
Numerical computation of invariant KAM tori for the
Sun-Jupiter-Saturn system using a variational principle

—————

Ian JAUSLIN

Supervised by Jacques LASKAR

IMCCE, Observatoire de Paris
77 av. Denfert-Rochereau, 75014 Paris, France

Report of the internship for the curriculum of the CFP masters program, Quantum

mechanics major, of ENS Paris

January-April 2012

Abstract

In this report, we describe a technique for computing quasi-periodic orbits of
perturbed Hamiltonian systems numerically, and apply it to the Sun-Jupiter-Saturn
system. Such a system has been studied by U. Locatelli and A. Giorgilli for reduced
values of the planet’s masses using a standard KAM approach. The method we use is
based on a variational principle introduced by I.C. Percival, which has been proven to
yield invariant KAM tori when applied to perturbed Hamiltonian systems by J. Moser,
D. Salamon and E. Zehnder. The variational principle is formulated for a fixed frequency
vector.

To find the extremum of the variational problem, we use a quasi-Newton algo-
rithm, which has not converged for the realistic values of the masses of the planets. We
discuss the reasons for this fact at the end of the report, and detail the next steps to be
undertaken to solve the problems.

I wish to wholeheartedly thank Jacques Laskar, Mick-
ael Gastineau, Nicolas Delsate, Alain Chenciner, Jacques
Féjoz, Philippe Robutel, Alain Albouy and Laurent Nieder-
man for very helpful discussions throughout the internship,
as well as the entire team at the IMCCE institute for their
precious help and support.

I am grateful to the administration officials at the
ENS Paris and the Observatoire de Paris for their efforts
organizing this project.

Table of contents:

Introduction . 1

1. Background . 3
1. Integrable Hamiltonian systems . 3
2. Perturbed Hamiltonian systems . 4
3. A variational principle on tori . 6

2. Preliminary: numerical solution of the Kepler problem 9
1. The Kepler problem . 9
2. The Newton algorithm . 11
3. Initial values . 13
4. Discussion of the results . 15

3. The three body problem . 15
1. Hill-Jacobi variables . 15
2. Setting up the Newton algorithm . 18

4. Alternative numerical algorithms 19
1. The conjugate gradient algorithm . 19
2. The quasi-Newton algorithm . 21
3. Implementation of the quasi-Newton algorithm 22

5. Perspectives . 23
1. The degeneracy problem . 23
2. Simple model . 24

Conclusion . 25

Appendices

A1. Diophantine condition . 27
A2. The KAM theorem . 28
A3. W as a Fourier series . 32
A4. The conjugate gradient method 35
A5. Derivatives of the action . 39
A6. Results for the simple system 45
A7. Specifications of the computer used for computations 47

Programs

P1. Kepler problem . 50
P2. Van Wijngaarden-Dekker-Brent algorithm 60
P3. Three body problem . 64
P4. Block inversion . 79
P5. Conjugate gradient - numerical instability 81

References . 83

Introduction

The dynamics of a single planet around a star is fairly simple, and has been
understood since the works of J. Kepler in the XVIth century. A simple computation
shows that the orbit of the planet is an ellipse whose parameters are easily determined
from the initial conditions. However, the dynamics of two planets revolving around a
star is extremely complicated, and has not yet been fully understood. If the planets
did not interact, they would simply revolve around the star in two distinct ellipses, but
when one takes their gravitational interaction into account, one finds that the motion
can be fundamentally different from the non-interacting one. In fact, some trajectories
of these three body problems are chaotic, in the sense that they behave so erratically
that a very slight change in the initial conditions can radically alter their motion, which
makes them very difficult to predict.

The question of which trajectories are regular, i.e. almost periodic, and which are
chaotic is made all the more interesting by the fact that despite the efforts of some of the
most renowned scientists of the XVIIIth century, the stability of our Solar System has
not been proven. While studying anomalies in the motion of Saturn and Jupiter, L. Eu-
ler, P.S. Laplace, J.L. Lagrange and S. Poisson have attempted (and succeeded to some
extent) to understand many-planet motions using perturbation theories. U. le Verrier
noticed in 1856 that the series on which the perturbation theories were based had large
terms, and in the 1890’s, H. Poincaré proved they were in fact divergent in most cases,
which obliterated all hope for a simple proof of the stability of the Solar System. In
1954, A.N. Kolmogorov [Ko54] figured out which motions could be treated via a pertur-
bation theory, and which could not. The proof he gave was somewhat incomplete, and
was finished and perfected by V.I. Arnol’d [Ar63a] and J. Moser [Mo62] in the 1960’s,
giving birth to the so called KAM theorem. The answer to the question “Is the Solar
System stable?” came in 1989, when J. Laskar showed, using a novel type of numerical
integrations, that the system consisting of the Sun, Mercury, Venus, the Earth and Mars
is chaotic. On the bright side, the effects can only begin to be seen on a time scale
of 5 million years [La89], and even then, the effects would not give rise to cataclysmic
events; however, J. Laskar and M. Gastineau subsequently showed [LG09] that a collision
between Venus and the Earth, or even the ejection of Mars from the Solar System, could
occur in the coming 5 billion years... This brief historical overview is based on [La10].

We restrict ourselves to the case of three bodies, to which we will refer as the
three body problem. In the planetary case, where two of the bodies are planets, nu-
merical computations show that the system is far more stable than in the Solar Sys-
tem’s case. Its stability remains difficult to prove analytically though. The problem
has been studied at length in Hamiltonian formulation using perturbation theories: e.g.
in [Ar63b, Ro95 CC97, LG05] to name a few. In these references, the authors apply
the constructive perturbative algorithm developed in the KAM theorem to find regular
solutions, which turns out to be difficult, since the masses involved in planetary systems
are too large to fit into the scope of the KAM theorem. For instance, in order to compute
regular orbits for the Sun-Jupiter-Saturn system, U. Locatelli and A. Giorgilli [LG05]
reduced the masses of both planets by a factor 1 000. The objective of this work is

1

to come at the problem using a different approach, and compute regular orbits for the
Sun-Jupiter-Saturn system.

Instead of applying the KAM algorithm in Hamiltonian formulation, we search for
the extremum of a variational problem, introduced by I.C Percival [Pe79], similar to the
action principle of classical mechanics. We now give a quick overview of the method,
the details of which are given in section 1. The regular motions of a Hamiltonian system
are periodic or quasi-periodic, i.e. they can be expressed as a Fourier series with a finite
number of frequencies (called the frequency vector), and evolve on a torus of phase space,
i.e. are parametrized by angles defined modulo 2π. We fix the frequency vector a priori
to some ω, and search for motions that evolve at the given frequency ω. The functional
to be extremalized, to which we refer as the action, is defined on the space of tori, and
it is such that its extremum is an invariant torus, in the sense that it is stable by the
dynamics. The trajectories evolve on the extremal torus at the frequency ω. The action
is defined by

Sω[q] :=

∮
dΦ L(q(Φ), Dωq(Φ))

where L is the Lagrangian of the system, q is a parametrization of an n-dimensional
torus, and Dω := ω · ∇. The existence of the extremum for close to integrable non-
degenerate systems has been proven by J.N. Mather [Ma82a, Ma82b], J. Moser [Mo88],
D. Salamon and E. Zehnder [SZ89].

