Table of contents:

1. Basic usage

2. Methods
2.1. easyeq.
2.1.1. Usage .
2.1.2. Description .
2.2. anyeq .
2.2.1. Usage .
2.2.2. Description .
2.3. simpleq-Kv.
2.3.1. Usage .
2.3.2. Description . .
2.4. simpleq-hardcore .
2.4.1. Usage
2.4.2. Description .
2.5. simpleq-iteration
2.5.1. Usage
2.5.2. Description .

3. Potentials . .

3.1. Built-in potentials
3.1.1. exp .
3.1.2. tent .
3.1.3. expcry .
3.1.4. npt
3.1.5. alg
3.1.6. algwell
3.1.7. exact

3.2. Programming custom potentials .

Appendices

A1. Chebyshev polynomial expansion .

A2. Gauss quadratures
A3. Bipolar coordinates .

A4. Hann windowing .

References

simplesolv
v0.3

N RN NN -

.21
.21
.22
. 23
.23
.24
. 33
.33
.34

.35
. 35
. 35
. 36
. 36
. 36
.37
.37
.37
. 38

.39
. 40
.41
. 43

.44



simplesolv is a tool to compute the solution of the equations of the “Simplified approach”
to the repulsive Bose gas introduced in [CJL20, CJL20b, CHe21]. This approach provides an
approximation to various observables of the ground state of the Hamiltonian

N
Hy=—33 8t Y wlai— )
=1

1< <N

in three dimensions, with periodic boundary conditions, in the thermodynamic limit N — oo at
fixed density p.

simplesolv is written in julia. The source code is located in the src directory of this bundle.
Throughout the documentation, we will refer to the directory containing the src directory as the
“installation directory”, and will denote it by the bash variable $SIMPLESOLV (so that the main
julia file, for instance, is located at $SIMPLESOLV/src/main. jl).

1. Basic usage

Denoting the location of the installation directory by $SIMPLESOLV, simplesolv is run by
calling

julia $SIMPLESOLV/src/main.jl [args] <command>

where the optional arguments [args] take the form [-p params] [-U potential] [-M method]
[-s savefile].

A few commands support multithreaded execution. To enable julia to run on several pro-
cessors, it should be run with the -p option. For example, to run on 8 CPUs, run

julia -p 8 $SIMPLESOLV/src/main.jl [args] <command>

command specifies which computation is to be carried out, such as energy to compute the
ground state energy, or condensate_fraction for the uncondensed fraction. The list of available
commands depends on the method argument, which specifies one of the available methods to
solve the equation at hand. The available methods are (see section 2 for further details)

e casyeq (default) for the Simple or Medium equation, or any interpolation between them,
with a soft potential using the Newton algorithm,

e anyeq for any equation in the “Simplified approach” using the Newton algorithm.
e simpleq-Kv for the Simple equation using explicit expressions involving Rv (see (2.3.3)),

e simpleq-hardcore for the Simple equation with a hard core potential using the Newton
algorithm,

e simpleqg-iteration for the Simple equation with a soft potential using the iteration defined
in [CJL20].

Each method is described in detail below, along with the list of commands (command) and pa-
rameters (params) compatible with them.

[

params should be a ¢;’ separated list of entries, each of which is of the form key=value.
For example -p "rho=1e-6;v_a=2". (Note that you should not end the list of parameters by a
‘;’, otherwise simplesolv will interpret that as there being an empty parameter entry, which it
cannot split into a key and value, and will fail.)

(0.0.1)



potential specifies which potential v should be used, from the following list (see section 3
for further details).

e exp (default) for v(|z|) = ae~1*!,

e tent for v(|z|) = ]l|m|<ba%7r(1 - %)2(%‘ +2),

e expcry for v(|z|) = e~ 1l — ge~blel,

e npt for v(|z|) = z2e1*l,

e alg for v(|z|) = Hiﬁ’

_ l4afz)*
SRR

12¢(]z|9% (2e—b2)+b*|z|* (9e—Tb?) +4b%|z|% (3e—2b) +(5e+16b2))
(14b%[x[)? (44+b%[x[?)? (1+b2|2[*)2 —c)

The parameters in the potential can be set using the params argument: to set a set v_a, to set b
set v_b, to set ¢ set v_c, and to set e set v_e.

e algwell for v(|z|)

exact for v(|z|) =

savefile can be used to accelerate the computation of observables in the compleq equation.
Indeed, as is discussed in section 2.2, the computation of compleq is based on the computation
of a large matrix, which can be pre-computed, saved in a file using the save_Abar command, and
reused by specifying that file in the savefile argument.

2. Methods

In this section, we describe the different computation methods.

2.1. easyeq

This method is used to solve a family of equations, called easyeq, that interpolate between
the Simple equation and the Medium equation:

—Au=v(1—u) —2pK + p*L (2.1.1)

with 2e 2e
K :=fBguxS+(1— BK)?u, L:=fruxuxS+(1— 5L);u * U (2.1.2)

S:=(1-uv, e:= ';)/dx (1 —u(|z]))v(|z]). (2.1.3)

for a soft potential v at density p > 0.

The special choice fx = 1, = 0 is called the Simple equation (simpleq), and the choice
B = Br, = 1 is called the Medium equation (medeq)
2.1.1. Usage
Unless otherwise noted, this method takes the following parameters (specified via the [-p
params] flag, as a ‘;’ separated list of entries).
e rho (Float64, default: 107%): density p.
e tolerance (Float64, default: 10~!): maximal size of final step in Newton iteration.

e maxiter (Int64, default: 21): maximal number of iterations of the Newton algorithm before
giving up.



e order (Int64, default: 100): order used for all Gauss quadratures (denoted by N below).

e minlrho_init (Float64, default: rho): to initialize the Newton algorithm, we first compute
the solution for a smaller p, minlrho is the minimal value for log, p to start this initialization
process.

e nlrho_init (Int64, default: 1): number of steps in the initialization process described
above. Set to 1 to disable the incremental initialization process.

e DK, bL (Float64, default: 1, 1): the values of Bk and Sr.

e eq (String, default: “simpleq”, acceptable values: “simpleq”, “medeq”): A shortcut to
select either the Simple equation (Sx = fr = 0) or the Medium equation (8 = fx = 1).
When this option is set, neither bK nor bL should be set.

The available commands are the following.

e energy: compute the energy e at a given p.
Output: [e] [Newton error €].

e energy_rho: compute the energy e as a function of p. The Newton algorithm is initialized with
the hardcore scattering solution (2.1.25) for the lowest p, and with the previously computed
p for the larger densities.
Disabled parameters: rho, minlrho init and nlrho_init.
Extra parameters:

» minlrho (Float64, default: 1075): minimal value for log p.
» maxlrho (Float64, default: 10?): maximal value for log;q p.

» nlrho (Int64, default: 100): number of values for p (spaced logarithmically).

maxlrho—minlrho

» rhos (Array{Float64}, default: (10™™™oT""me ™), « list of values for p, specified
as a ‘,’ separated list.

Output (one line for each value of p): [p] [e] [Newton error €].

e condensate_fraction: compute the uncondensed fraction n at a given p.
Output: [n] [Newton error €.

e condensate fraction rho: compute the uncondensed fraction 1 as a function of p. The
Newton algorithm is initialized with the hardcore scattering solution (2.1.25) for the lowest
p, and with the previously computed p for the larger densities.

Disabled parameters: same as energy_rho.
Extra parameters: same as energy_rho.
Output (one line for each value of p): [p] [n] [Newton error €].

e uk: compute the Fourier transform a(|k|). The values |k| at which @ is computed are those
coming from the Gauss quadratures, and cannot be set.
Output (one line for each value of |k|): [|k|] [a(|k])]

e ux: compute u as a function of |z|.
Extra parameters:

» xmin (Float64, default: 0): minimum of the range of |x| to be printed.
» xmax (Float64, default: 100): maximum of the range of |z| to be printed.
» nx (Int64, default: 100): number of points to print (linearly spaced).

Output (one line for each value of x): [|z|] [u(|z])]



e uux: compute 2u — pu * u as a function of |z|.
Extra parameters: Same as ux.
Output (one line for each value of x): [|x|] [2u(|z]) — pu * u(|z|)]

2.1.2. Description

1 - Fourier space formulation. The computation is carried out in Fourier space. We
take the convention that the Fourier transform of a function f(|x|) is

47 sin(|k|r)

F(IkD) = /R dz ¢ f(la)) = 25 [ ar

i) 7).

In Fourier space, (2.1.1) becomes

k0 =S — 2pAxt + p?ALa®
. A 2¢e N A 2e
A =S+ (1— /BK)?7 A =6S+ (1 - BL)?
with

S = [ do e = uay(a) = o) = asoh). Frak) = [ k= phalo)

We write this as a quadratic equation for 4, and solve it, keeping the solution that decays as

|k| — oo:
pi(lH) = 5 <s<|k|> v1- \/(ﬁ(lkl) P12 j%i((’@))ﬁ(lkl))
that is, A
(k) Lk 9
i) = e o (i)
with ) B —
£k = o, ()= 0

Furthermore, using bipolar coordinates (see lemma A3.1), we write S as

. oo o (Ut
S(|k!)—@(|k!)—87lrg/0 dt ta(W (K6, Hyt) = > /y ds si(s).

Y Jy—t

By a simple change of variables,

1
H(y.t) = 4 (n; + nygt) /0 ds ((y +1)s + |y — t](1 = £)o((y + s + ly — t](1 - s)).

2 - Evaluating integrals. To compute these integrals numerically, we will use Gauss-

Legendre quadratures:
[ s ~72w1f (m51)
0

where w; and r; are the Gauss-Legendre wezghts and abcissa. The order N corresponds to the
parameter order. The error made by the quadrature is estimated in appendix A2. We compactify
the integrals to the interval (0,1): y := t%

. L (1 —ya(=)H(k
Sk = o00) g [y - il

yS

4

(2.1.4)

(2.1.5)

(2.1.6)

(2.1.7)

(2.1.8)

(2.1.9)

(2.1.10)

(2.1.11)

(2.1.12)

(2.1.13)

(2.1.14)



so, using the Gauss-Legendre quadrature, we approximate

N (1= yy)a(S ) H(Jk], ) 41
~ “ Y5 L
S(Ik[) ~ o(|k]) - 1632 fy? =

This suggests a natural discretization of Fourier space: let

L—r _ 11—y

T Yi

Thus, defining

and approximate (2.1.9):

— T; T;
Ui= 2(X; + 1)(1) <Bi (Xi+1)2)
with B.8: 4 (1— BL)E S
+ — .
Ak = BkSi+(1—Bg)E, B;:="t L= o= 2
Ak Ak
1 N (1-y)U;H (ki k) 1 L (1-y)U;H(0,k))
SR R L1 (L TR B JPCE L (1
167 P Y; 167 P Y;
_ K
QPAK %
This is a discrete equation for the vector (U;)Y;.
3 - Main algorithm to compute U.
3-1 - We rewrite (2.1.18) as a root finding problem:
= — T; T; —
which we solve using the Newton algorithm, that is, we define a sequence of U’s:
Ut = u™ — (pEw™) =)
where DZ is the Jacobian of =: .
DE);j i= —.
( )17] OUJ
3-2 - For small values of p, we initialize the algorithm with the hardcore scattering
solution A
N Tag
Uo(k) = kQ

where ag is the scattering length of the potential v (or an approximation thereof, which need not
be very good). Thus,
(0) _ 4magp
U, = 7

2

This is a good approximation for small p. For larger p, we choose U®) as the solution of
easyeq for a slightly smaller p, and proceed inductively (using the parameters minlrho_init
and nlrho_init).

(2.1.15)

(2.1.16)

(2.1.17)

(2.1.18)

(2.1.19)

(2.1.20)

(2.1.21)

(2.1.22)

(2.1.23)

(2.1.24)

(2.1.25)

(2.1.26)



3-3 - We are left with computing the Jacobian of Z:

0=; 1 T;0:X;
7225,1._ T, — I ) p B; T;
OIUj 7 Q(XZ =+ 1) (aj X; +1 ) ( (Xi+1)2)

L (B@TMI‘@IB% W)&@(Z(XH)>

C2(X; 4 1)3 X; +1

ith
b E8;S; — S;0;E

(BkSi + (1 - Br)E)?

