967

In particular, v is not of positive type (that is, © is not > 0).

3.1.5. alg

In z-space

Note that v > 0.

In Fourier space

0 ik _ g sin(|k
o([k]) = /dx e ey(|z|) = 4ne |/<;‘(k|||).

In particular, v is not of positive type (that is, © is not > 0).

3.1.6. algwell

In z-space
1 +alz/*

M= Ty

The constant a can be set using the parameter v_a and can be any real number. Note that v > 0
if and only if @ > 0. If @ > 8, this potential has a local minimum at |z_| and a local maximum
at |z |:

1
|zs| = \/2(1 +v/1—8a1).

In Fourier space

) 2
o(|k|) = /dm e*ry(|z]) = %e*\k\(a(k2 — 9|k| 4 15) + k% + 3|k| + 3).

In particular, v is of positive type (that is, ¢ is not > 0) if and only if

8
<a<3+§\ﬁ%6.02.

o] =

48

(3.1.15)

(3.1.16)

(3.1.17)

(3.1.18)

(3.1.19)

(3.1.20)

(3.1.21)

(3.1.22)

3.1.7. exact

In z-space

(lz]) = 12¢(2%0% (2e — b2) + biat(9e — Tb%) + 4b%22(3e — 2b%) + (5e + 16b%))
VA= (1 + b222)2(4 + b222)2((1 + b222)2 — c)

The constants a, b, ¢, e can be set using the parameters v_a, v_b, v_c, v_e, and a,e € R, b # 0,
¢ >0, c# 9. Note that v > 0 if and only if [CJL21]

e o —263 + 23161

— = ~ 0.601.
= 18 0.60

b>0, 0<e<l,

With this potential, the Simple equation has an exact solution:

___ e _¥
“= (1 + b222)2’ =

In Fourier space 9(|k|) = [dz e**v(z) is

3
o)) = 48cm? (18 4 3y/c — (4 — 3a)c - (1—2a)e2 _ /=il
|| A(3 + \/0)2e2
L —1843Ve+ (4-3a)e— (1 2a)c%e_ e, 1- '—5'6_@ CaBo-ol +80)
A(3 — \ﬁ)?cg 2¢ 8(9 —¢)?
with o : = %

b2

3.2. Programming custom potentials

In this section, we provide documentation for programming custom potentials.

The potentials are implemented in the file ‘$SIMPLESOLV/src/potentials. j1’, and consist
of two functions, one specifying the potential in Fourier space (the “potential function”), and the
other returning an approximate value for the scattering length (the “scatterin glength function”)
(as is explained below, a precise value of the scattering length is not actually needed). For
instance, the potential exp has two functions: v_exp and a0_exp. The potential function should
take the following arguments:

e k (Float64): the Fourier momentum

e and any parameters that the potential depends on, such as a in exp (can be of any type,
provided the appropriate changes are made to main. jl as explained below)

and it must return a Float64: the value of v at k. The scattering length function takes the same
parameters as an input, and returns a Float64: the approximate value for the scattering length.

In addition, the potential must be linked in ‘$SIMPLESOLV/src/main. j1’. In that file, the
potential is read from the command line option U. The relevant code is in lines 197-222. To add
a new potential, add

elseif potential=="{name of potential}"
v=k->{potential function}(k,v_param a,v_paramb,...)

49

(3.1.23)

(3.1.24)

(3.1.25)

(3.1.26)

a0={scattering length function}(v_param a,v_paramb,...)

where the number of v_param entries should be the number of parameters of the potential. The
parameters that are currently read from the parameters list are a, b, c and e. To add a parameter,
it must first be declared and initialized after line 35, and code to read it should be added after
line 172:

elseif lhs="v_{name of parameter}"
v_param_{name of parameter }=parse (Float64,rhs)

If the new parameter has a type other than Float64, this should be changed in the parse function,
and in the initialization.

The approximation of the scattering length is only used to initialize the Newton algorithm

for easyeq, so it is not important that it be exact. In fact, some of the built-in potentials set the
scattering length to 1, when it has proved too difficult to compute it exactly.