In section 1 we recall a few basic notions of the theory of integrable systems, state
and discuss the KAM theorem, and describe the variational principle in full detail. In
section 2, we describe an extremalization algorithm applied to the Kepler problem, in
order to introduce the three body problem, which is a perturbation of that system. We
first briefly introduce the system and explain how to solve it analytically, then define a
Newton algorithm to extremalize the action, discuss the difficulty of imposing an initial
value for the trajectories, and discuss the results. In section 3, we present the three
body problem in the Hill-Jacobi variables, set up the Newton algorithm and compute the
derivatives of the action. The Newton algorithm requires too much time and memory, so
we turn to two other algorithms described in section 4: the conjugate gradient algorithm,
which has a simple structure and requires little memory, but is numerically unstable; and
the quasi-Newton algorithm, which we then use to find the extremum of the action of
the three body problem. It turns out that the algorithm fails to converge, so in section 5,
we discuss a possible reason: the Kepler problem is degenerate, and thus the variational
principle might have to be adapted for systems that are close to degenerate. We then
present a simple far from degenerate system for which we have had positive results, and
discuss the next steps to be taken.

The result of this work, which is a temporary result, is that Percival’s variational
principle can not be applied as such to the Sun-Jupiter-Saturn system. I suspect the
problem is that the existence and uniqueness of the extremum have, to my knowledge,
only been proven for non-degenerate systems [SZ89]. The problem arising from the
degeneracy of the Kepler problem has been treated for the Hamiltonian formulation of

2

the KAM theorem [Ar63b, CC98], and may also be dealt with in Lagrangian formulation,
perhaps by changing the variational principle.

1. Background

1.1. Integrable Hamiltonian systems

Consider a system with n degrees of freedom whose dynamics is given by a time-
independent Hamiltonian H(q; p), which is a function of n positions q = (q1, · · · , qn)
and n momenta p = (p1, · · · , pn). The equations of motion are given by

q̇i =
∂H

∂pi
(q; p)

ṗi = −∂H
∂qi

(q; p)

. (1.1)

Liouville’s theorem states that if such a system has n independent conserved quantities,
then the equations of motion can be solved by quadratures, i.e. by calculating integrals
and inverting functions. In that case the system is said to be integrable. Furthermore,
the Arnol’d-Liouville theorem states [Ar88, Ar78, Ar63a] that if the system is bounded,
then there exists a canonical change of variables to the so called action-angle variables

(Φ; I) = (φ1, · · · , φn; I1, · · · , In)

where the φi are variables on a circle i.e.

φi + 2π ≡ φi

and are such that H only depends on I. Therefore
φ̇i =

∂H

∂Ii
(I)

İi = −∂H
∂φi

(I) = 0

. (1.2)

so the Ii are conserved quantities, and thus φ̇i is constant, so

φi(t) = ωit+ φ
(0)
i

where

ωi :=
∂H

∂Ii
(I).

Thus the motion of an integrable system may be reduced to a collection of uniform
motions on n circles at frequencies ωi, or equivalently to a motion on a torus of dimension

3

n of frequency vector ω. If the quotients of all the ωi are rational, then the trajectories
on the torus are closed curves, so the motion is periodic. If the frequencies are rationally
independent, i.e. if for k ∈ Qn,

(k · ω = 0) =⇒ (k = 0) ,

then the trajectories are dense in the torus, i.e. they come arbitrarily close to any point
of the torus. In that case, the motion is called quasi-periodic.

fig 1.1: Motions on a two-dimensional torus. Left: periodic orbit for
ω1
ω2

= 1
4 . Right: quasi-periodic orbit for ω1

ω2
= 1√

10
, the trajectory

covers the entire torus.

1.2. Perturbed Hamiltonian systems

We now consider a Hamiltonian of the form

H = H0 + εH1

where H0 is integrable. As we have stated earlier, if ε = 0, then phase space is covered
by invariant tori, but if ε 6= 0, then there will be trajectories that are neither periodic nor
quasi-periodic. If ε is small, we expect that some of the trajectories will still be on tori.
The question of finding which ones was answered by A.N. Kolmogorov, V.I. Arnol’d and
J. Moser in the so-called KAM theorem [Ko54, Ar63a, Mo62], which states that there
are invariant tori that are stable by a small perturbation, i.e. that there are frequencies
ω such that all the trajectories that evolve at frequency ω in the non-interacting case
remain quasi-periodic for small values of ε. These frequencies are those that verify the
following diophantine condition:

Definition 1.1 : A vector ω ∈ Rn is said to be diophantine if
there exists c > 0 and η > 0 such that

∀k ∈ Zn \ {0}, |k · ω| > c

‖k‖η
(1.3)

4

Essentially, diophantine frequency vectors are far from being rationally dependent. Ra-
tionally dependent frequencies are called resonant. The formulation of the theorem is as
follows:

Theorem 1.1 [Ko54]: Consider a system with the Hamiltonian

H(q; p) = H0(q; p) + εH1(q; p)

such that H0 is integrable. If H is analytic in (q; p), and if H0

is non-degenerate i.e.

det

(
∂2H0

∂pα∂pβ
(q; 0)

)
6= 0.

Then given a point in phase space (q0; p0), and ω the frequency
vector of the trajectory computed for ε = 0, that starts at
(q0; p0); if ω is diophantine with parameters η and c, then there
exists ε0 > 0, which may depend on η and c, such that for any
|ε| < ε0, there exists a trajectory starting from a point in the
neighborhood of (q0; p0) that is quasi-periodic, with a frequency
vector equal to ω.

The idea of the proof of this theorem is given in appendix A2. Thus all the unperturbed
trajectories on tori with diophantine frequency vectors will remain regular in the per-
turbed case. The tori of diophantine frequencies are called stable. The other tori will be
destroyed by the perturbation, which leads to chaotic trajectories.

Notice that the constants c and η in (1.3) depend on ε, and we expect that as ε
gets larger, c increases and η decreases, making (1.3) more and more constraining, thus
breaking more and more tori. However, most of the tori are stable if η is large enough.
More precisely, one can prove that if η > n− 1, for any c > 0, the set{

ω ∈ Rn such that ∃k ∈ Zn \ {0}, |k · ω| < c

‖k‖η

}
of frequencies that do not verify (1.3) has measure 0 (see appendix A1), hence if ε is
small enough, then almost all the tori are preserved.

The goal of this work is to find invariant tori for the Sun-Jupiter-Saturn system,
where the interaction between Jupiter and Saturn is considered as a perturbation of
the integrable dynamics of the planets around the Sun. We therefore need an explicit
algorithm to compute KAM tori. One way of doing this comes from Kolmogorov’s proof
of the KAM theorem [Ko54] (see appendix A2), which gives an explicit construction of
the invariant tori. The idea is to find a canonical change of variables (q; p) 7→ (Q; P) to
transform a Hamiltonian of the form

H(q; p) = (m+ ω · (p− I)) + ε (A(q) + B(q) · (p− I)) +O(|p− I|2) (1.4)

5

into the so called Kolmogorov normal form

H(Q; P) = M(ε) + ω · (P− I) +O(|P− I|2) (1.5)

thus the trajectories passing through P = I would be solutions of the equations{
Q̇ = ω

Ṗ = 0

and thus would be restricted to an invariant torus of frequency ω. The method used to
find such a canonical change of variables is a Newton method which consists in a sequence
of canonical transformations that converges super-linearly to the one that transforms
(1.4) into (1.5).

Kolmogorov’s method was applied to the Sun-Jupiter-Saturn system by U. Lo-
catelli & A. Giorgilli [LG05], albeit with smaller masses than those measured for Jupiter
and Saturn. In this work, we search for invariant tori using a different approach, based
on a variational principle analogous to the action principle of classical mechanics.

1.3. A variational principle on tori

The action principle states that physical trajectories are those that extremalize
the action functional. We have seen in the previous sections that the natural objects
appearing in nearly integrable Hamiltonian systems are tori, and not trajectories. We
shall re-formulate the action principle into a variational principle on an action which is
a function of tori. This principle is based on works by Percival [Pe79, Ar88].