= (B(1 = BK) — Br (1 —BL))

Eaj Sl — Slc‘)]E

OTi == B) s, + = poEp  AK: = PrdiSit (1 =)o

N
1 (1 —y;)H (ki, kj) 1 (1 —y;)H(0, k)
S = — , K= — ;
055 1673 " y? % 1673p Z bt 3
7=1 J
k2
J 2,0A%(71 J

3-4 - We iterate the Newton algorithm until the Newton relative error ¢ becomes smaller

than the tolerance parameter. The Newton error is defined as

B ||U(n+1) o U(n) ||2

[T
where || - ||2 is the lo norm. The energy thus obtained is
P
2
the Fourier transform 4 of the solution is
UA
p
and the solution u in real space is obtained by inverting the Fourier transform
y)sin(|z[ 5 a(+5Y)
T e e Z
27 2! | y3

WM ij 1+ kj)%k; sin(|z|k; )i (k;).

To compute 2u — pu * u, we replace @ with 24 — p@? in the previous equation.

4 - Condensate fraction. Finally, to compute the uncondensed fraction, we solve the

modified easyeq (see [CJL20b])

(A +2p)uy, = v(1 —u,) — 2pK + p*L

where K and L are defined as in (2.1.2)-(2.1.3) in which w is replaced with w,. The uncondensed

fraction is then

0 = Bueluco = _g /da: () Bty (|2]) o

To compute the energy in the presence of the parameter u, we proceed in the same way as for
p = 0, the only difference being that k2 should formally be replaced by k2 + 2. In other words,

(2.1.27)

(2.1.28)

(2.1.29)

(2.1.30)

(2.1.31)

(2.1.32)

(2.1.33)

(2.1.34)

(2.1.35)

(2.1.36)

(2.1.37)



we consider U; = u,,(|k;|) and define Z(U, i) in the same way as in (2.1.22), except that X; should
be replaced by

We then solve

By differentiating this identity with respect to u, we find 0,u,,:
D=0,U = —-0,=

and the uncondensed fraction is
1

n=3 /dw v(z)(DE)19,E| =0

thus

1= 16r3

which we approximate using a Gauss-Legendre quadrature:

| /1 (1~ ) H(0, 22) (DE) 718, Z]m0(152)
Y
0

N N
1 ——19 —
7 3953 > wi(1— k)’ H(0,k5) Y (DZ);} 0, u=0-
=1 i=1
We then compute, using (2.1.27),
T; B. T2
8,5 ueo = i @(B» I, ) i 9% (BL).
Eiln= 2pA k(X + 1) o) PAK (X +1)4 P

2.2. anyeq

This method is used to solve any of the equations in the Simplified approach. Specifically, it
solves the equation
—Au=v(l —u) - 2pK + p°L

with 5
K =g (1 — agu) <6Ku xS+ (1— Bk)peu>

and
L:=Ly+ Lo+ Ls
2e
Ly =(1-apiu) (BL,lu «u*xS—+(1— BLJ)?U * u)
4e 9
Ly = —')/L,Q(l — aLQu) ﬁLQQ’u, * (u(u * S)) + (1 - /BLQ)?U * U
1 e
L3 :=~r3(1 — ar3u) <5L,32 /dydz u(y)u(z — x)u(z)u(y —z)S(z —y) + (1 — BL,S);UQ * U2>
_p
e=4 [ do (1= u(a)u(ia).
The parameters a., 5. and 7. can be set to turn (2.2.1) into any of the approximations of the

Simplified approach. For ease of use, there are several predefined equations, given in the following
table.

(2.1.38)

(2.1.39)

(2.1.40)

(2.1.41)

(2.1.42)

(2.1.43)

(2.1.44)

(2.2.1)

(2.2.2)

(2.2.3)

(2.2.4)

(2.2.5)

(2.2.6)

(2.2.7)



ak | Br | vk | ary | Bra | arz | B2 | Y2 | ans | Brs | VL3
compleq | 1 1 1 1 1 1 1 1 1 1 1
bigeq| 1 | 1| 1| 1 | 1| 1| 1] 1] -1|-1]0o

fulleq | 1 1 1 1 1 1 1 1 1 0 1
medeq | O 1 1 0 1 - - 0 - - 0
simpleq | O 0 1 0 0 - - 0 - - 0

Note that there is no v, 1, whose computation would be rather different. Note, in addition, that
simpleq and medeq coincide with their definitions in (2.1.1). The method used to solve this
equation is very different from easyeq, and is significantly longer to run.

2.2.1. Usage

Unless otherwise noted, this method takes the following parameters (specified via the [-p

params] flag, as a ‘;’ separated list of entries).

rho (Float64, default: 107%): density p.

tolerance (Float64, default: 107'!): maximal size of final step in Newton iteration.
maxiter (Int64, default: 21): maximal number of iterations of the Newton algorithm before
giving up.

P (Int64, default: 11): order of all Chebyshev polynomial expansions (denoted by P below).
N (Int64, default: 12): order of all Gauss quadratures (denoted by N below).

J (Int64, default: 10): number of splines (denoted by J below).

minlrho_init (Float64, default: rho): we initialize the Newton algorithm using the solution
of medeq, computed using the methods in easyeq. This option is passed to the underlying
easyeq routine.

nlrho_init (Int64, default: 1): this option is passed to the underlying easyeq routine to
initialize the Newton algorithm.

aK, bK, gK, alL1, bL1, al2, bL2, gL2, alL3, bL3, gL3 (Float64, default: 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0): the values of ar, Bk, Vi, ar1, B, ar2, BL2, L2, aL3, BLs, TL3-
eq (String, default: “bigeq”, acceptable values: “compleq”, “bigeq”, “fulleq”, “medeq”,

“simpleq”): A shortcut to select any of the equations defined in the table above. When this
option is set, none of akK, bK, gK, al.l, bL1, alL2, bL2, gL2, aL3, bL3, gL3 should be set.

The available commands are the following.

energy: compute the energy e at a given p.
Output: [e] [Newton error €.

e energy rho: compute the energy e as a function of p. The Newton algorithm is initialized

with the solution of medeq.
Disabled parameters: rho, minlrho init and nlrho_init.
Extra parameters:

» minlrho (Float64, default: 107%): minimal value for log; p.

» maxlrho (Float64, default: 10?): maximal value for log;q p.



» nlrho (Int64, default: 100): number of values for p (spaced logarithmically).

maxlrho—minlrho

» rhos (Array{Float64}, default: (10™™™2oT""me ™), « list of values for p, specified
as a ‘,’ separated list.

Output (one line for each value of p): [p] [e] [Newton error €.

Multithread support: yes, different values of p split up among workers.

energy _rho_init_prevrho: compute the energy e as a function of p. The Newton algorithm
is initialized with the solution of medeq for the lowest p, and with the previously computed
p for the larger densities.

Disabled parameters: same as energy_rho.

Extra parameters: same as energy_rho.

Output (one line for each value of p): [p] [e] [Newton error €].

energy_rho_init nextrho: same as energy rho_init_prevrho except that the energy is
computed for decreasing densities instead of increasing ones. The Newton algorithm is ini-
tialized with the solution of medeq for the largest p, and with the previously computed p for
the smaller densities.
Disabled parameters: same as energy_rho.

Extra parameters: same as energy_rho.

Output (one line for each value of p): [p] [e] [Newton error €].

condensate_fraction: compute the uncondensed fraction n at a given p.
Output: [n] [Newton error .

condensate_fraction_rho: compute the uncondensed fraction n as a function of p. The
Newton algorithm is initialized with the solution of medeq.
Disabled parameters: same as energy_rho.

Extra parameters: same as energy_rho.
Output (one line for each value of p): [p] [n] [Newton error €].
Multithread support: yes, different values of p split up among workers.

uk: compute the Fourier transform 4(|k|). The values |k| at which 4 is computed are those
coming from the Gauss quadratures, and cannot be set.
Output (one line for each value of |k|): [|k|] [a(|k])]

ux: compute u as a function of |z|.
Extra parameters:

» xmin (Float64, default: 0): minimum of the range of |z| to be printed.

» xmax (Float64, default: 100): maximum of the range of |z| to be printed.

» nx (Int64, default: 100): number of points to print (linearly spaced).
Output (one line for each value of x): [|z|] [Re(u(|z|))] [Zm(u(|x]))]

momentum_distribution: compute the momentum distribution 9(|k|) at a given p.
Output (one line for each value of |k|): [|k|] [D(|k|)]

2pt: compute the two-point correlation function Cy(]z|) at a given p.
Extra parameters: same as ux, plus

» window L (Float64, default: 10°): size of the Hann window used to numerically invert the
Fourier transform in the computation of the tow-point correlation function, see (2.2.111).

Output (one line for each value of |z|): [|z|] [Ca(|x])]



e save_Abar: compute the matrix A. This matrix is used to compute observables for compleq.
This command is useful to output the value of A to a file once and for all, and use this file
to run commands without recomputing A.

Disabled parameters: rho, tolerance, maxiter, minlrho_init, nlrho.

Output: [A] (the output is not designed to be human-readable; it is obtained through nested
for loops; for details, see the code).

Multithread support: yes, the first indices are split up among workers, which produces NJ

jobs.

2.2.2. Description

1 - Fourier space formulation. The computation is carried out in Fourier space. We
take the convention that the Fourier transform of a function f(|z|) is

Fk) = [ do e sel) = 35 [ ar sin(|klr)

_mo r

f(r).

We define a Fourier-space convolution:

Fealkl) = [ s F(k=aln).

In Fourier space, (2.2.1) becomes
K*a(|kl) = S(IKI) — 20K (|k]) + p* L(|K])

with

S(|kl) = / da €™ (1 — u(|z]))o(|z|) = d(k) — a*o(k)
R3

pK = vk (BrpS + (1 — Br)2e)tt — yxax @i ((BxpS + (1 — Bi)2e)id)

pL1 = (BLapS + (1 — Bri1)2e)i® — ap 10k ((BrapS + (1 — Br1)2e)d?)
pi/g = —’YLQ(ﬁLVQQp(ZAH?(ﬂg))—l—(l—,8L72)4€ﬁ>l§ﬂ)ﬁ+’yL,2aL72fL>T<((BL722p(7fLA(”LALS))+(1—,BL,2)467]>T<ZAL)”&)
pLy = vr.3(1 — Bra)e(tki)? — ypsopns(1 — Br3)uk(e(aa)?) + vr36L.3ls — ;pVL,3aL,3ﬁL,3ﬂ>F53
with ) d dd'

(k) = — / ﬁﬁ pilk — o' Dpillal)pald ) pa(lk — a)S(d — al)

pe
Therefore,

2 ~
gl oa(l) = (= + 20k + 208D ) D) + (306 + 5 () + G(K) ) =0

with 1 1
ok = 7k (BrepS + (1= fr)2e), or1 = (BrapS+ (1= fra)2e)
1 o S aAn A
fi= ?’YL,Q(ﬁL,QP(PU*(PUS)) + (1 = BL2)2epiispii)

2e, . . A
7,(0“*0”)2 + 7,361,303

= 1-—
Jo == v1.3( /BL,?))p

10

(2.2.8)

(2.2.9)

(2.2.10)

(2.2.11)

(2.2.12)

(2.2.13)

(2.2.14)

(2.2.15)

(2.2.16)

(2.2.17)

(2.2.18)

(2.2.19)

(2.2.20)



2 o A . 1 o A R
G:= ?'YKQKPU*((/BKPS + (1= Br)2e)pa) — ;aL,lpu*((ﬁL,lﬂs + (1= Bra)2e)pi’)

2 . . 1 o
+*04L,2PU*(f1pu) — —ay, 3pU* fo.
p 2p

Therefore,

pi=1+&=V(1+€)° = (14
f:=<UK—UL,1++f1)a C::(S'—GL,1+2f2+G>

or1 2p oL
We rewrite (2.2.22) as

U — 1+¢ q)< 1+§>

C2(641) (€+1)2
with
U :=pu
2(1 —v1—
(z) = 2 2),
x
2 - Evaluating integrals. To evaluate integrals numerically, we will split integration

intervals over splines and use Gauss-Legendre quadratures. More specifically, to compute integrals
of the form

[ o 1000 = 5 [ s

we first compactify space to (—1,1] by changing variables to 7 = %3
dk 1 1 (1 - 7_)2
PR k),k)=— d l=7y 1-7\
/ (2m)3 Uk, k) 2 /1 T (1 —|—T)4f(U(1+T)’ )
We then split (—1,1] into J sub-intervals (given by the parameter J), called splines:
J—1
(_]-7 ]-] = U (Tj,Tj+1].
7=0

The 7 are taken to be equally spaced, but the code is designed in such a way that this could be
changed easily in the future:

27
— _1 -
T; + 7
In these terms,
J—1
dk Ti+1 (1 _ 7)2 L .
U k k = d N 7 U 1-7 —r ‘
/(gﬂ)s fU(k), k) l—O/Tl T (1+T4g( (1+r"1+7)
We then change variables to r:
- 1—-9
= _ni+1 T Sin(%) + Ti+1+ T . l(r)

2 2 T 14+9(r)

(the reason for this specific change of variables will become clear at the end of this paragraph
and in the next one) and find

dk M
/ G JUR:R) =3 == / dr cos(F)(L+ 0u(r)*0F () f(U (), 9u(r)):
=0 -

11

(2.2.21)

(2.2.22)

(2.2.23)

(2.2.24)

(2.2.25)

(2.2.26)

(2.2.27)

(2.2.28)

(2.2.29)

(2.2.30)

(2.2.31)

(2.2.32)

(2.2.33)



We then approximate the integral using a Gauss-Legendre quadrature of order N (see appendix-
A2):

J—
dk Ti4+1 — T
[ s 100~ S o ij cos(T5) (14 91(a) P07 () (U, i)

=0
with . (TX;
2+ (141 — ) sin(52) — (741 + Ta)
2 — (m41 — m)sin(5?) + (1 + 1)
The choice of the change of variables (2.2.32) is made so that U is evaluated at k; ;, which are
the momenta that appear naturally in the Chebyshev polynomial expansion below (2.2.39). In

this way, we can compute arbitrary integrals of functions of U by just computing the values of
Up;.