20

Appendices

A1l. Chebyshev polynomial expansion

In this appendix, we compute the error of Chebyshev polynomial expansions of regular func-
tions. Specifically, we will consider class-s Gevrey functions (which is a generalization of the
notion of analyticity: analytic functions are Gevrey functions with s = 1). A class-s Gevrey
function on [—1,1] is a C* function that satisfies, Vn € N,

d"f(x)

sup don

z€[—1,1]

< CoC™(n))*.

Formally, the Chebyshev polynomial expansion of f is

oo
co
=357 z; ¢;Tj()
J:

where T is the j-th Chebyshev polynomial:
Tj(z) := cos(j arccos(z))

and

cj = /07r df f(cos®)cos(j0).

™

\ Lemma Al.1
Let f be a class-s Gevrey function on [—1,1] with s € N\ {0}. There exist by,b > 0, Wthh
are independent of s, such that the coefficients c; of the Chebyshev polynomial expansion are
bounded as

1
cj < boe_bjs.

In particular, the Chebyshev polynomial expansion is absolutely convergent pointwise (and, there-
fore in any L, norm), and, for every N > 1,

Co al bo 1 q\s—1_—bN¥
- Z < (s — DUN= +b71) 7l

Proof: Note that (A1.0.2) is nothing other than the Fourier cosine series expansion of F'(6) :=
f(cos()), which is an even, periodic class-s Gevrey function on [—m, 7], whose j-th Fourier
coefficient for j € Z is equal to C| j|- The bound (A1.0.5) follows from a well-known estimate of
the decay of Fourier coefficients of class-s Gevrey functions (see e.g. [Ta87, Theorem 3.3]). The
bound (A1.0.6) then follows from |T}(z)| < 1 and lemma A1.2 below. O

\ Lemma Al1.2
Given b > 0 and two integers N, s > 0,

0 1 1 s—1 _bN%
—bis < (s— 1)1 [N c
Ze < (s)< T b 1 _ob

j=N

o1

(A1.0.1)

(A1.0.2)

(A1.0.3)

(A1.0.4)

(A1.0.5)

(A1.0.6)

(A1.0.7)

Proof: If v} := [N ijs denotes the largest integer that is < N and has an integer s-th root,

then
Zefb]9< Z e*bj9< Z 7bk<8 Z kslfbk

] VNS k= UN,s k= UN,s

We then estimate

- bk _ Lo\ et
-1 —
I R e =

k:VN,s k l/N s

which concludes the proof of the lemma. O

A2. Gauss quadratures

Gauss quadratures are approximation schemes to compute integrals of the form

b
/ dt w(t) £ (t)

where w(z) > 0 is one of several functions that Gauss quadratures can treat. The possible choices
of w and (a,b) are

e (a,b) =(—1,1), w(t) = 1: Gauss-Legendre quadratures.

e (a,b) = (—1,1), w(t) = (1 —t)*(1+1)?, a,B > —1: Gauss-Jacobi quadratures.
o (a,b)=(—1,1), w(t) =(1— t2)7% Gauss-Chebyshev quadratures.

e (a,b) =(0,00), w(t) = Gauss-Laguerre quadratures

e (a,b) = (0,00), w(t) = t% ', a > —1: generalized Gauss-Laguerre quadratures
e (a,b) = (0,00), w(t) = e *": Gauss-Hermite quadratures.

It is not our goal here to discuss Gauss quadratures in detail, or their relation to orthogonal
polynomials. Instead, we will compute the error made when approximating such an integral by
a Gauss quadrature.

For each Gauss quadrature, the integral is approximated in the form

/bdtw szf rl

where w; are called the weights, r; are the abcissa, and N is the order. The weights and abcissa
depend on both w and the order N. The crucial property of Gauss quadratures is that they are
eract when f is a polynomial of order < 2N — 1.

In this appendix, we compute the error of Gauss quadratures when used to integrate regular
functions. Specifically, we will consider class-s Gevrey functions (which is a generalization of the
notion of analyticity: analytic functions are Gevrey functions with s = 1). A class-s Gevrey
function on is a C* function that satisfies, Vn € N,

d"f(x)

sup don

z€[—1,1]

< CoC™(n))*.