Since Tori are continuous deformations of the unit torus Tn (i.e. of the cartesian
product of n unit circles), we can parametrize each of them by two continuous functions,
q(Φ) and p(Φ) defined for Φ in Tn. In this work we will suppose that q and p are
analytic functions. We wish to find a condition on q and p that ensures that the torus
they parametrize is invariant. First, we define precisely what we mean by invariant:

Definition 1.2 : A torus parametrized by (q; p) is said to be
invariant if ∃ω ∈ Rn such that ∀Φ0 ∈ Tn,

(q(Φ0 + ωt); p(Φo + ωt))

is a solution of Hamiton’s equations. In that case ω is called the
frequency vector associated to the torus.

We prove the following lemma:

Lemma 1.1 [Pe79]: Let L be the Lagrangian of the system.
A torus parametrized by two continuous functions q and p is

6

invariant by the dynamics if and only if
Dω

∂L

∂q̇i
(q(Φ), Dωq(Φ)) =

∂L

∂qi
(q(Φ), Dωq(Φ))

p(Φ) =
∂L

∂q̇
(q(Φ), Dωq(Φ))

(1.6)

where
Dω := ω · ∇q. (1.7)

The proof is straightforward, keeping in mind that Hamilton’s equations (1.2) are equiv-
alent to the Euler-Lagrange equation

d

dt

∂L

∂q̇i
=
∂L

∂qi
. (1.8)

We define the action Sω as a functional of q(Φ) by

Sω[q] :=

∮
dΦ L(q(Φ), Dωq(Φ)) =

1

(2π)n

∫ π

−π
dφ1 · · ·

∫ π

−π
dφn L(q(Φ), Dωq(Φ)) (1.9).

A simple computation proves the following theorem:

Theorem 1.2 [Pe79]: A torus parametrized by (q; p) is invari-
ant if and only if q extremalizes the action Sω, i.e. if for any
analytic function δq from Tn to Tn,

d

dε
Sω[q + εδq] = 0

and

p(Φ) =
∂L

∂q̇
(q(Φ), Dωq(Φ)) .

This theorem provides a variational principle for invariant tori, that is analogous
to the action principle of classical mechanics. There is however a fundamental difference:
whereas the classical action is extremalized with fixed initial and final positions, Sω is
extremalized with a fixed frequency vector ω, but none of the points of the torus are a
priori imposed.

There are a few technical details one then has to take into account. Such a pro-
cedure can only yield a unique result if the system is such that all the invariant tori in
phase space have different frequencies. Conversely, an extremum of Sω can only exist if
there exists an invariant torus of frequency ω. If one wants to use this formalism when
this is not the case, e.g. for a two-dimensional harmonic oscillator, one must chose a
point on the torus and extremalize Sω with that point fixed. In that case, one must
make sure that there exists a torus in phase space of frequency ω passing through the
imposed point, which may be a difficult problem.

7

For example, consider the simple case of a planet revolving around a star, to which
will shall refer as a Kepler problem. This system is reducible to one degree of freedom,
and is thus integrable. The trajectories are contained within a plane and are ellipses,
that depend on two parameters: the semi-major axis a and the eccentricity e. There is a
simple relation between the frequency of a trajectory and the semi-major axis, therefore
two tori that have different eccentricities but the same semi-major axis will have the
same frequency. To find invariant tori of the Kepler problem, a point of the torus we are
searching for must be fixed.

The existence and uniqueness of the extremum of (1.9) has been studied by
J.N. Mather and J. Moser [Ma82a, Ma82b, Mo86]. Mather proved that for Hamilto-
nian systems with two degrees of freedom, the extremum of the action exists [Ma82b]
and is unique [Ma82a]. Moser extended this result to a more general form of variational
problems [Mo86]. In these works, the authors proved that the existence and unicity of
the solution of the variational problem is not conditioned by the diophantine condition
(1.3), therefore the action has an extremum even if there is no invariant torus. However,
in such cases, the extremum of the action is not continuous, so it is not a torus, but
merely an invariant subset of phase space. In fact, such an extremum is a transversal
Cantor set, i.e. it has an infinite, non-countable number of discontinuity points. The set
thus obtained is called an Aubry-Mather set, or a Cantorus.

Thus there is a close analogy between the extremalization of the action on trajec-
tories and on tori. But instead of having regular and chaotic trajectories, this formalism
yields invariant tori and invariant Cantori.

Moreover, J. Moser proved an analog to the KAM theorem for the extremalization
of the action on tori [Mo86, Mo88], which was generalized to Hamiltonian systems in
arbitrary dimensions by D. Salamon and E. Zehnder [SZ89]. The statement of this
theorem is:

Theorem 1.3 [SZ89]: Given an ω ∈ Rn. Consider the La-
grangian

L(q; q̇) = L0(q; q̇) + εL1(q; q̇)

and an analytic function q0 from Tn to Tn that is an extremum
of the action

S(0)
ω [q] :=

∮
dΦ L0(q(Φ), Dωq(Φ)).

If L is analytic in (q; q̇), (L0,q0) is non-degenerate (see the defi-
nition below), and ω is diophantine, then there exists ε0 > 0 such
that if |ε| < ε0, there exists a locally unique analytic q from Tn
to Tn that extremalizes the action

Sω[q] :=

∮
dΦ L(q(Φ), Dωq(Φ)).

8

Definition 1.3 : (L0,q0) is said to be non-degenerate if defining
q0(Φ) as the Jacobian matrix of q0(Φ), q0(Φ)T as its transpose,
and a(Φ) as the matrix

a(Φ) := q0(Φ)T
∂2L0

∂q̇∂q̇
(q0(Φ);Dωq0(Φ))q0(Φ)

we have 
det (a(Φ)) 6= 0

det

(∮
dΦ a(Φ)−1 6= 0

)
Essentially the theorem entails that if the L0 is the Lagrangian of an integrable system,
we can change variables to the action-angle variables, in which the unperturbed motions
will be trivial, and thus

q0(Φ) = Φ

will extremalize the unperturbed action. The theorem then proves the existence of an
analytic extremum q of (1.9), provided that the perturbation is small enough, that the
unperturbed Lagrangian is non-degenerate, and that ω is diophantine.

2. Preliminary: numerical solution of the Kepler problem

The goal of this work is to compute invariant tori numerically by extremalizing
an action functional. This is fundamentally different from integrating a differential
equation numerically using for example the Runge-Kutta method, since the goal is to
find a function extremalizing the action all at once, rather than constructing a solution
of a differential equation step by step. To check whether it is viable to search numerically
for extrema of an action functional, we shall first apply such a method to the Kepler
problem, which is integrable.

2.1. The Kepler problem

In this section, we define the Kepler problem and show that it is integrable and
how to compute its solution.

We consider the problem of a planet revolving around a star, which can be seen
as a point mass in a potential proportional to r−1. The motion is planar, and in polar
coordinates, the Hamiltonian can be written as

H(r, θ; p, g) :=
p2

2β
+

g2

2βr2
− µβ

r
(2.1)

9

where β is the mass of the planet, µ is the mass of the star multiplied by the gravitational
constant G, p is the momentum

p = βṙ

and g is the angular momentum
g = βr2θ̇.