[Ul,j = U(k’l’j)7 kl,j =

3 - Chebyshev polynomial expansion. In the case of easyeq, we saw that using Gauss
quadratures reduced the computation to evaluating U at a fixed set of discrete momenta. This
is not the case here, due to the presence of more complicated convolutions of U. Instead, we will
approximate U using polynomial approximations. We will now discuss this approximation for an
arbitrary function a(|k|), as we will need it for other functions than simply U.

3-1 - As in the previous paragraph, we compactify [0,00) to (—1,1] via the change of
variables r > %;Jr:, and split the interval into splines. Inside each spline, we use a Chebyshev
polynomial expansion. However, we need to be careful in the first spline, which encapsulates the
behavior at |k| — oo: U decays to 0 as |k| — oo, and this behavior cannot be reproduced by
a polynomial expansion. To avoid this, if a ~ |k|7"#, we expand |k|"*a instead of a. Actually,
to simplify expressions in the presence of the compactification, we will expand 27%+(1 + |k|)"*a,
which makes no conceptual difference. In the case of a = U, we will use v = 2, which we know

holds for the Simple equation [CJL20]. Putting all this together, we write, for 7 € (—1,1], if

— 1-7
|k‘ = 1+
— 1 27— (14T
27 (L4 k) (k) = G a5 Z]ln<7<n+1 ZF T, (P

in which 1., <7<, € {0,1} is equal to 1 if and only if 7, < 7 < 741, and

(va) L 2 - 6n70 " COS(?’LQ) 2—(1j41—7) cos(0)—(T141+7a)
Fraa)=—2 /0 v (1 + 5= cos(0) +—W;T’)ua“(2+<m1—n>cos(0>+<n+1+n>)

(see appendix Al for a discussion of the Chebyshev polynomial expansion and the error of its
truncations).

3-2 - In order to compute an approximation for a using (2.2.36), we will truncate the
sum over n to a finite value P (given by the parameter P). In addition, to compute the integral
n (2.2.37), we will use a Gauss-Legendre quadrature of order N (given by the parameter N), see
appendix A2:

N
2 —dnpo 1+x;) a;
F)(a) ~ 37 (a) := =0 > " wj cos nr(lte; ]
In ( ) In ( ) 2 j=1 ’ ( 2 )(1_ Tl+12—7'l Sln(mzcj)—l- Tl+12+Tl)Va
with
2+ (141 — 7) sin( 5 7 L) = (7141 + Ta)

2 — (141 — 1) sin(52) + (41 + 710)

ap; = a(ky;), kij:=

and (xj,w;) are the abcissa and weights for Gauss-Legendre quadratures.

12

(2.2.34)

(2.2.35)

(2.2.36)

(2.2.37)

(2.2.38)

(2.2.39)



3-3 - All in all, we approximate

( 1 + T Va Z 1Tl<7’<7‘l+1 Z S(Va 277(T1t7l+1))

Ti+1—T1

with § defined in (2.2.38). Furthermore, using the Chebyshev polynomial expansion and Gauss-
Legendre quadratures, we can compute all the observables we are interested in by computing
U;; = U(kyj). With this in mind, we will represent the function U as a vector of dimension N.J
whose components are U ;.

4 - Convolutions. Using the Chebyshev polynomial approximation, we can compute
convolutions as follows.

4-1 - First, we rewrite the convolution as a two-dimensional integral, using bipolar
coordinates (see lemma A3.1):

|k[+
(@K = gy [t tate YRS

We change variables to compactify the integrals 7 = 7 +i, o= %:
2(1—7) +(kLT) 91 — o)
(@)K Aasn [ de S
2|]€’ 1+7’ 1+ a_(|k|,T) (1+0’)3 1+
e 1= It I
— |kl — 17

o (k)= M (e T
L+ |k + 155 1+ ||k — 1+T

Therefore, using the approximation (2.2.40), if a; ; := a(k; ;) and by ; := b(k; ;) (2.2.39),

P
((I%)(’kl,ﬂ) ~ (Cl@ b)l,j = 47r2|]<;l | Z Z glua) (Vb ( )Al(’:}”/b (|liD
J

nm=01[1'=

with

Vo U it 2(1 - T) 27 —(1+71141)
asy b 1 1+1 .
Alnl’ (|k|) /Tz dr (1 _|_7—)3—VQT"( TI+1—T1 )

min(Tl/+1,a+(|k|7T)) 2(1 — U) (20'_(Tl/+7—l/+1))

.]104(];»T)<Tq/+1]10‘+(1577')>7g//a (1 ([K],7)) g (1+O—)3—Vb m Ty g1 =Ty
max (1 ,a— (|k],

(we need the indicator functions to ensure that the bounds of the integral are correct). Note that
A is independent of a and b, and can be computed once and for all at the beginning of execution
for all values of k;; (2.2.39). We then compute the integrals using Gauss-Legendre quadratures
(as is proved in the next paragraph, the integrand is non singular provided vg, v}, > 2).

4-2 - Note that these integrals are not singular as long as v,,1, > 2: indeed (since
the only possible problems occur at —1, it suffices to consider the case with only one spline),
a_,ay > —1for 7 > —1, and

ax(k,7) = -1+ (1+7) % g(l +7)2+0(1+7)°

oy (Jk[,7) 2(1 — oy ([k[,7) 1
a—(|k|,T) (1 + U) b a—(|k|,T) (1 + J) b

and

13

(2.2.40)

(2.2.41)

(2.2.42)

(2.2.43)

(2.2.44)

(2.2.45)

(2.2.46)

(2.2.47)



which, if v, = 2, yields

L+oag (k7))
4log <1+a_(|k:|,7')> = 4k|(1+7) + O(1 4 7)?

and if v, > 2, yields

4
vy — 2

(L +ar(Jk), 7)) 2 = 1+ a_(k|,7)"»7?) = %42\k|(1 + ) 14001 +1)).

Therefore,

M ne [ e 2
(

8
< _ I/a+l/b74
(1 +7)3ve ey (L) S g M=) trott+n)

Cyy

where ¢ := 1 and ¢,, := v}, — 2 if 5, > 2. The integrand is, therefore, not singular as long as
Vg, Vp = 2.

4-3 - Evaluating convolutions at k& = 0 is not immediate, as the formula for A(0) involves
a bit of a computation. To compute A(0), we expand

T 2 T 2
a_(|kl,7) =7~ V‘C'(l;) +O(K?),  ay(kl,7) =7+ W;) +O(K?)

SO

2
(Va,vp) o 1 T¢+1 (1 — ’T) 27— (¢ +7¢11) 27— (e +7c41)
AC7H;€’7W(O) o ]lgzgfﬁ /7-4 o (1+ 7)4—ua—ub Tl T<+1—Tc+ )T ( T<+1—Tc+ )

which we then compute using a Gauss-Legendre quadrature. We can then evaluate convolutions
at k=0:

R — . (Vu (Vb) (Vavyb)
(a#b)(0) ~ (ab) := W’kl’]' Z Z& (0) A 1 (0)

n.m=01[1'=

4-4 - Let us now compute some choices of a, b more explicitly.

4-4-1 - Let us start with 1; ,%a where 1;,, is the vector which has 0’s everywhere
except at position (I,n). We have

9_§ cos mm(1+zn)
8:lyl)(]ll,n) = ov mjow” Ti41—T1 : mf )Tz 147
(1 =+ sin(54) + 55—
SO
2-bip cos(HrlizEal) (v1.00)
(]lnl” ©a ml - ZP;Z: Wn (1- Tl//+12*7'l// Sin(%) 4 Tl//+12+7'l//) Al” LU p ( )Sl ( )-
4-4-2 - We now turn to a*0. Let
|k|+t ~
T, k) = / gs 220
[
We have
1 oo
gkt = W/O dt ta(t)Y (1, [K]).

14

(2.2.48)

(2.2.49)

(2.2.50)

(2.2.51)

(2.2.52)

(2.2.53)

(2.2.54)

(2.2.55)

(2.2.56)

(2.2.57)



Following the integration scheme (2.2.34),

J—1 N
1
(Cl ®© U) 32 Z(Tlurl — T Z w] COS( )(1 + 191/(x']))Qﬂl/(l‘j)al/’jfr(ﬁ({lfj), kl,i)-
I'=0 Jj=1
At k=0,
J—1 N
1 2
(av) = oo D (Tr1 =) ) D wjcos(T5E) (1 + B (a7)) >0 ()ap ;T (9(x;), 0)
I'=0 7j=1
with

T(t,0) = 2tu(t).

The quantities Y (¥(x,,), k1;) and Y (¢(xy),0) are independent of a and can be computed once and
for all at execution. The integral in (2.2.56) is computed using Gauss-Legendre quadratures, but
without splitting into splines. To maintain a high precision, we set the order of the integration
to JxN.

4-4-3 - Finally,
T71 — T/
(L © O)1g = 5w cos(52) (L + O () P00 (20) Y (D), Fi)

and

(1 o) = %wn cos(T22 ) (1 + Oy () 200 () T (9(2), 0).

5 - Evaluating /3. The only term in (2.2.1) that does not involve just convolutions (whose
computation was described above) is I3 (2.2.16). To evaluate it, we first change variables, using
a generalization of bipolar coordinates (see lemma A3.2):

A 1 0 |k\+t LA . o
lg,(\l<:|):(27T)5p2’k|2/O thH » / /|k| ., s/ df sts't'U(s)U(t)U (s )U(t")-

S(R(s,t,8,t,0,|k]))

with

R(s,t, s, ¢, 6, |k]) = ﬂk'(m (424 ()2 4+ (1)) — [k = (> = () = (¢)?)

—V/(4lk[2s2 — ([k[2 + 52 — £2)2) (4]k[2(s)2 — ([K[? + ()2 — (#')?)?) cos 9)
We change variables as in (2.2.42):
" 1 L9l -1) a+(kl7) 91— 0) Lo, 21 —7)
k) = =555 | dr ——2U(:Z / do U2 / dr’ ——— -
3(‘ |) (27T)5p2’k|2 /1 T (1+T)3 (1+7') o (|kl,7) g (1+0.)3 (1+0') 4 T (1_|_7-/)3

’ a+(|k|’T/) 2(1 — O'/) ’ 2 ’ ’
UL / do’ U< / df S(R(izg, iz 1-o’ 1=7" g |k])).
(77) (k) o (1+0)3 (1507) ) ( (150 77> 1507 57 L))

[NIES

We expand U and S into Chebyshev polynomials as in (2.2.36), and split the integrals into splines:

J—1 9] 4
(k) ~ (U @8) ;= Y > A kD T (3(;)11 ([U)) 8oy (5)

ALy As=0m1,ns=1 i=1

15

(2.2.58)

(2.2.59)

(2.2.60)

(2.2.61)

(2.2.62)

(2.2.63)

(2.2.64)

(2.2.65)

(2.2.66)



with U, ; == Ul(k15), S := S(ki;) and

() 1 /n1+1 ) 2(1—1) (27—(7A1+n1+1))'

)\1,n1;"';)\5,n5(|k|) = W -~ (1+T)3_” ni TA +17 TN

min(7x, 1,04 (|k[,7)) 2(1 — U)

(20'*(T>\2+T)\2+1))‘
(1+0)3—v 7" Doni—y

'ﬂa,(|k|,7’)<7’>\2+1]la+(|k|,7-)>’r>\2 /

max(7xy,0— (|k[,7))

'/TA3+1 , 2(1 —7'/) T (27-/,(7->\3+T)\3+1))'
r

T n
(1 T/)3—V 3 TAz+1—TA3
A3

min(T)\4+17a+(|k|v7—,)) , 2(1 — 0-/) (20',—(TA4+T)\4+1))

']la (|k|, 7)<, 1 / g
—(|&l, Ag+1 o (Jk[ 7)) >7A N3—p N4 =
o * Jmax(ry . (Jk].7)) (140')3~ 1T

27 v _
/0 d@( 2 T (2%_(T>\5+T)\5+1))]1

ns — 1-R
2_’_%)1/ 5 TAs+1"TAs T)‘5<1+5R<T)‘5+1

in which R is a shorthand for %(;—g, L‘r—:, L—rg:, %jr::,@, |k]). Note that A is independent of U,
and can be computed once and for all at the beginning of execution. Since the tensor A is quite
large (it contains (IN.J)® entries), and its computation can be rather long it can be inconvenient
to compute A at every execution. Instead, one can use the save_Abar method to compute A and

save it to a file, which can then be recalled via the -s option on the command line.