02

(A1.0.8)

(A1.0.9)

(A2.0.1)

(A2.0.2)

(A2.0.3)

f Lemma A2.1 I
Let f be a class-s Gevrey function with s € N\ {0}. There exist by, b > 0, which are independent
of s, and Ny > 0, which is independent of s and f, such that, if N > Ny, then, denoting the
Gauss weights and abcissa by w; and 7,

b 1 b N
/ dt w(szf ri)| < bo(s — 1)I((2N — 1) + b)l bN D) (/ w(t) + Zw2> :
a a 1

i=
In particular, if f is analytic (i.e. s = 1), then

b N b N
/ dt w(t)f(t) = > wif(ri)| < boe PN (/ w(t) + Zwi> .
a i=1 a i=1

Proof: We expand f into Chebyshev polynomials as in (A1.0.2):

(e.)
co
=357 > ¢iTj(x)
=1

Let) N1
g(x) = f(a) = 5 = Y &Ti).
j=1

Since order-N Gauss quadratures are exact on polynomials of order < 2N — 1, we have

/dtw szf (r; —/ dt w(t szg (14)

and, by lemma Al.1,

1
E]

lg(x)| < (const.)(s — 1)I((2N — 1) +b)s—le—b(QN—l) ‘

A3. Bipolar coordinates

Bipolar coordinates are very useful for computing convolutions of radial functions in three
dimensions.

\ Lemma A3.1

For y € R3,
lyl+t
/ dz f(|z], |z —y|) = / dt/ ds stf(s,t)
[Iy]—

L I

Proof: Without loss of generality, we assume that y = (0,0,a) with a > 0. We first change
to cylindrical coordinates: (p, 6, x3):

/dxf(\fvl,lx—yl)Z%/ dp/ dzs pf([(p. 0, z3)] | (,0, 25 — a)]).
R3 0 —00

Next, we change variables to

S:|(p,0,333)‘7 t:’(paoaxd_a)’

23

(A2.0.4)

(A2.0.5)

(A2.0.6)

(A2.0.7)

(A2.0.8)

(A2.0.9)

(A3.0.1)

(A3.0.2)

(A3.0.3)

The inverse of this transformation is

2 2 2
-1 1
T3 = p 2T 7Y +;a , p= %\/4a252 — (a? + 8% —12)?

d its Jacobian i
and its Jacobian is ots s

V=20 12022 + s2) — (2 — 22 pa’

The following is a generalization of the previous lemma to functions of four variables.

\ Lemma A3.2
For y € R3,

!éﬁmwfﬂuhm—MJﬂHﬂ—th—wﬂ

ly|+t yl+t/
ds dt ds’ d9 sts't' f(s,t, 8, t',E(s,t,8,,0,|y]))
Iy!2 llyl—t] llyl—#|

(\yl (52 + 2+ () + (1)) = lyl* = (s> = *)((s)* = (¢')?)

with

§(s,t, 8", 1,0, yl) == fl!

—V/(Aly2s? — (lyI? + 2 = 2)2)(4ly2(s)2 = (lyI? + ()2 = (')2)?) cos 9)

L I

=

Proof: Without loss of generality, we assume that y = (0,0,a) with a > 0. We first change
to cylindrical coordinates: (p,0,xs; p, 0, z5):

[dode’ (el fo =) 12" =yl o =)

e 00 o) o 2m
= 27r/ dp/ da:3/ dp’/ dxé/ do’ pp' f(s,t, st/ |(p—p cost, p' sind z3 — x%)|).
0 —00 0 —00 0

where

s:=1(p,0,23)], t:=|(p,0,23—a)|, & :=|(p costl, p'sind xb)|,t' :=|(p' cost,p sind xi—a)l

Next, we change variables to (s,t,s',t',6). The Jacobian of this transformation is, by (A3.0.5),
tst's'
ppla?’

Furthermore, by (A3.0.4),

82 o t2 o (81)2 4 (t/)2

2a

373—33%2

and

\/4(1232 _ (a2 152 — t2)2 p’ B \/4(12(3/)2 _ (a2 4 (s’)2 _ (t’)2)2
2a ’ - 2a

p:

SO

1
|(p— p'cos®,p'sind' x5 — af)| = % (4as* — (a® + s* — t*)? + 4a*(s')? — (a® + (s')* — (¥)?)?