Since H does not depend on θ, g is a constant, thus the system can be reduced to one
degree of freedom. The Lagrangian of the system is the Legendre transform of (2.1):

L(r; ṙ) =
1

2
βṙ2 − g2

2βr2
+
µβ

r
(2.2)

and the action functional is

S[r] :=

∫
dt L(r(t); ṙ(t)). (2.3)

The system is integrable, in fact, one can easily prove, e.g. using the Runge-Lenz
invariant vector, that the trajectories are ellipses given by the equation

r =
a(1− e2)

1 + e cos θ

where a is the semi-major axis and e the eccentricity. The angular momentum can be
computed as a function of a and e:

g = β
√
µa(1− e2).

Furthermore, it is a well known fact that the mean anomaly M , i.e. the area covered by
the position vector between the times 0 and t verifies

Ṁ(t) =

√
µ

a3
= cst.

In fact, one can show that there exists a canonical change of variables from (r, θ; p, g) to
the Delaunay variables (M,$;L := β

√
µa, g) where $ is the argument of the perihelion,

i.e. the angle θ of the closest point of the trajectory to the star; in terms of which the
Hamiltonian is simply

H = −µ
2β

2L2
(2.4)

10

M
$

a

ae

fig 2.1: Definition of the semi major axis a, the eccentricity e, the mean
anomaly M and the argument of the perihelion $.

Thus the Delaunay variables are action-angle variables for the Kepler problem. The
Hamiltonian is degenerate and there is only one frequency

ω =

√
µ

a3
. (2.5)

The change of variables from the polar to the Delaunay variables is implicit and difficult
to manipulate, so in order to find the analytical solution of the Kepler problem, we
introduce a new angle, the eccentric anomaly E, defined by

r =: a(1− e cosE)

which verifies the so-called Kepler equation

E = M + e sinE. (2.6)

Finding the explicit time dependence of r is thus reduced to solving (2.6). One can prove
that the solution of the Kepler equation is given by the limit of the sequence of functions
(En) defined by

En+1(M) = M + e sin(En(M))

which converges uniformly. Thus

r(M) = a (1− e cos(E(M))) (2.7)

which gives r(t) using Ṁ = ω.

2.2. The Newton algorithm

We now describe how to compute the extremum of the action functional. We
express r as a Fourier series

r(M) =

∞∑
k=−∞

rke
ikM

11

thus the action S can be seen as a function of the rk. Its extremum is given by the set
of rk’s such that

∂kS :=
∂S

∂rk
= 0. (2.8)

In order to model this data on a computer, we only consider the k’s such that |k| 6 km.
To find the family of rk’s satisfying (2.8), we use a Newton algorithm, which consists in
starting with a good approximation of the extremum, and improving it iteratively. We
start with a trial function r(0), and compute the n-th improvement r(n) by imposing

∂kS
(
r(n+1)

)
= O

(∥∥∥r(n+1) − r(n)
∥∥∥2
)
. (2.9)

If S is sufficiently regular, we can express ∂kS
(
r(n+1)

)
using a Taylor series, and we find

r(n+1) = r(n) −
(
D2S

(
r(n)

))−1
· ∂kS

(
r(n)

)
(2.10)

where D2S is the Hessian of the action, i.e. the matrix of its second derivatives. Because
of condition (2.9), the Newton algorithm is quadratically convergent.

To implement the Newton algorithm, we must compute the gradient and the Hes-
sian of the action. We use the fact that

∂kr = eikωt, ∂kṙ = ikωeikM

and we introduce the notation

〈f〉−k =

∫ 2π

0
dM eikMf(M)

so we can rewrite

S =

∫ 2π

0
dM L(r(M), ṙ(M)) = 〈L〉0 .

Therefore,

∂kS = 〈∂kL〉0 = ω2k2βr−k +

〈
g2 − β2µr

βr3

〉
−k

(2.11)

and

∂k∂lS = 〈∂k∂lL〉0 = ω2k2βδk,−l −
〈

3g2 − 2β2µr

βr4

〉
−k−l

. (2.12)

The Newton algorithm is simple, quadratically convergent, but it requires the in-
version of a matrix. It is a generic algorithm to find a zero of a function and does not
use the fact that the function we are studying is a gradient. There are other algorithms,
that make use of this property, and are faster and more efficient. However, many re-
quire the extremum to be either a maximum or a minimum. In the problem that we
are considering, we attempt to find the solution of the differential equation (1.6), that

12

happens to be the extremum of the action (1.9), which is not necessarily a maximum
or a minimum: it may be a saddle point. In fact, using (2.12), we may see that we are
here in the latter case: we approximate (2.12) by neglecting all the terms involving 〈·〉k
with k 6= 0. This is a reasonable approximation since analytic functions have Fourier
coefficients that decay exponentially. The approximated Hessian is diagonal, so its sign
is determined by the sign of its elements. We use the following estimates:

r ≈ a and g2 = β2µa(1− e2)

thus
∂k∂−kS ≈ β

µ

a3

(
k2 − (1− 3e2)

)
so ∂0∂0S < 0, but ∂2∂2S > 0. Thus the Hessian of the action is neither positive nor
negative definite, so the extremum of S is neither a maximum nor a minimum, but a
saddle point.

2.3. Initial values

Since we are currently searching for trajectories of the Kepler problem, it is neces-
sary to specify initial values for the solution we are looking for. This would remain true
if we were searching for tori of fixed frequency, since the frequency is degenerate. This
can easily be seen by the fact that there are two degrees of freedom for picking a torus:
the semi-major axis and the eccentricity, whereas fixing the frequency alone can only fix
one of these quantities. In fact, using the simple relation

ω =

√
µ

a3

the frequency only sets the semi-major axis, and the eccentricity remains free. Thus,
if we were looking for invariant tori of a fixed frequency, we would need to pin down a
point of the torus to find a unique solution.

To simplify, we look for trajectories that start at t = 0 at the perihelion, i.e. the
point of the trajectory closest to the star, Thus we impose ṙ(0) = 0, which we achieve
by imposing rk = r−k. To fix r(0), we fix a and e, and using the definition of e from
fig. 2.1, we have

r(0) = a(1− e). (2.13)

Imposing (2.13) is more subtle than it seems. The simplest way of constraining the
solution is to impose r(0) by imposing the value of r0. Explicitly, we consider S as a
function of the rk such that k > 0, and define

r(M) := a(1− e) +

km∑
k=1

rk

(
eikM + e−ikM − 2

)
(2.14)

13

thus (2.11) and (2.12) would become

∂kS = 2ω2k2βrk + 2

〈
g2 − β2µr

βr3

〉
k

− 2

〈
g2 − β2µr

βr3

〉
0

(2.15)

and
∂k∂lS = 2ω2k2βδk,l − 2 〈V0〉k+l − 2 〈V0〉k−l + 4 〈V0〉k + 4 〈V0〉l − 4 〈V0〉0 (2.16)

where

V0 :=
3g2 − 2β2µr

βr4
.

However, such an algorithm can (and for some values of e, does) converge to an r
that extremalizes the action, but is not a solution of the Euler-Lagrange equations. We
know however, that this cannot occur as long as the Lagrangian is C1, so it must be an
artifact of the numerical integration. Indeed, this situation is created by the truncation
of k. The fact that r extremalizes the action means that ∂kS(r) = 0, which according
to (2.15) is equivalent to

2ω2k2βrk + 2

〈
g2 − β2µr

βr3

〉
k

= 2

〈
g2 − β2µr

βr3

〉
0

or in other words ∀k ∈ Z,〈
d

dt

∂L

∂ṙ
− ∂L

∂r

〉
k

=

〈
d

dt

∂L

∂ṙ
− ∂L

∂r

〉
0

. (2.17)

The only way (2.17) can be verified is if

d

dt

∂L

∂ṙ
− ∂L

∂r
= 0

or if it is a Dirac distribution. If L is C1, the latter case cannot occur, so the Euler-
Lagrange equation must be verified, but since we neglected all the k larger than km, the
algorithm can produce r’s verifying (2.17) but not the Euler-Lagrange equation.