6 - Main algorithm to compute U. We are now ready to detail how U = pa is computed.
All of the observables we are interested in are approximated from the values U;; := U(k ;)
(2.2.39).

6-1 - The equation for (Uy;)icqo,..,7—1},je{1,..,N} 1S obtained by approximating (2.2.24)
according to the prescriptions detailed above:

U e LY ( 14, >
BT (X 1) & F)?
1 k7 1 1
Xpj = L, Kij =Ty + 5 i Lj), Y= L. Sij = Laj + 505 + G
1 ) . 1
Sig 1= o = (UOV, oy = (k). Ei=9(0) — = (Uo)

I, = ;mwm(u © (US)); + (1 - BLo)E(U© U),)

Kij :==vx(BxSi; + (1 = Br)E), Lij:=v01(Br,18; + (1= Br1)E)

E

Jij =301 =Br3)=UO U)l%j +703803(U* @ 8S),;

s

Gy = in(U O ((BxS + (1 - Br)E)U))1,

1 2 1
—;aL,l(U ® ((BLaS+ (1 = BL1)E)U?)),; + ;@LQ(U © (IU))1,; — %aLs(U ©d);

(see (2.2.44), (2.2.66) and (2.2.53) for the definitions of ®, ® and (-)).

16

(2.2.67)

(2.2.68)

(2.2.69)

(2.2.70)

(2.2.71)

(2.2.72)

(2.2.73)

(2.2.74)



6-2 - We rewrite (2.2.68) as a root finding problem:

—_ 1 + Yl,j 1+Y, K
E1,;(U) := T — 2K, + 1) o ((Xl,jﬁfp) =0 (2.2.75)

which we solve using the Newton algorithm, that is, we define a sequence of U’s:
U+ — ™ — (DEUM™))~tEU) (2.2.76)

where D= is the Jacobian of =:
0=

D= iy i= . 2.2.77
( )l7]7l 5T aUl/ﬂ ( )
6-3 - We initialize the algorithm with the solution of the Medium equation, which is
computed using the easyeq method. However, easyeq only computes 4 at the momenta given
by the Gauss-Legendre quadratures (2.1.16). To obtain a value for @ at k;;, we use a linear
interpolation (code is provided for a polynomial interpolation, which has not performed as well).
The parameters tolerance, maxiter, minlrho_init, nlrho_init are passed on to easyeq as is,
and the order of the Gauss-Legendre quadratures is set to JxN.
6-4 - We are left with computing the Jacobian of =:
0= ; 1 (1 +Y; ')35’ iX7 i 14Y;
OviZ1j = 7 = Opdiy + ( Ll — Y ) @ (7“2)
T o0y Y 2(X + X +1 e (X1;+1)
i Xy +1) L+ ’ (2.2.78)
(1 + Yl,j) 2(1 + Ym‘) 1+Y, 5
2(Xp; + 12\ X5 +1 Ok = Oy | 02 ((Xz,j+1)2>
with
1 al/ 'Ll i
A Xy = — (OpiKij — Oy illaj + Oy T g) — "Xy (2:2.79)
Li; Li;
1 1 Oy 1Ly
8!’,@'Yl,j = — al’,iSl,j — 8l/7i]LlJ + *al/’iqﬂ[’j + 8[171'(@;[7]' — T Yl,j (2_2,80)
Ly 2 Li;
1 1
8[/7181,]' = —;(]ll/ﬂ' © U)IJ‘, 81171»1!43 = —; <]ll/7itl> (2.2.81)
0Ky = vk (Br Oy iSi; + (1 = Br)owE), Oyl :=vp1(Br,10r:S1; + (1 — Br,1)0r ;E) (2.2.82)
1
Oyl = =vr2 (Bro(ly; © (US) + UG (Ly;S + Udy ;)5
p (2.2.83)
+(1 = BL2) (O E(U O U)y,; + 2E(U © Ty i)1,5))
1
o id; = ?n,s(l — B1,3) (O E(U G U, +4E(U G U);; (UG Ly ,);)
(2.2.84)

+v0.380,3(41y; @ U*? @ S + U ® 0y ,S)y

17



2
Oy iGr; = ;”YKOéKﬁK (1y; © (SU)+ U (Sly,; + 31',1'SU))17]-

2
+;’YK04K(1 — Br) (Or ;E(UG U); + 2E(1y; © U), )

1
_;aL,lﬁL,l (]ll’,i © (SUz) +U® (81/,1-SU2 + QS[U]II’J))[J'

1
—;am(l — Br1) (Ely,; 0 U* + U ® (9 ,EU* + QE[U]ll',i))lJ

1
—ar3(ly; ©J+ U oy d),

2
+;aL,g((]llgi ©(IU)); + UG (0 10U+ 11y ;)15 — %

6-5 - We iterate the Newton algorithm until the Newton relative error € becomes smaller
than the tolerance parameter. The Newton error is defined as

_utnth) — e,

[Tl
where || - ||2 is the l2 norm. The energy thus obtained is
e="LE
2
the Fourier transform 4 of the solution is
X Ui ;
u(km) ~ —

where k; ; was defined in (2.2.39), and the solution u in real space is obtained by inverting the
Fourier transform, following the prescription of (2.2.34):

J-1

ulel) = [ g eIk ~ ;”TGW le_:chos )1+ D)) 2045 Vs sin(Dy(z) o).

7 - Condensate fraction. To compute the condensate fraction, we solve the modified
anyeq (see [CJL20b)):
(=A +2p)uy, = (1 —uy)v — 2pK + p*L.

where K and L are defined as in (2.2.2)-(2.2.7) in which w is replaced with w,. The uncondensed
fraction is then

N = Opelu=0 = —g/daz () Oty ()] p=o-

To compute the energy in the presence of the parameter u, we proceed in the same way as for
p = 0, the only difference being that k2 should formally be replaced by k2 + 2. In other words,
we consider Uj; = u,(|k;;|) and define Z(U, p) in the same way as in (2.2.75), except that X

should be replaced by
1 kij+2p
Xl,': KZ,’_]LZ,"F 5] +Hl,' .
T L, < J J 2 J

E(Uua p) =0

We then solve

18

(2.2.85)

(2.2.86)

(2.2.87)

(2.2.88)

(2.2.89)

(2.2.90)

(2.2.91)

(2.2.92)

(2.2.93)



By differentiating this identity with respect to u, we find 0,u,,:

auU|u=0 = _(DE)_lauE|u=0

and
o QY0 o 1, Y (L4 Y)? REL (P L
8#“‘:“:0 - Q(Xl,j + 1)2 o <(Xz,j+1)2) (Xl,.? ) 0 Xl’]a ((Xl,j+1)2> ’ 6'MXZJ N le,j'
We then approximate )

(see (2.2.53)).

8 - Correlation function. The two-point correlation function is

de

CQ(.’E) = Qp&)(x).

In Fourier space,

de sin(|k||z|) ode
_Qp/dke““ =2 /dk — .
[kllz]  60(k)

8-1 - We can compute this quantity by considering a modified anyeq in Fourier space,
by formally replacing ¢ with
sin(|k|||)

o+ AallkD),  glkl) = "

Indeed, if ey denotes the energy of this modified equation,

ncao = [ i s on60) + da(lk)) = [k allk s

so, denoting the solution of the modified equation by wy,

Ca(x) = 2pdrex|r=0 = —p2/da: (g(x)up(z) + v(x)Orux(x)|r=0)-

We compute dyuy|y—o in the same way as the uncondensed fraction: we define Z(U, \) by formally
adding A\g(|k|) to 0, solve Z(U, \) = 0, and differentiate:

MU0 = —(DZ) ' \E|r=0-

8-2 - We compute 0\Z|r=0:

1 (1+Y,)00X 14Y,
ONE1j = 0100 L9 0, ) @ (i)
VL = 0L J*z(xl,jﬂ)( X+ 1 W ) P +ir

(1+Y,) <2(1 + Y ;)

X1y = 3Yi; ) 00 (i)
20Xy + 13\ X 41 T lﬂ) (%Ki +1)?

with 1 1
O\S1; =@ — ;(U ©9);, O\E=g(0)— p (Ug)

19

(2.2.94)

(2.2.95)

(2.2.96)

(2.2.97)

(2.2.98)

(2.2.99)

(2.2.100)

(2.2.101)

(2.2.102)

(2.2.103)

(2.2.104)



O\L1;

1
Xy = L. (OKiyj — oLy j +0xLj) — » X5
’] 7]
1 1 oLy
MY = — | OaS1j — Ly + 59\J1j + WGy | — =2V
Ly, 2 Ly,

K ==Y (BrO\S;; + (1 — Br)OAE), O\Lij :=v0,1(Br10:S;; + (1 — Br.1)0\E)
1
oh\l; = P (BL2(U© (U0xS)1; + (1 — Br2)0E(U© U) ;)

1
O\ = ?'YL,B.(l — Br3)HEWU 0 U)}; + 71,381,3(U%* @ 0zS)1,5

2 2 1
G, = ;’YKOZKBK (O\SU), ; + ;WKOéK(l - Br)HEUU),; — ;aL,lﬁL,l (Uo 5,\SU2)M

1 2 1
—;OJL,l(l — 5L71)a,\E (U ® (UQ))ZJ + ;OéLQ[U ® (OA]IU)M — 2—/)0@,3([[} ® 8,\J)l,j.

To evaluate (U® g) and (Ug), we proceed as in (2.2.58) and (2.2.59). To do so, we replace ¥ with
g in the computation of Y.

8-3 - In order to invert the Fourier transform in (2.2.98) numerically, we will use a Hann
window (see appendix A4)
k
Hp (k) = ]1|k|<% COSQ(%).

The parameter L is set using window_L. The computation is changed only in that g is changed

in(|k||z
to Hy, (i) el

9 - Momentum distribution. To compute the momentum distribution (see [CHe21]), we
add a parameter A to anyeq:

—Auy(|z) = (1 = ur(|z)o(e]) — 20K (|z]) + p*L(|z]) — 2Xiio(q) cos(q - z)

(g = tx|x=0).- The momentum distribution is then

M(a) = Orelrco =4 [ do v@)orur(a)heo
Note that the Fourier transform of 2A4(q) cos(q - x) is
—(2m)* X (q)(8(q + k) + b(q — k).
We compute dyuy|r=o in the same way as the uncondensed fraction.

9-1 - In order to do so we will discretize momentum space, see (2.2.39), and so it is
necessary to construct a discrete analog of the delta-functions in (2.2.114). The starting point
we take is

/ dkf(k)5(k — ) = [(q)

so, when approximating the integral according to (2.2.34), we find

|
—

N
(T4 —71) Y wj cos(T5E) (1 + ()07 () £ (01())d (D) — ki) ~ f (R )

j=1

J
7r2

2

N
I
o

20

(2.2.105)

(2.2.106)

(2.2.107)

(2.2.108)

(2.2.109)

(2.2.110)

(2.2.111)

(2.2.112)

(2.2.113)

(2.2.114)

(2.2.115)

(2.2.116)



where 4 is the approximation of the delta-function. Since
Vi(zj) =k

(see (2.2.32)), we find that the definition of § must be
< 2 T ; -1
Ougivi 7= 0004, — (1 = m)w; cos(T5H) (1 + Ky g) ki) -

Note that, due to the invariance under rotation, the approximation for d(q + k) is equal to that
for 6(q — k).