(NI

~2/(1027 = (@2 + 57 = PP)(A?(5)? = (@ + ()2 = (1)) cos ¢ + (s> — £2 = ()2 + ()?)?)

54

(A3.0.4)

(A3.0.5)

(A3.0.6)

(A3.0.7)

(A3.0.8)

(A3.0.9)

(A3.0.10)

(A3.0.11)

(A3.0.12)

(A3.0.13)

and

[(p—p'cost’, p'sin @', x5 — %) <a2(82 + 4 ()2 4 (1)) — ot = (57 = () = ()?)

1
V2a

—/(4a252 — (a® + 5% — 12)2)(4a2(s')2 — (@ + (5')2 — (¢)2)2) cos 9’) .

N

O

A4. Hann windowing

In this appendix, we discuss the use of Hann windows to compute Fourier transforms. Con-
sider the Fourier transform

f(k) = /)

Evaluating this integral numerically can be tricky, especially at high |k|, because of the rapid
oscillations at large |z|. A trick to palliate such a problem is to multiply f by a window function
hr,, which cuts off distances of order L. We then compute, instead of f,

F(k) = / da % hy (2) ().

We can then evaluate f using standard numerical techniques, such as Gauss quadratures (see
appendix A2), without issues at large |z|. However, in doing so, we will make an error in the
Fourier transform. To quantify this error, note that

~ dq

F(k) = hisf(k) = / hn(@)f (k- q)

(2m)?

so if we choose Ay, in such a way that hy is peaked around the origin, then f will not differ too
much from f:

F(k) = f(k) = ((2m)"6(k) — hp)*f (k).

The Hann window is defined as
2/ T
hr(x) = cos (%)]l‘xké
whose Fourier transform is, in d = 3,

L — 4m3 L2 ((|K|L)® — 4]k|L7?) cos(BE) — 2(3(|k|L)? — 4n2) sin(151E)
L(k) = K] ((|k[L)? — 4]k|Ln?)2

which decays at large |k|L as

- 473
hi(k) ~ o7 cos(E1E).

95

(A3.0.14)

(A4.0.1)

(A4.0.2)

(A4.0.3)

(A4.0.4)

(A4.0.5)

(A4.0.6)

(A4.0.7)

References

[CHe21]

[CJL.20]

[CIL21]

[DLMF]

[Ja23]

[Ta87]

E.A. Carlen, M. Holzmann, 1. Jauslin, E.H. Lieb - Simplified approach to the repulsive Bose
gas from low to high densities and its numerical accuracy, Physical Review A, volume 103,
issue 5, number 053309, 2021,

doi:10.1103/PhysRevA.103.053309, arxiv:2011.10869.

E.A. Carlen, 1. Jauslin, E.H. Lieb - Analysis of a simple equation for the ground state energy
of the Bose gas, Pure and Applied Analysis, volume 2, issue 3, pages 659-684, 2020,
doi:10.2140/paa.2020.2.659, arxiv:1912.04987.

E.A. Carlen, I. Jauslin, E.H. Lieb - Analysis of a Simple Equation for the Ground State of the
Bose Gas II: Monotonicity, Convexity, and Condensate Fraction, STAM Journal on Mathe-
matical Analysis, volume 53, number 5, pages 5322-5360, 2021,

doi:10.1137/20M1376820, arxiv:2010.13882.

F.W.J. Olver, A.B. Olde Daalhuis, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W. Clark,
B.R. Miller, B.V. Saunders, H.S. Cohl, M.A. McClain (editors) - NIST Digital Library of
Mathematical Functions, Release 1.1.3 of 2021-09-15, 2021.

I. Jauslin - The Simplified approach to the Bose gas without translation invariance, 2023
http://ian.jauslin.org/publications/23j/.

Y. Taguchi - Fourier coefficients of periodic functions of Gevrey classes and ultradistributions,
Yokohama Mathematical Journal, volume 35, pages 51-60, 1987.

o6

http://dx.doi.org/10.1103/PhysRevA.103.053309
http://arxiv.org/abs/2011.10869
http://dx.doi.org/10.2140/paa.2020.2.659
http://arxiv.org/abs/1912.04987
http://dx.doi.org/10.1137/20M1376820
http://arxiv.org/abs/2010.13882
http://ian.jauslin.org/publications/23j/