We must find another way of imposing the initial condition. Fortunately, the
extrema of the action have a remarkable property: an extremum on the sub-variety V of
r’s that verify the initial condition is an extremum on the entire variety of r’s. This is a
trivial consequence of the fact that an extremum on V is a solution of the Euler-Lagrange
equation, regardless of the initial condition. Thus instead of searching for extrema of
the action among the r’s verifying the initial condition, we may look for extrema of the
action that also obey the initial condition. We may do this by introducing a Lagrange
multiplier λ, and extremalize

Λ(r, λ) := S(r) +
λ

2

(
r0 + 2

km∑
k=1

rk − a(1− e)

)2

+
λ3

6
. (2.18)

14

Indeed, the gradient of Λ is given by
∂kΛ = ∂kS + 2λ

(
r0 + 2

km∑
k=1

rk − a(1− e)

)

∂λΛ =
1

2

(
r0 + 2

km∑
k=1

rk − a(1− e)

)2

+
λ2

2

Thus if Λ is extremalized by (r, λ), then λ = 0, r verifies the initial condition, and
∂kS(r) = 0.

In practice, extremalizing (2.18) is substantially longer than using (2.14), so we
implemented an algorithm in which we first attempt to find the solution using (2.14)
and switch to (2.18) only if we converge to a wrong solution (see program P1).

2.4. Discussion of the results

We implemented the Newton algorithm for the Kepler problem using a high-level
computing language called TRIP, which was developed by M. Gastineau and J. Laskar
[GL12, GL10]. TRIP was built to manipulate series efficiently and easily, and is thus a
shoe-in for dealing with the Fourier series that arise in our problem. The code is given
in program P1.

We pick a unit system in which a = β = ω = µ = 1. We ran the algorithm
picking various values for the eccentricity e. The cutoff km is chosen so that the km-th
Fourier component of the analytical solution of the Kepler problem is smaller than a
given numerical error, e.g. 10−20. This gives us control over the error made by the
algorithm.

The algorithm converges in under 20 iterations for e < 0.55. After that, we tried
a hundred different values between e = 0.55 and e = 0.9, for which the algorithm
converged, sometimes after a few hundred iterations.

All in all, using a variational principle to find solutions of the Kepler problem
works very well, especially for small eccentricities. We shall now use a similar algorithm
for the non-integrable planar three body problem.

3. The three body problem

3.1. Hill-Jacobi variables

We now derive the Hamiltonian of the planar three body problem in the Hill-Jacobi
variables, and prove that the system is reducible to three degrees of freedom.

15

Let m0, m1 and m2 be the masses of the Sun, Jupiter and Saturn respectively. In
cartesian variables (~u0, ~u1, ~u2; ũ0, ũ1, ũ2) where

ũi =
~̇ui
mi

the Hamiltonian is

H(~u; ũ) :=
3∑
i=1

ũ2
i

2mi
−
∑
i<j

Gmimj

‖~ui − ~uj‖
. (3.1)

We change variables canonically to the Jacobi variables defined by
~r0 := ~u0

~r1 := ~u1 − ~u0

~r2 := ~u2 − δ1~u1 − δ0~u0

and


r̃0 = ũ2 + ũ1 + ũ0

r̃1 = δũ2 + ũ1

r̃2 = ũ2

(3.2)

where
δ1 :=

m1

m0 +m1
and δ0 :=

m0

m0 +m1

m0

m1

m2

~r1

~r2

In these variables, r̃0 is the momentum of the center of mass, which we can set to 0.
Thus (3.1) becomes

H = K1 +K2 +Hint (3.3)

where 
Ki :=

r̃2
i

2βi
− µiβi
‖~ri‖

Hint :=
µ2β2

‖~r2‖
− µ2β2

‖~r2 + δ~r1‖
− µ

‖~r2 − (1− δ)~r1‖
and 

β1 :=
m0m1

m0 +m1
β2 :=

(m0 +m1)m2

m0 +m1 +m2

µ1 := G(m0 +m1) µ2 := G(m0 +m1 +m2)(1− δ)

µ := Gm1m2

(3.4)

Notice that H does not depend on ~r0, so we may reduce our system to the variables
(~r1, ~r2; r̃1, r̃2). We then define the Hill-Jacobi variables (r1, r2, v1, v2; p1, p2, g1, g2) by

~ri = ri

(
cos(vi)
sin(vi)

)
and

(
pi
gi

)
=

(
cos(vi) sin(vi)
−ri sin(vi) ri cos(vi)

)
r̃i. (3.5)

16

In these new variables, the Hamiltonian is given by
Ki =

p2
i

2βi
+

g2
i

2βir2
i

− µiβi
ri

Hint =
µ2β2

r2
− µ2β2√

∆1(r1, r2, v2 − v1)
− µ√

∆0(r1, r2, v2 − v1)

(3.6)

where {
∆0(r1, r2, w) := r2

2 + δ2
0r

2
1 + 2δ0r1r2 cosw

∆1(r1, r2, w) := r2
2 + δ2

1r
2
1 + 2δ1r1r2 cosw

The Ki in (3.6) are the Hamiltonians of two independent Kepler problems, in the same
form as in (2.1). We notice that the Hamiltonian does not depend on v1 and v2 but on
v1 − v2, so we set

w := v1 − v2, g := g1

and change variables to (r1, r2, w; p1, p2, g), therefore

K1 =
p2

1

2β1
+

g2

2β1r2
1

− µ1β1

r1

K2 =
p2

2

2β2
+

(G− g)2

2β2r2
2

− µ2β2

r2

Hint =
µ2β2

r2
− µ2β2√

∆1(r1, r2, w)
− µ√

∆0(r1, r2, w)

(3.7)

where G is the total angular momentum g1 + g2. The system is thus reduced to three
degrees of freedom.

By applying a Legendre transform, we find the system’s Lagrangian

L(r1, r2, w; ṙ1, ṙ2, ẇ) = L1 + L2 + Lint (3.8)

where

L1 :=
1

2
β1ṙ

2
1 +

µ1β1

r1
+

1

2
β1r

2
1ξ

2(r1, r2, ẇ)

L2 :=
1

2
β2ṙ

2
2 +

µ2β2

r2
+ χ(r1, r2, ẇ)

(
β1r

2
1ξ(r1, r2, ẇ)− 1

2
β2r

2
2χ(r1, r2, ẇ)

)
Lint := −µ2β2

r2
+

µ2β2√
∆1(r1, r2, w)

+
µ√

∆0(r1, r2, w)

and 
ξ(r1, r2, ẇ) :=

ẇβ2r
2
2 +G

β1r2
1 + β2r2

2

= v̇1

χ(r1, r2, ẇ) :=
ẇβ1r

2
1 −G

β1r2
1 + β2r2

2

= v̇2

17

3.2. Setting up the Newton algorithm

Following the procedure detailed in section 2, we set up a Newton algorithm to
compute the extremum of the action. We express r1, r2 and w as generalized Fourier
series in three dimensions: if x is one of r1, r2 or w,

x(Φ) =
∞∑

k1=−∞

∞∑
k2=−∞

∞∑
k3=−∞

xk1,k2,k3e
i(k1φ1+k2φ2+k3φ3)

which we rewrite in a more compact form

x(Φ) =
∑
k∈Z3

xke
ik·Φ. (3.9)

Here the xk are complex, since we cannot suppose that the initial velocities vanish. We
however impose that x(Φ) is real:

Re(x−k) = Re(xk) and Im(x−k) = −Im(xk) (3.10).