9-2 - To compute the momentum distribution at ¢ = ky ;, we define =Z(U, A) by formally
adding _2(277)3)\@0(kl’,i)5l,j;l',i to Gy 5, which corresponds to replacing Y with

1

Li;

Yy, =

1 Uy, ~
(Sl,j — Ly, + 5«]]1,]' +Gyj — 2(2m)° A ; 5l,j;l',i>

Then we solve =(U, \) = 0, and differentiate:
O\Ulr=0 = —(DE) ™ 'O\E|r=0-

Finally,

= 1 Y, 1+Yy, v
8)\:al,j‘)\=0 = —8)\Yl7j‘)\:0 (2 < 14+Y 5 ( j) 8<I>< 14+Y; ))

(X +1) (Xl’j+1)2)+2(Xl,j+1)3 (i +1)?

with N
2(2m)3Up 3010 4

plLy ;

oY jlr=0 =

2.3. simpleq-Kv
The method is used to compute observables for the simple equation

—Au=v(1—u)—4deu+2epuxu, e= ';/d:n (1 —u(]z|)v(|z]).

One can show [CJL20b, Theorem 1.6] that the condensate fraction is

)= p [v(z)Ru(z) dx
1—p [v(z)R(2u(z) — pu xu(z)) dz

with
R=(—A+v+4de(l - pux))L.

Similarly, the two-point correlation function is [CHe21, (45)]

2 AU(1 — u) — 2pu * Av + p?u* u* K
1—p [dz v(z)R(2u(z) — puxu(z))

Co=p*(1—u)+p

Thus, using the fact that £ is self-adjoint, we can compute these observables of the simple equation
directly from the knowledge of Ruv.

2.3.1. Usage

The computation uses the same approximation scheme as anyeq, as well as using the solution
of anyeq. As such, it takes a similar list of parameters: rho, tolerance, maxiter, P, N, J,
minlrho_init, nlrho_init.

21

(2.2.117)

(2.2.118)

(2.2.119)

(2.2.120)

(2.2.121)

(2.2.122)

(2.3.1)

(2.3.2)

(2.3.3)

(2.3.4)



The available commands are the following.

e Kv: compute Rv as a function of |z|.
Extra parameters:

» xmin (Float64, default: 0): minimum of the range of |z| to be printed.

» xmax (Float64, default: 100): maximum of the range of |z| to be printed.

» 1nx (Int64, default: 100): number of points to print (linearly spaced).
Output (one line for each value of |z|): [|z]] [Rv]

e condensate-fraction: compute the uncondensed fraction as a function of p
Extra parameters:

» minlrho (Float64, default: 1076): minimal value for log p.
» maxlrho (Float64, default: 10%): maximal value for log;, p.

» nlrho (Int64, default: 100): number of values for p (spaced logarithmically).

maxlrho—minlrho

» rhos (Array{Float64}, default: (10™™™2ot""ime ™" - list of values for p, specified
as a ‘,’ separated list.

Output (one line for each value of p): [p] [1]

e 2pt: compute the two-point correlation as a function of |x|.
Extra parameters: same as Kv.
Output (one line for each value of |z|): [|z|] [C2]

2.3.2. Description
In Fourier space (2.2.8),

Rf= /dx e*T(—A + de(1 — pux) +v) f = (k* + de(1 — pa(|k])) + 0%) f

where % is defined in (2.2.9). We follow the same approximation scheme as anyeq:

R f (k) = (k7 + 4e(1 = Ugi))fi; + (0 © iy

with f,; == f(ki;), Uy; = pu(|k]), © ls defined in (2.2.44), and k;; is defined in (2.2.39).
Therefore, we approximate the operator /1 by a matrix:

J-1 N
ﬁ kl] ZZMZJI 1fl’ ]
=01=1
with, by (2.2.44) and (2.2.38),
Ml,j;l’,i = 6l’,l6j z(k?] + 46(1 - Ulj))
P 2—0m,0 mm(1+x;)
o7 5> W; COS(——5—)

S ) Agt () - :
4772’kl,]’ n;()l;) " l ,nsl J (1 B Tl/+12 T sin(%) + Tl/+12+7'l/)l,f

Defining 1 ; as the vector whose only non-vanishing component is that indexed by ', which is
equal to 1, we can rewrite

My jar i o= 0p065:(kit; +4e(1 = Upj)) + (0 © Ly ).

22

(2.3.5)

(2.3.6)

(2.3.7)

(2.3.8)

(2.3.9)



Thus
fu ~ M1y,

To compute (2.3.2), we write

which we approximate as
N (UM~ 1v)
T T (eU - U2) M To)

where (-) is defined in (2.2.53). We can thus compute 1 using the solution U computed by anyeq.

To compute (2.3.4), we write
Ro(@)(1 = (@) + [ s (~200R0 + p*a*R0)

Coy = p*(1 — u(z ? Q;
2=p"(1—u@)) +p L—p [ g (2a(k) — pa2 (k) Ro(k)

which we approximate as

o (Mo) (1 — p~t (e7#15U)) + ((—2UM ~'vo + UM 1))
1—{((2U - U2)M~1v) ‘

Corp*—p <e’“”vij> +p

We can thus compute Cy using the solution U computed by anyeq.

2.4. simpleg-hardcore

This method is used to solve the Simple equation with a hardcore potential:

(—A +4e)u(x) = 2epu x u(x) for |z| > 1

u(z) =1 for |z] <1
with
A pdu| |z 1

e=— .
2(1— Smp+p? f\x|<1 dx u*u(x))

This equation is solved in z-space, and as such is very different from easyeq, and significantly
longer to run.

2.4.1. Usage

Unless otherwise noted, this method takes the following parameters (specified via the [-p
params] flag, as a ‘;’ separated list of entries).

e rho (Float64, default: 1079): density p.
e tolerance (Float64, default: 10~'!): maximal size of final step in Newton iteration.
e maxiter (Int64, default: 21): maximal number of iterations of the Newton algorithm before

giving up.

23

(2.3.10)

(2.3.11)

(2.3.12)

(2.3.13)

(2.3.14)

(2.4.1)

(2.4.2)



e P (Int64, default: 11): order of all Chebyshev polynomial expansions (denoted by P below).
e N (Int64, default: 12): order of all Gauss quadratures (denoted by N below).
e J (Int64, default: 10): number of splines (denoted by J below).

The available commands are the following.

e energy_rho: compute the energy e as a function of p.
Disabled parameters: rho.
Extra parameters:

» minlrho (Float64, default: 1075): minimal value for log p.
» maxlrho (Float64, default: 10?): maximal value for logq p.

» nlrho (Int64, default: 100): number of values for p (spaced logarithmically).

maxlrho—minlrho

» rhos (Array{Float64}, default: (10™™™2oT""umme ™), « list of values for p, specified
as a ‘,’ separated list.

Output (one line for each value of p): [p] [e] [Newton error €.
Multithread support: yes, different values of p split up among workers.

e condensate fraction rho: compute the uncondensed fraction n as a function of p.
Disabled parameters: same as energy_rho.
Extra parameters: same as energy_rho.
Output (one line for each value of p): [p] [n] [Newton error €].
Multithread support: yes, different values of p split up among workers.

e ux: compute u as a function of |z|.
Extra parameters:

» xmin (Float64, default: 0): minimum of the range of |z| to be printed.
» xmax (Float64, default: 100): maximum of the range of |z| to be printed.
» nx (Int64, default: 100): number of points to print (linearly spaced).

Output (one line for each value of x): [|z|] [u(]z])]

2.4.2. Description

In order to carry out the computation of the solution of (2.4.1) and compute the condensate
fraction at the same time, we will consider the equation with an added parameter u > 0:

(—A 4 4e)u = 2epu * u, e::e—i—g
for |z| > 1.

1 - Energy. To compute the energy e of this equation, with the extra parameter u, we
consider the limit of the soft sphere potential A1, (see (2.1.1) with Bx = 1, = 0):

(A +2u+4e)u(z) = sx(z) + 2epu*u, sx(z) = A1 —u(x))ly<, 2; = /d:v sx(x).

Furthermore, since Ou need not be continuous at || = 1, by integrating —Awu over a thin spherical
shell of radius 1, we find that, for |z| < 1,

—Au(z) = =0(|z| = D) oul iz

24

(2.4.3)

(2.4.4)

(2.4.5)



so, formally,
Soo(@) = Li31<1(2€(2 = pu s u(x)) + 2p) — 6(|z| — 1)Oulz\a (2.4.6)

and

8T
— = /d$ Seo(x) =2e | — — p/ uxu(w) | + —p — A70u||p - (2.4.7)
p 3 |z|<1 3

Therefore,
2mp(31 — Ouljz1)

e= — . (2.4.8)
1-— %p—i—pr'IKldx u* u(x)
2 - Integral equation. We turn the differential equation in (2.4.3) into an integral equation.
Let
w(|z]) :== |z|u(z) (2.4.9)
we have, for r > 1,
(=% + 4e)w(r) = 2epru * u(r). (2.4.10)
Furthermore, the bounded solution of
(=02 + ®)w(r) = F(r), w(l)=1 (2.4.11)
is ~ P 3
_ —a(r=1) s+ —al(r—1)—s| _ _—a((r—1)+s)
w(r)=e + /0 ds o (e e ) (2.4.12)
so, for r > 1,
1 oo
u(r) = e 2Velr=1) 4 pe/ ds (s+1)(u*u(s+1)) (672\ﬁ‘(7“71)*8‘ _ 672\/&(7"*1)“)) . (2.4.13)
r QT\/E 0
In order to compute the integral more easily, we split it:
1 r—1
u(r) = e 2Velr=1) 4 p—\e[ ds (s + 1)(u*u(s + 1)) sinh(2y/es)e 2V
" TVEJo (2.4.14)
+2£ sinh(2y/e(r — 1)) / ds (s +1)(uxu(s+1))e 2Ve,
’/“\/E r—1
We change variables in the last integral:
1 r—1
u(r) = = 2Velr=1 4 e ds (s 4 1)(w* u(s + 1)) sinh(2y/es)e 2V =1
" rveJo (2.4.15)
+2f\eﬁ (1 - 6_4ﬁ(r_1)) /0 do (o +7)(uxu(o +1))e 2V,
3 - The auto-convolution term. We split
u(r) = Lpsqug(r — 1) + 1,«. (2.4.16)
in terms of which
uxu =1, xL<g 4+ 2L,<1 * (up(r — Do) + (Lpsqug (r — 1)) * (ug(r — 1)1,51) (2.4.17)

25



In bipolar coordinates (see lemma A3.1),
2 r+t
L # L (r) = 2 / dt t / ds s1,e1
™ Jo [r—t|
and, if » > 0 and ¢ > 0, then

2

r—t| [r—t|

Therefore, if r > 1

or (1 1—(r—1t)? m
]l’rgl * ]lrél(r) = ]lrggf dt t¥ == ]l,nggf(’l“ - 2)2(7“ + 4)
T Jr_1 2 12
and if r < 1,
2 [ 1—(r—t)?
]lr<1 * ]lrgl(r) = 7“/ dt t (]ltglr?l“t + ]1t>1r(2 ) >
0
SO
4 3, T 9 m
T, xl,i(r) = gﬂ'(l — 1)’ + Er(36 —48r + 171%) = E(r —2)%(r+4)
Thus, (2.4.20) holds for all . Furthermore,
A o) r+t
21,<1 % (ug(r — Dlysq) = / dt tuy (t — 1)/ ds slg<q
T J1 |r—¢|
so, if 7 > 0 then, by (2.4.19),
2m ! 9
20,1 * (ug(r — D)Lpsq)(r) = — dt tug(t —1)(1 — (r —t)%).
T Jmax(1,r—1)
Finally, if r > 0 then
I 00 T+t
(Lysiug(r—1)) « (ugp(r — 1)L>1)(r) = / dt tuy (t — 1)/ ds suy(s—1).
rJi max (1,|r—t|)

Thus, by (2.4.20), (2.4.24) and (2.4.25), for r > —1,

uxu(l+7r) =1« (T—l) (r+5)+ dt (t+1)uy (£)(1 = (r —t)%)

12

max(0,r—1)

- r+t+1
+ 2 / dt (t+ 1)u(t )/ ds (s + 1)u(s).

r+1Jo max (0,|r—t|—1)
We then compactify the integrals by changing variables to 7 = }—jrt and o = %—1‘;:

. (1 n ) 1 ™ ( 1)2( " 5) n 8T /mm(L =) P 1 (177)(1 ( 177_)2)
u*xu )= —\r — r e Y e —\r — 7=
<179 r+1 - (1+7)3 RS ES 1+7

321 (1 1 min(1,64 (r,7)) 1
dr —— 1-7 do —— 1=ay
+7=_|_1 /;1 T (1+T)3u+(1+T)/oz(1+r,T) g (1+0)3u+(1+0)

with - 2| |
1T - r_lJTT
a(1+r71)=——7T—  fBilr,7)i=—-"7FT—

( : 247+ 157 Hrr) Ir— 15

r+t min(1,r+t) 1— (T‘ . t)2
/ ds sls<1 = ]lr—1<t<r+1/ ds s =1, 1<t<rt1 (]lt<1—r2rt + ]1t>1—r> :
|

(2.4.18)

(2.4.19)

(2.4.20)

(2.4.21)

(2.4.22)

(2.4.23)

(2.4.24)

(2.4.25)

(2.4.26)

(2.4.27)

(2.4.28)



(note that a_ is the same as defined for fulleq). Finally, note that, if S; < 1, that is, if
Ir — i;—ﬂ > 1, then
Ba(r,7) = ap(lr — 155 = 1+ 155, 7)
where
1—|r— 357]

1+|7"—1+7T

as(ry7) =
is the same as is defined for anyeq (2.2.43).