Thus we must only consider the k in the set

Z3+ := (N∗ × Z× Z) ∪ ({0} × N∗ × Z) ∪ ({0} × {0} × N)

where N∗ = N \ {0}. We truncate the Fourier series at an order km ∈ N \ {0}. We define

K := {(k1, k2, k3) ∈ Z3+, |ki| 6 km}

and rewrite (3.9) as

x(Φ) =
1

2

∑
k∈K
Re(xk)

(
eik·Φ + e−ik·Φ

)
+ i Im(xk)

(
eik·Φ − e−ik·Φ

)
. (3.11)

The number of elements in K is

km(2km + 1)2 + km(2km + 1) + km + 1. (3.12)

The Newton algorithm is defined as in (2.10), with a slight modification coming
from the fact that xk is complex, which prevents us from deriving Sω with respect to
xk, instead we derive Sω with respect to the real and imaginary parts of xk.

x
(n+1)
k − x(n)

k = −
(
D2S(r

1,(n)
k , r

2,(n)
k , w

(n)
k)
)−1

∂Sω(r
1,(n)
k , r

2,(n)
k , w

(n)
k). (3.13)

where if we denote the real and imaginary parts of xk respectively by ak and by bk, ∂Sω
is made of three vectors of the form 

∂Sω
∂ak

∂Sω
∂bk


18

and D2Sω is made of 9 blocks of the form
∂2Sω
∂ak∂ak

∂2Sω
∂ak∂bk

∂2Sω
∂bk∂ak

∂2Sω
∂bk∂bk

 .

We compute the derivatives of the action Sω. Their expression is rather long, so
it is deferred to appendix A5.

In the preceding discussion, we considered the variables r1, r2 and w as Fourier
series. However, the fact that w is an angle induces some technical problems, which are
discussed in appendix A3.

4. Alternative numerical algorithms

The Newton algorithm described in sections 2 and 3 requires the Hessian matrix
of the action to be inverted. Using (3.12), we find that the number of lines and columns
of this matrix is

N := 6(km(2km + 1)2 + km(2km + 1) + km + 1) (4.1)

which for km = 8 is equal to 14 742. Thus the total number of entries would be
217 326 562. This makes the computations long, and requires prohibitive amounts of
memory: since each entry in the matrix uses 64 bits of memory, the matrix will re-
quire over 1.7 GB. We will therefore study alternative methods to find the extremum of
the action: the conjugate gradient method, which requires very little memory but long
computation times, and was found to be numerically unstable; and the quasi-Newton
method, which only requires the Hessian matrix to be stored once but not inverted.
Neither algorithm converges for the three body problem. We will discuss the possible
reasons for this in section 5.

4.1. The conjugate gradient algorithm

Conceptually, the Newton algorithms performs two tasks: it finds a direction in
which to look for the extremum, and determines how big a step to take. The direction
is that of the vector

−
(
D2Sω

(
x(n)

))−1
· ∂kSω

(
x(n)

)
from (2.10), and the size of the step is its norm.

A more naive way of proceeding, which would not require D2S−1
ω to be computed,

would be to pick the directions from an arbitrary basis of RN and use a method to

19

extremalize Sω in one direction after another. However, if the directions are not picked
carefully, there is no reason why extremalizing in one of them would not make the
solution move away from the extremum in the others. Thus the algorithm would have to
be repeated many times before being able to converge. The conjugate gradient method
gives a set of directions that are such that an extremalization procedure along one of
the directions will not affect the others. Such a set is called a set of conjugate directions.
The ideas expressed in this section were inspired by [NR], chapter 10, which is in turn
based on works by R. Fletcher and C.M. Reeves.

Conceptually, the conjugate gradient method solves an equation of the form

Ax = b. (4.2)

In this case, A is the Hessian D2Sω, x is a vector made of the Fourier coefficients of r1,
r2 and w, and b is the gradient −∂Sω. It introduces a vector h, which will determine
the direction in which to search for the solution of (4.2), and an auxiliary vector g. The
algorithm is defined by 

x0 arbitrary

h0 = g0 = Ax0 − b

xi+1 = xi − λihi

λi :=
gi · hi
hi ·Ahi

gi+1 = gi − λiAhi

hi+1 = gi+1 +
gi+1 · gi+1

gi · gi
hi.

(4.3)

It verifies the following lemma: ∀j < i,

gi · gj = 0 hi ·Ahj = 0 gi · hj = 0 (4.4)

which implies that the N first g’s form a basis of RN , and so do the N first h’s. We
recall that N is the size of ∂S. One can then prove that one of the xi for i 6 N verifies
(4.2). For details on this result and on the lemma, see appendix A4.

As it is expressed here, the conjugate gradient algorithm requires the computation
of the Hessian D2Sω. However, one can easily verify that if Sω is a quadratic function,
then (4.3) is equivalent to

x0 arbitrary

h0 = g0 = ∂Sω(x0)

λi is the extremum of λ 7→ Sω(xi − λhi)

xi+1 = xi − λihi
gi+1 = ∂Sω(xi+1)

hi+1 = gi+1 +
gi+1 · gi+1

gi · gi
hi.

(4.5)

20

If Sω is not quadratic, it can be approximated by a quadratic function using its Taylor
expansion, and thus the algorithm (4.5) would converge in a number of steps of the order
of N lnN .

The algorithm (4.5) requires the computation of the extremum of the action in
a given direction. Since its Hessian is neither positive nor negative definite, we cannot
predict whether this extremum is a maximum or a minimum. We can therefore not use
a minimization or a maximization algorithm, but must instead search for the zero of the
function

fi : λ 7−→ hi · ∂Sω(xi − λhi).

To implement this, we use the Van Wijngaarden-Dekker-Brent method (see [NR], chap-
ter 9, and program P2), which requires a few evaluations of fi. Every evaluation requires
a computation time of the order of N , so the entire algorithm’s execution time is of the
order of N2 lnN .

The algorithm (4.5) only requires a few vectors to be stored in memory.

On the computer we used (see appendix A7 for detailed specifications), a step
would take around 45 seconds for km = 8. If we performed N iterations, the algorithm
would take over a week to be completed.

However, our implementation diverges after around 30 iterations. In fact, we
found that the exact conjugate gradient algorithm (4.3) is numerically unstable for large
matrices. To show this, we computed a random N×N symmetric matrix A with elements
between -1 and 1, and ran the algorithm to find the solution of

Ax = b

for some random b. We found that if N = 20, the error

1

N
‖Ax− b‖

is under 10−26, but if N = 100, the error is over 10−2. The code that gave us these
results is provided in program P5

We shall therefore implement a different algorithm to find the extremum of Sω,
that uses more memory, but is faster and numerically stable: the quasi-Newton method.

4.2. The quasi-Newton algorithm

The quasi-Newton algorithm, also called the variable metric method, is an algo-
rithm to find an extremum of a function (in contrast with the Newton method, which
finds a zero of a function, which we have used to find an extremum). It has two variants:
the Davidon-Fletcher-Powell and the Broyden-Fletcher-Goldfarb-Shanno methods. We
shall implement the latter, following [NR], chapter 10.

The idea of the quasi-Newton method is that the inverse of the Hessian of the
action D2Sω does not have to be computed exactly to make the Newton method converge

21

quadratically. Instead, we approach it by a matrix H. The algorithm is even more crafty:
the matrix H is re-computed at each step, which has two advantages: each iteration is
as effective as possible, and we may start the algorithm with a crude approximation of(
D2Sω

)−1
without it affecting the entire iteration.