4 - Chebyshev polynomial expansion. We use the same interpolation as we used in
anyeq: (2.2.36)

J-1
1 1 ) 2r—(rit7i41)
T3 = L dnsrana Z F () Tn(F5 5
=0
(J is set by the parameter J) with
(vu) L 2— 571,0 cos(nd) 2—(1141—7) cos(0) —(T+1+7a)
Fio (ue) === /0 ‘ (14 ™5 cos(6) + 4w U+ (e @ ) )

and we take v, to be the decay exponent of u, which we will assume is v, = 4. In particular,
by (2.4.27),

wku(l+7) = 1,1 BO(r) + Z Z F )+ S TF ()R (u) BE, L ()
Ll n,m
with .
BO(r) .= ﬁ(r —1)2(r+5)

] min(7y41,%77) 1 (T
B(l)(r) =1 1 QZT]ITZ+1>—L - / dr 7)3— (1—(r- 1777-)2)1171(27( it H'l))

L Hrr 4 1 maX(Tl,fzi ) (1 + )3 Vu b 41T
) L S2m [ ! 27— (ri+7111)
Bl’n;l/’m(r) — r + 1 /Tl dT (1 + 7—)3_1/1/, Tn( Tl+177'l+ )]17'1/<Oé+(|7" 1+7—| 1+T (1+T,T).
./min(fl/+1,a+(| 1+: 12+TT 7)) J 1 (20—(Tu+n/+1))
3—u, M Ty =Ty :
max (1 ,a— (14r,7)) (1 + O') w +17 T

Thus, by (2.4.15), for r > 0,
uy(r,e,e) = DO(r e, e +ZZF (ug)D ln (r,e,e) —i—ZZF(V“) (. )(u+)Dz(,2n);l’,m<7"’ €, €)
LU n,m
with

min(1,r)

DO, e,e) = ——e 2V 4 ds (s + 1)B© (s) sinh(2y/es)e 2V

pe
r+1 (1"—1—1)\/E/O

1—r
pe e (0) BN
1,¢i—————— (1 — 1)B
+ ng(r—i—l)ﬁ( e )/0 do (o +7r+1) (c+7r)e

Dl(}n)(r, e, €)= ds (s+1)B ( )( ) sinh(2y/es)e 2V

r+1\f/

TR (1 - 6_4\/&’) /00 do (0 +1+ 1)B(1)(O' +r)e 2V
2(r +1)y/e 0 bn .

27

(2.4.29)

(2.4.30)

(2.4.31)

(2.4.32)

(2.4.33)

(2.4.34)

(2.4.35)

(2.4.36)

(2.4.37)

(2.4.38)

(2.4.39)



and

T
Dl(2n) (75 €5 €) 1= ,oe/ ds (s+ 1)Bl(i),l, m(5) sinh(2v/es)e 2V
(r+1ve o o (2.4.40)
e (1) [ 2 2y
+2(r+1)\/5<1 e >/0 do (o +r+1)B) (0 +1)e .
5 - Energy. We now compute the approximation for the energy, using (2.4.2).
5-1 - We start with Quljy\,. By (2.4.15),
Dl = —(1+2v/6) + 2p€/ do (o4 1)(u s u(o +1))e2Ve (2.4.41)
0
which, by (2.4.33), becomes
Oul i = — (1 +2ve) + 7V (e, ¢) +ZZF Ve, o)+
(2.4.42)
+ ZZF(”“ FL ) e
LI nm
with .
1O (e, ¢) = 2pe / do (o +1)BO (0)e=2Ver (2.4.43)
0
/D e, e) = 2pe / do (o +1)BY (o)~ 2Ve (2.4.44)
) 0 k)
and -
7}71);l,7m(e, €) 1= 2pe do (o + 1)Bl(n)l’ (o)e 2Veo, (2.4.45)
0
5-2 - Let us now turn to flw|<1 dz u*u(x). We have
1
/ dzr u*u(zr) = 47r/ dr 2w u(r) (2.4.46)
|z]<1 0

so, by (2.4.33),

/| - de wsu(z) =50 (r) + Z Z F(V“ 11)(7“) + Z Z Fl(';;‘)(qu) )(u+)'yl(n)l, (r) (2.4.47)

Ll nm

with )
7O .= 4x / do 0?BO (0 — 1) (2.4.48)

0

1
”yﬁl) = 47r/ do O'QBZ(Q(O' -1) (2.4.49)

b 0 2

and .

'_Vl(i)vl' = 47T/ do UQBZ(?,I, mo—1). (2.4.50)
il 0 il

28



5-3 - Thus,

e = 2mp-
C©) =19, ) = Xy Fia (wi) i (6,6) = i Sn Fion () By (w7 e )
1—%wn+w(¢®+z;znﬂm<wm%n+z;yzmmF%%unF%ﬂwoﬁ$uQ

C(E):Z%M—F( +2V/€) = (e—e)+1+2f

6 - Newton algorithm. In this paragraph, we set € = e, that is, u = 0.

6-1 - As we did for anyeq, we discretize the integral in (2.4.32) by using a Gauss-Legendre
quadrature, and truncate the sum over Chebyshev polynomials to order P. We then reduce the
computation to a finite system of equations, whose variables are

2+ (1141 — 7)) sin(52 2 L) — (Ti41 + Ta)
2 — (n41 — m)sin(52) 4 (m41 + 1)

e, uji=ug(ry;), 1=

where x; are the abcissa for Gauss-Legendre quadratures (see (2.2.39)). In other words, we define
a vector U in dimension NxJ+1, where the first NxJ terms are u; ; and the last component is e.
We then write (2.4.37) as, for 1 € {0,---,J — 1}, j € {1,---,N},

Ein+;(U) =0, Ens1(U)=0

(note that Z;n; corresponds to the pair (I,7)) with

Ein45(U) i= =y + DO (ry 5, €) +Zzgz Tlm e)+

+Z§}W%M@MM%Mmma

1 nm

Ens+1(U) i= —et
C(e) = 89(e) = 52 0 B W) (€) = S Y Bt (W ()8 iy ()
L= §mp+ 2 (50 + X0 5, 810 080 + T S 810 WS (05 bt )

where § is defined in (2.2.38), and D@, g g are defined like D®, 4() and 79 except that
the integrals over bounded intervals are approximated using Gauss-Legendre quadratures, and
the integrals from 0 to co are approximated using Gauss-Laguerre quadratures. Gauss-Legendre
and Gauss-Laguerre quadratures and their errors are discussed in appendix A2. The orders of
the quadratures are given by the variable N.

+2mp

6-2 - We then solve = = 0 using the Newton algorithm, that is, we define a sequence of
U’s:
Ut = g™ — (pEwm)E)

where D= is the Jacobian of =:

0=,
(DE)a,p = 75—
0Ug
We initialize the algorithm with
(0) 1 ©
UlN+J (1+ 7'12 )2’ Ujng = 7.
J

29

(2.4.51)

(2.4.52)

(2.4.53)

(2.4.54)

(2.4.55)

(2.4.56)

(2.4.57)

(2.4.58)

(2.4.59)



6-3 - We are left with computing the Jacobian of =:

o= (U
uviﬂ():_(;”,ajﬁzz@l (LD}, (5 €)+

Ouy

l/l

+2 Z Zsjl’/u) ’Ij’u) ')]Dl(’z’?n;l”’,m

l// l/// n,m

where 1y ; is a vector whose only non-vanishing entry is the (I, )-th, which is 1,

02 n+1(U) _
Ouy

B et (€) = 250 Y B W) (L )e

(Tl,ja 6)

' (€)

=2mp

1= $mp+ 07 (50 + X0 X, 80 Wall) + X Lo S 080

P (0 X B0 (L8 4250 Yo 81 (WS (L8,

")

")

—(ENJ+1(U) + 6)

9Ein+;(U)
87;*8]1)) (rj.e —1—22& 8]D>l, (r,5.e)+

+ Z Z S(Vu) l(’l’/u) )OEDI(?,B@;I",m

Ul n,m

02Zn74+1(U)

=1
Oe +

1— Smp+ p? ( P 3lyu)( )91n+211~ ang(yu( )Sz('lfu (w)g

0.C () — 8ea® (e) — 3 32, F1) (w)Deatl) (e) - zll,znma”“ma”“()eg,(g

+2mp

(2)
WG

(Tl7j7 6)

U.m (e)‘

To compute 9.D® and 8eg(i), we use J, = 273@8?/6 and

aC(e)
dv/e

=2

(0)
oD (re)  2r o2V
NG r+1

+r+1
1—r
—|—]1T<1p/ do (0 +7r+1)BO>6 + 7).
h 2(7""1) 0
-((1—2\/50) (1—

30

1—87p+ p? <g(0) +>> ., 3(Vu (w)g z( + > ansz )gl’,m (u)gl(,n);lﬂ

e~ f) _2‘[”+4fre

")

p / M b (54 1) BO () (1 —2¢/er) sinh(2v/es) + 2v/es cosh(2V/es))
0

2r+0))

5

(2.4.60)

(2.4.61)

(2.4.62)

(2.4.63)

(2.4.64)

(2.4.65)



oD (r, ) r
g\/é == i . /0 ds (s + l)Bl(;) (s)e 2Ver ((1 — 2v/er) sinh(2v/es) + 2v/es cosh(2y/es))

N M ,
+2(r+1) /0 do (0 +r+1)B; (0 +7r)

. ((1 —2/e0) (1 _ 64@) NG \/éTe—z\/E@rJra))
8Dl(,2n);l’,m(r7 6)
e N

= i 1 / ds (s+ 1)Bl(2n)-l’ m(s)e_Q‘/ET ((1 = 2v/er) sinh(2v/es) + 2v/es cosh(2V/es))
0 b b b

[ (2)
+2(r+ 1 /0 do (o +r+1)B) (0 +T)

. ((1 —2v/eo) (1 — 6_4‘/Er) e 2VeT 4 4\/Ere_2\/é(2r+g)) .

Furthermore, 0 .
7% (e) / -
=4 1)BO(o)(1 - 2ea
NG pve ; do (o +1)BY)(0)(1 — \eo)e
o1, (e) > (1)
i = 4 1 B 1— —2\/EO'
NG pe/o do (0 +1)B;, (0)(1 — Veo)e
and @
Oty m (€) > (2) 2
;1L ,m — . - \/EO'
NG 4pe/0 do (o +1)B) 5 m(0)(1 Veo)e :

Finally, to get from D to D and 7 to g, we approximate the integrate using Gauss-Legendre and
Gauss-Laguerre quadratures (see appendix A2), as described above.

6-4 - We iterate the Newton algorithm until the Newton relative error € becomes smaller
than the tolerance parameter. The Newton error is defined as

B ||U(n+1) _ U(n) ||2

U™
where || - ||2 is the lo norm. The energy thus obtained is
e=Ujnt1.

7 - Condensate fraction. To compute the condensate fraction, we use the parameter
in (2.4.3). The uncondensed fraction is

n = 8M6‘M:0'

To compute J,e, we use

which we differentiate with respect to u:

(2.4.66)

(2.4.67)

(2.4.68)

(2.4.69)

(2.4.70)

(2.4.71)

(2.4.72)

(2.4.73)

(2.4.74)

(2.4.75)



We are left with computing 9,=:

6: . 12
9Ziv+5(U) _ 8,DO (7, ;e ¢) +§ g S(“ 8]D>l, (r15,e€)
(2.4.76)

op
I DD IR AL A DA AN RN

l/7l// n,m

9Ensn(U) _
o
(‘%C(e)faug(o)(e,e) Didm Sl ( ) ugln(e €) — > v ang(yu (u )S(Vu)( )0 #gl(n)l/ (e, €) (2.4.77)

=27p
LS 2 (80 + 05 S () + S S S S (08

We then use 0, = \/8\/ and
(2.4.78)

2T 6_2\/57,
r+1

oD (r)
NG

pn=0
p min(1,r) oy '
D) /0 ds (s +1)BO(s)e™2Ve (=1 — 2y/er) sinh(2y/es) + 2v/es cosh(2v/es)) (2.479)

+

1—r
+1 (p—l—l)/ do (o0 47+ 1)BO(o + 7).