It is defined by

x0 arbitrary

H0 symmetric

λi is the extremum of λ 7→ Sω(xi − λHi∂Sω(xi))

xi+1 = xi − λiHi∂Sω(xi)

δi := xi+1 − xi
si := (∂Sω(xi+1)− ∂Sω(xi))

Hi+1 = Hi +
δi ⊗ δi
δi · si

(
1 +

si ·Hisi
δi · si

)
−
(
Hi
si ⊗ δi
δi · si

+
δi ⊗ (Hisi)

δi · si

)
(4.6)

where ⊗ denotes the exterior product

(x⊗ y)i,j := xiyj .

E. Polak gives a proof of the super-linear convergence of (4.6) in [Po71]. One can see
that (4.6) does in fact approach D2Sω since the Hi verify

∂Sω(xi+1)− ∂Sω(xi) = H−1
i+1 (xi+1 − xi) . (4.7)

How do we choose H0? The algorithm will converge faster if H0 is close to

D2S−1
ω (x0). Since we cannot invert D2S explicitly, we approach it by neglecting all

the terms that come from 〈·〉k with k 6= 0. This reduces D2Sω to a matrix made of 36
diagonal blocks, which we can invert using the analytical formula for the inverse of a
6 × 6 matrix. This formula was computed using Mathematica, and is over 10 000 lines
long.

The quasi-Newton algorithm requires an N × N matrix to be stored in memory,
but not inverted. Its super-linear convergence implies it takes few steps to produce an
extremum of the action. In our implementation, each step takes around 2 minutes.

4.3. Implementation of the quasi-Newton algorithm

We ran the quasi-Newton algorithm for km = 8, with realistic values for the
masses and eccentricities of the Sun-Jupiter-Saturn system. The frequencies we imposed
were provided by J. Laskar, and were computed using a frequency map analysis. This
technique, developed by J. Laskar [La99], consists in performing a numerical integration
of the equations of motion over a duration T , and estimating the frequencies from it.

22

The rate of convergence of the frequencies as a function of T is proportional to T−4,
which makes it very efficient. The values we took for the constants and frequencies are
given in the table below. The masses are expressed in multiples of Saturn’s mass, and
the frequencies in rad · year−1.

m0 3497.89 ω1 0.529695

m1 3.33976 ω2 0.213265

m2 1 ω3 -0.000114735

e1 0.0481470 e2 0.0538197

The conclusion of the numerical tests is that the algorithm diverges. The code is
given in program P3. We shall now discuss the reasons why the numerical analysis may
have failed.

5. Perspectives

5.1. The degeneracy problem

A possible reason for the fact that the algorithm does not converge is that there
might not be any continuous extremum of the action Sω. Its existence is ensured by
theorem 1.3, however, the theorem is only applicable if the system can be formulated
as the perturbation of a non-degenerate integrable system, in the sense that the un-
perturbed system expressed in action-angle variables has a non-degenerate Lagrangian.
The three body problem is close to two non-interacting Kepler problems, however, us-
ing equation (2.4), one can easily see that Kepler problems are degenerate. Therefore
theorem 1.3 can not be applied as such.

In their effort to compute Kolmogorov’s normal form for the three body problem,
U. Locatelli & A. Giorgilli [LG05] faced this very problem. In the Hamiltonian formalism
though, there is a way around the problems created by the degeneracy of the unperturbed
theory in the case of the three body problem, developed by V.I. Arnol’d [Ar63b]. The idea
expressed in [Ar63b] can be sketched out roughly in the following way. In action angle
variables, which we denote by (M1,M2, $; Λ1,Λ2, g), the Hamiltonian can be written as

H(M1,M2, $; Λ1,Λ2, g) = H0(Λ1,Λ2) + εH1(M1,M2, $; Λ1,Λ2, g) (5.1)

where H0 describes the non-interacting system and H1 the perturbation. We notice
that $̇ is of the order of ε, whereas Ṁ1 and Ṁ2 are macroscopic. The different angles
therefore play very different roles: M1 and M2 will evolve quickly, whereas $ will be
slow. To lift the degeneracy of H0, we separate H1 into a secular part(from the latin
“sæclum”, meaning “century”)

H1($; Λ1,Λ2, g) :=

∮
dM1dM2 H1(M1,M2, $; Λ1,Λ2, g)

23

and a fast part

H̃1(M1,M2, $; Λ1,Λ2, g) := H1(M1,M2, $; Λ1,Λ2, g)−H1($; Λ1,Λ2, g).

Using the fact that the rate of variation of $ is of the order of ε, one can prove that
there exists a canonical change of variables such that Hamiltonian (5.1) can be rewritten
as

H(M ′1,M
′
2, $

′; Λ′1,Λ
′
2, g
′) = H0(Λ′1,Λ

′
2) + εH1(Λ′1,Λ

′
2, g) + ε2H2(M ′1,M

′
2, $; Λ′1,Λ

′
2, g). (5.2)

The KAM theorem can then be applied to (5.2), where the unperturbed motion is given
by H0 and the secular part of H1.

The question from this perspective is whether a similar manipulation can be per-
formed in Lagrangian formalism to adapt theorem 1.3 to the case of the three body
problem. The fact that our algorithm did not converge might be an indication that the
variational principle with the action Sω defined in (1.9) does not give a result if the
system is too close to being degenerate, but a more thorough study of theorem 1.3 could
reveal another expression for the action that would yield an extremum for the three body
problem.

The analysis of this question is beyond the scope of the present work. We will
limit ourselves to a first step, that consists in checking that our algorithm works for a
simple non-integrable systems, that is close to an integrable non-degenerate system.

5.2. Simple model

We applied the algorithm to a simpler model defined by the Hamiltonian

H(φ1, φ2; I1, I2) =
I2

1

2
+
I2

2

2
+ ε(cos(φ1 + φ2) + cos(φ1 − φ2)). (5.3)

This Hamiltonian is not integrable if ε 6= 0, and the unperturbed model

H0(I1, I2) =
I2

1

2
+
I2

2

2

is non-degenerate.

The first results given by our algorithm are positive. We found invariant tori for
various frequencies and values of ε. The system should be studied in more detail to see
whether the algorithm is generally reliable.

For example, we studied the system with ε = 0.1, km = 16 and ω = (1, 123/200),
and found a solution that verifies the Euler-Lagrange equation (1.6) up to a precision
of 10−21. Furthermore, we compared the computed solution to one found using a tra-
ditional integration of the equations of motion, and found that the frequencies coincide

24

up to a precision of 10−10, as well as the Fourier coefficients. The results and a pre-
cise comparison with the numerical integration of the equations of motion is given in
appendix A6.

The next step would be to study the role of the degeneracy by introducing a
parameter α in (5.3)

H(φ1, φ2; I1, I2) =
I2

1

2
+ α

I2
2

2
+ ε(cos(φ1 + φ2) + cos(φ1 − φ2)). (5.4)

and see what happens when α goes to 0.

Conclusion

The main result of this work is that Percival’s variational principle (1.9) cannot be
applied as such for the Sun-Jupiter-Saturn system. Indeed, it seems from the algorithm
we have detailed above, that the action (1.9) has no continuous extremum. This may
come from the fact that the perturbation is too large, but previous numerical compu-
tations have shown that on the time scales we are investigating (a few times 1/ω3), the
motion is in fact regular. Furthermore, reducing the masses by a factor of 1 000, as was
done in [LG05], did not enable the algorithm to converge. Instead, I believe the problem
comes from the fact that the system is too close to the Kepler problem, which is degen-
erate, and theorem 1.3 only proves the existence of the extremum of Sω if the system
in question is close to an integrable non-degenerate system. It is thus possible that the
variational problem (1.9) should be revised for close to degenerate systems. This very
interesting question is, to my knowledge, open.