. ((—1 —2v/eo) (1 — 674\/&) “2Ver 4y Jere? 2r+")>

oD (r)
ENG

Tf_ 1 / ds (s + 1)31(2(3)@72@ ((—1 — 2y/er) sinh(2y/es) + 2y/es cosh(2V/es))

pn=0
(2.4.80)

/ do a~|—r—|—1)B( )(04—7")

-((—1—2\/50) <1—6_ \f) _2‘[04—4\[7“6

+2 (r —|— 1)
2r+o))

3Dl(’2n);l,’m(r)
NG
©n=0

_r [ 2)
_7’—|-1/0 ds(s—i—l)Blnl,

T / do (0 +7r+ l)Bl(i);l,’m(aqu)-

2(r+1)
. ((—1 —2y/eo) (1 — 674\/&) emHer 4 4\/57’672‘/5(2””)) .

S 6_2\/ET —1 — er) sin €s €S COS €s
(s) ((—=1 = 2V/er) sinh(2V/es) + 2V/es cosh(2V/es)) (2.4.81)

9~
7 (2.4.82)

dye
n=0
8’}/(1)

In

0v/e

1
= —4pe/ do o(o + l)B(O)(U)e*Q‘/&’
0

(2.4.83)

= —4pe/ do (o + 1)03}2(0)672‘/&’
0 :

=0

32



and )
afyl n;l’,m > (2)
e = —4pe/0 do (o0 +1)0B;

pu=0

(o)e 2Ver, (2.4.84)

2.5. simpleqg-iteration

This method is used to solve the Simple equation using the iteration described in [CJL20].
The Simple equation is

—Au =S5 —4deu+2epuxu (2.5.1)
2e
S:=01—-uv, p:= . (2.5.2)
Jdx (1 —u(lz])v(|z])
for a soft potential v at fixed energy e > 0. The iteration is defined as
2
—Au, = S, — deun + 2€pp_1Un_1 * Up_1, ug =0, € (2.5.3)

Pl = T dr (1= up (J2]))o(lz])”

2.5.1. Usage

Unless otherwise noted, this method takes the following parameters (specified via the [-p
params] flag, as a ‘;’ separated list of entries).

e ¢ (Float64, default: 107%): energy e.
e maxiter (Int64, default: 21): maximal number of iterations.

e order (Int64, default: 100): order used for all Gauss quadratures (denoted by N below).

The available commands are the following.

e rho_e: compute the density p as a function of e.
Disabled parameters: e.
Extra parameters:

» minle (Float64, default: 107%): minimal value for log;, e.
» maxle (Float64, default: 10%): maximal value for log; e.
» nle (Int64, default: 100): number of values for e (spaced logarithmically).

maxle—minle

» es (Array{Float64}, default: (10™™et™ e "), : list of values for e, specified as a
‘,’ separated list.

Output (one line for each value of e): [e] [p].

e ux: compute u as a function of |z|.
Extra parameters:

» xmin (Float64, default: 0): minimum of the range of |x| to be printed.
» xmax (Float64, default: 100): maximum of the range of |z| to be printed.
» nx (Int64, default: 100): number of points to print (linearly spaced).

Output (one line for each value of x): [|z|] [ui(|z])] [ua(]z|)] [us(|z])] - -

33



2.5.2. Description

In Fourier space

(K] : /d:n ey, (|2]) (2.5.4)
(2.5.3) becomes
2 ~ a N 2 2e
(k* + de)un(|k|) = Sn(|k]) + 2epp—1tn—1(k)*, pp = = (2.5.5)
Sn(0)
with
S, (1kD) = o(1kD) = 5 [ do (D35 = ). (250
We write S,, in bipolar coordinates (see lemma A3.1):
. 1 00
=9 - — U H 2.5.
SullkD = (1K) = o [t e (OH(HL0) (257)
with —
H(y,t) := / ds sv(s) (2.5.8)
Y Jly—

(note that this agrees with the function (2.1.11) defined for easyeq). We also change variables
to

Y = t—i—ll f— 1;1/ (2.5.9)
) L (1= )i () H(k
Su(k]) = b(|k|) (er)g/o gy L7 W yyg) (K, %) (2.5.10)

We approximate this integral using a Gauss-Legendre quadrature (see appendix A2) and discretize

Fourier space: ) )
— T T; +
, ;= 2.5.11
14z, vi ( )

2
where x; are the Gauss-Legendre abscissa, and

i::

N N 1-y;
A ! (1 — gy )it (52 H (kg 22
S (ki) ~ o(k; : J J (2.5.12
UNETORE Zl 7 % )
so if
we have
N
3" 405 (n) = 0" (2.5.14)
j=1
with ( ( 1_y_>
wj (1 —y;) H (ki, =
Ai = (k2 + 4e)d; Y 2.5.1
»J ( 1 + 6) )] + 2(277)3:93 ( 5] 5)
and
B\ = v; + 2ep,_1Ui(n — 1) (2.5.16)
in terms of which
U=A"1™, (2.5.17)

Finally, we compute p,, using the second of (2.5.5):

N A 1=y 1-y;
2e 1 (L= y;)in (=) H(0, )

. (0) ~ 5(0) — . s i 7 2.5.1

p Sn(0) = (0) 32y E:l wj y;’ (2.5.18)

34



3. Potentials

In this section, we describe the potentials available in simplesolv, and provide documenta-
tion to add custom potentials to simplesolv.

3.1. Built-in potentials
3.1.1. exp

In z-space,

v(|z]) = ae” 7.
The constant a is specified through the v_a parameter, and can be any real number. Note that
v 2 0 if and only if @ > 0. This is the potential that is selected by default.

1 - In Fourier space,

o((k]) = / dx ¢*y(|2]) = ui”k)

In particular, v is of positive type (that is, v > 0) if and only if a > 0.

2 - The zero energy scattering solution, that is, the solution of

(~A+v)p =0, lim =1

|z| =00

is
o) clo(2y/ae”3) + 2Ko(2y/ac”?) 2Ko(2v/a)
r) = c=—
T ’ 10(2\/5)
where Iy and K are the modified Bessel functions, and the square root is taken with a branch
cut on the negative imaginary axis. In other words, if a < 0, \/a = iy/|a| and [DLMF, (10.27.6),
(10.27.9), (10.27.10)]

Io(iz) = Jo(z), Ko(iz) = —g(Yo(x) +ido(z))

where Jy and Y[ are the Bessel functions, so

r ’ Jo(2y/]al)

The scattering length is [DLMF, (10.25.2), (10.31.2)]

w(r):WC,JO(Z lale™2) — Yo(24/]ale”2) C,_YO(Q\/M)

) 2K(2+/a)
ap ngo T( ¢(7")) Og((l) + Y + [0(2\/6)
where ~y is the Euler constant, which, for a < 0, is
TYo(2v/]al)

ap =logla| + 2y — ————.
Jo(2¢/lal)

35

(3.1.1)

(3.1.2)

(3.1.3)

(3.1.4)

(3.1.5)

(3.1.6)

(3.1.7)

(3.1.8)


https://dlmf.nist.gov/10.27#E6
https://dlmf.nist.gov/10.27#E9
https://dlmf.nist.gov/10.27#E10
https://dlmf.nist.gov/10.25#E2
https://dlmf.nist.gov/10.31#E2

3.1.2. tent

In z-space,

2m j2[\* ( Iz
”(‘$|):1|z|<ba§ 1_T ?4‘2 :

The constants a and b are specified through the v_a and v_b parameters, and a € R, b > 0. Note
that v > 0 if and only if @ > 0. Note that

a
v(|z]) = 31,0+ 1

3 2 |£E|<g

(this is more easily checked in Fourier space than explicitly computing the convolution).

In Fourier space,

umo—/dxémwm>—a8

./ |k|b K|b [by \ 2
% (47T51n(2) — % COS(Ql))

Note that this is b%(ﬂ\x|<g)2' In particular, v is of positive type (that is, © > 0) if and only if
a > 0.

3.1.3. expcry

In z-space

v(|z]) = eIl — gt

The constants a and b are specified through the v_a and v_b parameters, and a € R, b > 0. Note
that v > 0 if and only if a < 1 and b > 1.

In Fourier space

) ik 1 ab
o(|k]) = /dm e’ v(|z|) = 8 ((1 + k2)2 - (b2 +]€2)2>

In particular, 9 is of positive type (that is, © > 0) if and only if ab < 1, a < b and a < b3. If
a<1,b>1and ab> 1, then ¢ has a unique minimum at

3.1.4. npt

In z-space

v(|z)) = z2e 170,

Note that v > 0.

In Fourier space
o0k = [z eulal) = 967
1+ k2)%

(
In particular, v is not of positive type (that is, ¢ is not > 0).

36

(3.1.9)

(3.1.10)

(3.1.11)

(3.1.12)

(3.1.13)

(3.1.14)

(3.1.15)

(3.1.16)



3.1.5. alg

In z-space
1
v(lz|) = —————.

Note that v > 0.

In Fourier space

X _ | sin(|k])
o(|k|) :/dm e*ry(|z)) = ar’e lk\T.

In particular, v is not of positive type (that is, ¢ is not > 0).

3.1.6. algwell

In z-space
1+ alz|*

M= ey

The constant a can be set using the parameter v_a and can be any real number. Note that v > 0
if and only if @ > 0. If a > 8, this potential has a local minimum at |z_| and a local maximum

at |xi]:

1
lzy| = \/2(1 ++v1—8a"1).

In Fourier space

) 2
o(|k|) = /dx e*ry(lz]) = —e Fl(a(k? — 9|k| + 15) + k? + 3|k| + 3).

In particular, v is of positive type (that is, ¥ is not > 0) if and only if

8
§a<3+?\ﬁ%6.02.

| =

3.1.7. exact

In z-space

12¢(2%0% (2e — b2) + biat(9e — Tb%) + 4b222(3e — 2b%) + (5e + 16b%))

v(|x]) =

The constants a, b, c,e can be set using the parameters v_a, v_.b, v_c, v_e, and a,e € R, b # 0,

¢ >0, c# 9. Note that v > 0 if and only if [CJL20b]

e —263 + 23v/161

b>0, O<e<l, — ~ 0.601.

b2~ 48
With this potential, the Simple equation has an exact solution:

c b3

Aoy P~

37

(1+ b222)2(4 + 6222)2((1 + b222)% — ¢)

(3.1.17)

(3.1.18)

(3.1.19)

(3.1.20)

(3.1.21)

(3.1.22)

(3.1.23)

(3.1.24)

(3.1.25)



In Fourier space 9(|k|) = [ dx e*®v(x) is

3
2

e_m%

C7T2 C — — a0 )C — — zQ¥)C
s(lkl) = 23 (18+3\f (4 —3a)c— (1 - 2a)

|| A(3 + /0)2c3
3 k
+—18+3ﬁ—|—(4—30¢)c—(1—204)626_ YA Sl Ik O‘(3(9_C)b+8c)e—2”§>

\
b 4+ ——e

A(3 — \/E)Qc% 2¢ B 8(9 —¢)?

with o := b%

3.2. Programming custom potentials

In this section, we provide documentation for programming custom potentials.

The potentials are implemented in the file ‘$SIMPLESOLV/src/potentials. j1’, and consist
of two functions, one specifying the potential in Fourier space (the “potential function”), and the
other returning an approximate value for the scattering length (the “scatterin glength function”)
(as is explained below, a precise value of the scattering length is not actually needed). For
instance, the potential exp has two functions: v_exp and a0_exp. The potential function should
take the following arguments:

e k (Float64): the Fourier momentum

e and any parameters that the potential depends on, such as a in exp (can be of any type,
provided the appropriate changes are made to main. j1 as explained below)

and it must return a Float64: the value of © at k. The scattering length function takes the same
parameters as an input, and returns a Float64: the approximate value for the scattering length.

In addition, the potential must be linked in ‘$SIMPLESOLV/src/main.jl’. In that file, the
potential is read from the command line option U. The relevant code is in lines 197-222. To add
a new potential, add

elseif potential=="{name of potential}"
v=k->{potential function}(k,v_param a,v_paramb,...)
a0={scattering length function}(v_param a,v_paramb,...)

where the number of v_param entries should be the number of parameters of the potential. The
parameters that are currently read from the parameters list are a, b, c and e. To add a parameter,
it must first be declared and initialized after line 35, and code to read it should be added after
line 172:

elseif lhs="v_{name of parameter}"
v_param_{name of parameter}=parse (Float64,rhs)

If the new parameter has a type other than Float64, this should be changed in the parse function,
and in the initialization.

The approximation of the scattering length is only used to initialize the Newton algorithm
for easyeq, so it is not important that it be exact. In fact, some of the built-in potentials set the
scattering length to 1, when it has proved too difficult to compute it exactly.

38

(3.1.26)



Appendices

A1l. Chebyshev polynomial expansion

In this appendix, we compute the error of Chebyshev polynomial expansions of regular func-
tions. Specifically, we will consider class-s Gevrey functions (which is a generalization of the
notion of analyticity: analytic functions are Gevrey functions with s = 1). A class-s Gevrey
function on [—1,1] is a C* function that satisfies, Vn € N,

d"f(x)

sup don

z€[—1,1]

< CoC™(n))*.

Formally, the Chebyshev polynomial expansion of f is

oo
co
=357 z; ¢;Tj()
J:

where T is the j-th Chebyshev polynomial:
Tj(z) := cos(j arccos(z))

and

cj = /07r df f(cos®)cos(j0).

™

\ Lemma Al.1
Let f be a class-s Gevrey function on [—1,1] with s € N\ {0}. There exist by,b > 0, Wthh
are independent of s, such that the coefficients c; of the Chebyshev polynomial expansion are
bounded as

1
cj < boe_bjs.

In particular, the Chebyshev polynomial expansion is absolutely convergent pointwise (and, there-
fore in any L, norm), and, for every N > 1,

Co al bo 1 q\s—1_—bN¥
- Z < (s — DUN= +b71) 7l

Proof: Note that (A1.0.2) is nothing other than the Fourier cosine series expansion of F'(6) :=
f(cos()), which is an even, periodic class-s Gevrey function on [—m, 7], whose j-th Fourier
coefficient for j € Z is equal to C| j|- The bound (A1.0.5) follows from a well-known estimate of
the decay of Fourier coefficients of class-s Gevrey functions (see e.g. [Ta87, Theorem 3.3]). The
bound (A1.0.6) then follows from |T}(z)| < 1 and lemma A1.2 below. O

\ Lemma Al1.2
Given b > 0 and two integers N, s > 0,

0 1 1 s—1 _bN%
—bis < (s— 1)1 [ N c
Ze < (s )< T b 1 _ob

j=N

39

(A1.0.1)

(A1.0.2)

(A1.0.3)

(A1.0.4)

(A1.0.5)

(A1.0.6)

(A1.0.7)



Proof: If v} := [N ijs denotes the largest integer that is < N and has an integer s-th root,

then
Zefb]9< Z e*bj9< Z 7bk<8 Z kslfbk

] VNS k= UN,s k= UN,s

We then estimate

- bk _ Lo\ et
-1 —
I R e =

k:VN,s k l/N s

which concludes the proof of the lemma. O

A2. Gauss quadratures

Gauss quadratures are approximation schemes to compute integrals of the form

b
/ dt w(t) £ (t)

where w(z) > 0 is one of several functions that Gauss quadratures can treat. The possible choices
of w and (a,b) are

e (a,b) =(—1,1), w(t) = 1: Gauss-Legendre quadratures.

e (a,b) = (—1,1), w(t) = (1 —t)*(1+1)?, a,B > —1: Gauss-Jacobi quadratures.
o (a,b)=(—1,1), w(t) =(1— t2)7% Gauss-Chebyshev quadratures.

e (a,b) =(0,00), w(t) = Gauss-Laguerre quadratures

e (a,b) = (0,00), w(t) = t% ', a > —1: generalized Gauss-Laguerre quadratures
e (a,b) = (0,00), w(t) = e *": Gauss-Hermite quadratures.

It is not our goal here to discuss Gauss quadratures in detail, or their relation to orthogonal
polynomials. Instead, we will compute the error made when approximating such an integral by
a Gauss quadrature.

For each Gauss quadrature, the integral is approximated in the form

/bdtw szf rl

where w; are called the weights, r; are the abcissa, and N is the order. The weights and abcissa
depend on both w and the order N. The crucial property of Gauss quadratures is that they are
eract when f is a polynomial of order < 2N — 1.

In this appendix, we compute the error of Gauss quadratures when used to integrate regular
functions. Specifically, we will consider class-s Gevrey functions (which is a generalization of the
notion of analyticity: analytic functions are Gevrey functions with s = 1). A class-s Gevrey
function on is a C* function that satisfies, Vn € N,

d"f(x)

sup don

z€[—1,1]

< CoC™(n))*.

40

(A1.0.8)

(A1.0.9)

(A2.0.1)

(A2.0.2)

(A2.0.3)



f Lemma A2.1 I
Let f be a class-s Gevrey function with s € N\ {0}. There exist by, b > 0, which are independent
of s, and Ny > 0, which is independent of s and f, such that, if N > Ny, then, denoting the
Gauss weights and abcissa by w; and 7,

b 1 b N
/ dt w( szf ri)| < bo(s — 1)I((2N — 1) + b )l bN D) (/ w(t) + Zw2> :
a a 1

i=
In particular, if f is analytic (i.e. s = 1), then

b N b N
/ dt w(t)f(t) = > wif(ri)| < boe PN ( / w(t) + Zwi> .
a i=1 a i=1

Proof: We expand f into Chebyshev polynomials as in (A1.0.2):

(e.)
co
=357 > ¢iTj(x)
=1

Let ) N1
g(x) = f(a) = 5 = Y &Ti).
j=1

Since order-N Gauss quadratures are exact on polynomials of order < 2N — 1, we have

/dtw szf (r; —/ dt w(t szg (14)

and, by lemma Al.1,

1
E]

lg(x)| < (const.)(s — 1)I((2N — 1) +b )s—le—b(QN—l) ‘

A3. Bipolar coordinates

Bipolar coordinates are very useful for computing convolutions of radial functions in three
dimensions.

\ Lemma A3.1

For y € R3,
lyl+t
/ dz f(|z], |z —y|) = / dt/ ds stf(s,t)
[ Iy]—

L I

Proof: Without loss of generality, we assume that y = (0,0,a) with a > 0. We first change
to cylindrical coordinates: (p, 6, x3):

/dxf(\fvl,lx—yl)Z%/ dp/ dzs pf([(p. 0, z3)] | (,0, 25 — a)]).
R3 0 —00

Next, we change variables to

S:|(p,0,333)‘7 t:’(paoaxd_a)’

41

(A2.0.4)

(A2.0.5)

(A2.0.6)

(A2.0.7)

(A2.0.8)

(A2.0.9)

(A3.0.1)

(A3.0.2)

(A3.0.3)



The inverse of this transformation is

2 2 2
-1 1
T3 = p 2T 7Y +;a , p= %\/4a252 — (a? + 8% —12)?

d its Jacobian i
and its Jacobian is ots s

V=20 12022 + s2) — (2 — 22 pa’

The following is a generalization of the previous lemma to functions of four variables.

\ Lemma A3.2
For y € R3,

!éﬁmwfﬂuhm—MJﬂHﬂ—th—wﬂ

ly|+t yl+t/
ds dt ds’ d9 sts't' f(s,t, 8t E(s,t,8,t,0,|y]))
Iy!2 llyl—t] llyl—#|

(\yl (52 + 2+ () + (1)) = lyl* = (s> = *)((s)* = (¢')?)

with

§(s,t, 8,1, 0, yl) == fl!

—V/(Aly2s? — (lyI? + 2 = 2)2)(4ly2(s)2 = (lyI? + ()2 = (')2)?) cos 9)

L I

=

Proof: Without loss of generality, we assume that y = (0,0,a) with a > 0. We first change
to cylindrical coordinates: (p,0,xs; p, 0, z5):

[ dode’ (el fo = ) 12" =yl o =)

e 00 o) o 2m
= 27r/ dp/ da:3/ dp’/ dxé/ do’ pp' f(s,t, st/ |(p—p cost, p' sind x5 — %))|).
0 —00 0 —00 0

where

s:=1(p,0,23)], t:=|(p,0,23—a)|, & :=|(p costl, p'sind xb)|,t' :=|(p' cost,p sind xi—a)l

Next, we change variables to (s,t,s',t',6). The Jacobian of this transformation is, by (A3.0.5),
tst's'
ppla?’

Furthermore, by (A3.0.4),

82 o t2 o (81)2 4 (t/)2

2a

373—33%2

and

\/4(1232 _ (a2 152 — t2)2 p’ B \/4(12(3/)2 _ (a2 4 (s’)2 _ (t’)2)2
2a ’ - 2a

p:

SO

1
|(p— p'cos®,p'sind' x5 — af)| = % (4as* — (a® + s* — t*)? + 4a*(s')? — (a® + (s')* — (¥)?)?

(NI

~2/(1027 = (@2 + 57 = PP)(A?(5)? = (@ + ()2 = (1)) cos ¢ + (s> — £2 = ()2 + ()?)?)

42

(A3.0.4)

(A3.0.5)

(A3.0.6)

(A3.0.7)

(A3.0.8)

(A3.0.9)

(A3.0.10)

(A3.0.11)

(A3.0.12)

(A3.0.13)



and

[(p—p'cost’, p'sin @', x5 — %) <a2(82 + 4 ()2 4 (1)) — ot = (57 = () = ()?)

1
V2a

—/(4a252 — (a® + 5% — 12)2)(4a2(s')2 — (@ + (5')2 — (¢)2)2) cos 9’) .

N

O

A4. Hann windowing

In this appendix, we discuss the use of Hann windows to compute Fourier transforms. Con-
sider the Fourier transform

f(k) = / )

Evaluating this integral numerically can be tricky, especially at high |k|, because of the rapid
oscillations at large |z|. A trick to palliate such a problem is to multiply f by a window function
hr,, which cuts off distances of order L. We then compute, instead of f,

F(k) = / da % hy (2) ().

We can then evaluate f using standard numerical techniques, such as Gauss quadratures (see
appendix A2), without issues at large |z|. However, in doing so, we will make an error in the
Fourier transform. To quantify this error, note that

~ dq

F(k) = hisf(k) = / hn(@)f (k- q)

(2m)?

so if we choose Ay, in such a way that hy is peaked around the origin, then f will not differ too
much from f:

F(k) = f(k) = ((2m)"6(k) — hp)*f (k).

The Hann window is defined as
2/ T
hr(x) = cos (%)]l‘xké
whose Fourier transform is, in d = 3,

L — 4m3 L2 ((|K|L)® — 4]k|L7?) cos(BE) — 2(3(|k|L)? — 4n2) sin(151E)
L(k) = K] ((|k[L)? — 4]k|Ln?)2

which decays at large |k|L as

- 473
hi(k) ~ o7 cos(E1E).

43

(A3.0.14)

(A4.0.1)

(A4.0.2)

(A4.0.3)

(A4.0.4)

(A4.0.5)

(A4.0.6)

(A4.0.7)



References

[CHe21]

[CJL.20]

[CJL20D)

[DLMF]

[Ta87]

E.A. Carlen, M. Holzmann, 1. Jauslin, E.H. Lieb - Simplified approach to the repulsive Bose
gas from low to high densities and its numerical accuracy, Physical Review A, volume 103,
issue 5, number 053309, 2021,

doi:10.1103/PhysRevA.103.053309, arxiv:2011.10869.

E.A. Carlen, 1. Jauslin, E.H. Lieb - Analysis of a simple equation for the ground state energy
of the Bose gas, Pure and Applied Analysis, volume 2, issue 3, pages 659-684, 2020,
doi:10.2140/paa.2020.2.659, arxiv:1912.04987.

E.A. Carlen, I. Jauslin, E.H. Lieb - Analysis of a simple equation for the ground state of the
Bose gas II: Monotonicity, Convezity and Condensate Fraction, 2020, to appear in the SIAM
journal of Mathematical Analysis,

arxiv:2010.13882.

F.W.J. Olver, A.B. Olde Daalhuis, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W. Clark,
B.R. Miller, B.V. Saunders, H.S. Cohl, M.A. McClain (editors) - NIST Digital Library of
Mathematical Functions, Release 1.1.3 of 2021-09-15, 2021.

Y. Taguchi - Fourier coefficients of periodic functions of Gevrey classes and ultradistributions,
Yokohama Mathematical Journal, volume 35, pages 51-60, 1987.

44


http://dx.doi.org/10.1103/PhysRevA.103.053309
http://arxiv.org/abs/2011.10869
http://dx.doi.org/10.2140/paa.2020.2.659
http://arxiv.org/abs/1912.04987
http://arxiv.org/abs/2010.13882