In the Hamiltonian formulation of the KAM theorem, the theorem can be applied
for some systems that are close to degenerate: [Ar63b] shows a way of making the
perturbation theory more precise, effectively changing the unperturbed Hamiltonian to
a non-degenerate one; in [CC97], the authors provide an alternative Hamiltonian which
yields some of the same trajectories, and which is still close to being degenerate, but no
longer close to being iso-energetically degenerate, which makes the KAM theorem work
(using a later formalism than the one presented in section 1, see [Ar88]). These results
give good reason to believe that the problem arising from the fact that the system is
close to being degenerate can be overcome.

The extremalization procedure yields promising results for the simple system (5.3).
It provides numerical solutions of the problem in a way that is fundamentally different
from many other procedures: instead of fixing the energy of a torus, as one usually does,
we fix its frequencies. If a continuous invariant torus with the desired frequency exists
anywhere in phase space, the extremalization algorithm finds it, regardless of its energy,
without having to fix any of its points.

These points should be further investigated.

25

26

Appendices

A1. Diophantine condition

We prove that the set of diophantine vectors has full measure in Rn.

Definition A1.1 : A vector ω ∈ Rn is said to be diophantine if there exists c > 0 and
η > 0 such that

∀k ∈ Zn \ {0}, |k · ω| > c

‖k‖η
(A1.1)

Lemma A1.1 (second Borel-Cantelli lemma): If a sequence (Ej) of Lebesgue measur-
able subsets of a compact set in Rn is such that∑

j

L(Ej) =∞

where L denotes the Lebesgue measure, then there is a sequence (Fj) of translates

Fj = Ej + xj

such that

lim supFj :=
∞⋂
n=1

∞⋃
k=n

Fk

covers Rn apart from a set of measure 0.

Property A1.1 : Let Dη,c be the set of diophantine vectors with constants η and c as
defined in the definition above. If η > n− 1, then the Lebesgue measure of Rn \ Dη,c is
0.

Proof (from [Ga04]): Let r > 0 and Br be the open ball of radius r. Let L denote
the Lebesque measure of a set. We first prove that

L(Rn \ Dη,c ∩ Br) 6 Kηcr
n−1 (A1.2)

for some Kη > 0 that depends solely on η. Notice that{
ω, ∃k ∈ Zn, |ω · k| < c

‖k‖η

}
⊂
⋃
k∈Zn

{
ω, ‖ω‖ < c

‖k‖η+1

}
=:

⋃
k∈Zn

Aη,k

so
L(Rn \ Dη,c ∩ Br) 6

∑
k∈Zn

L(Aη,k)

27

For each k ∈ Zn, there are two cases:

∗ c‖k‖−η−1 < r, in which case

L(Aη,k) = Snc
n‖k‖−n(η+1) < Snc‖k‖−η−1rn−1

where Sn is the volume of the unit sphere in n dimensions.

∗ c‖k‖−η−1 > r in which case

L(Aη,k) = Snr
n 6 Snc‖k‖−η−1rn−1

Therefore

L(Rn \ Dη,c ∩ Br) 6 Sncr
n−1

∑
k∈Zn

1

‖k‖η+1

and since η > n− 1, ∑
k∈Zn

1

‖k‖η+1

converges. This proves (A1.2). Thus

L(Dη,c ∩ Br) > Snr
n −Kηcr

n−1

So if we pick a sequence of r going to infinity, we get a sequence of (En) to which we
may apply the Borel-Cantelli lemma, which implies that

L(Rn \ Dη,c) = 0

A2. The KAM theorem

In this appendix we give the statement and a sketch of the proof of Kolmogorov’s
version of the KAM theorem.

Theorem A2.1 : Consider a system whose Hamiltonian is given by

H(q; p) = H0(q; p) + εH1(q; p)

such that H0 is integrable. We suppose that H is analytic on the strip of the complex
plane defined by Im(qi) 6 ρ and that the matrix H defined by

Hα,β(q) =
∂2H

∂pα∂pβ
(q; 0)

satisfies
det(H(q)) 6= 0.

28

The latter condition is called the non-degeneracy condition. Take (q0; p0) a point in
phase space. Let ω be the frequency vector of the trajectory computed for ε = 0, that
starts at (q0; p0). If ω is diophantine with parameters η and c, then there exists ε0 > 0,
which may depend on η and c, such that for any ε < ε0, there exists a trajectory starting
from a point in the neighborhood of (q0; p0) that is quasi-periodic, with a frequency
vector equal to ω.

Idea of the proof [Ko54]: We suppose (q; p) are action-angle variables of H0. The
unperturbed trajectory has a constant momentum I, but since the tranlation of p by a
constant vector is a canonical transformation, we can suppose I = 0. Thus we may write
H as

H(q; p) = m+ ω · p +
1

2
pTH(q)p + ε (A(q) + B(q) · p) +O(‖p‖3) (A2.1)

where m ∈ R, B(q) ∈ Rn and pT is the transpose of the column vector p. The essence
of the proof is to find a canonical transform to the variables (q′; p′) such that (A2.1)
becomes

H(q′; p′) = M(ε) + ω · p′ +O(‖p′‖2) (A2.2)

This would prove the theorem since the trajectory of the perturbed system starting from
(q′; p′ = 0) remains at p′ = 0, thus staying on a torus at the same frequency ω. To find
such a change of variables, we proceed by steps, eliminating the unwanted terms at each
order in ε. We detail the first step: we perform a canonical transform from the variables
(q; p) to (Q,P). To construct the canonical change of variables, we use a generating
function

S(q,P) = q · (εξ + P) + εX(q) + εY(q) ·P (A2.3)

where Y and X are arbitrary C1 functions and ξ is an arbitrary vector. From (A2.3) we
find 

Q =
∂S

∂P
= q + εY(q)

p =
∂S

∂q
= P + ε

(
ξ +

∂X

∂q
(q) +

∑
i

Pi
∂Yi
∂q

(q)

) (A2.4)

We require that H(Q; P) take the form

H(Q; P) = m+ εζ + ωP +O
(
‖P‖2, ε2

)
. (A2.5)

We have

H(Q; P) = m+ ω ·P + ε

(
ω · ξ + ω · ∂X

∂q
(q) +

∑
i

Piω ·
∂Yi
∂q

(q)

)

+εPTH(q)

(
ξ +

∂X

∂q
(q)

)
+ ε (A(q) + B(q) ·P) +O

(
‖P‖2, ε2

) (A2.6)

29

thus to get (A2.5), we impose
ω ·
(
ξ +

∂X

∂q
(q)

)
+A(q) = ζ

∑
i

ωi
∂Y

∂qi
(q) +H(q)

(
ξ +

∂X

∂q
(q)

)
+ B(q) = 0.

(A2.7)

We define

Z(q) := H∂X
∂q

(q).

We suppose X and Y are decomposable into Fourier series, and define

H(q) =
∑
k∈Zn

hke
ik·q

A(q) =
∑
k∈Zn

ake
ik·q

B(q) =
∑
k∈Zn

bke
ik·q

X(q) =
∑
k∈Zn

xke
ik·q

Y(q) =
∑
k∈Zn

yke
ik·q

Z(q) =
∑
k∈Zn

zke
ik·q.

Thus (A2.7) becomes 

ω · ξ + a0 = ζ

ik · ω xk + ak = 0

h0ξ + z0 + b0 = 0

ik · ω yk + hkξ + zk + bk = 0.

(A2.8)

We get

xk = i
ak

k · ω
thus determining X up to a constant and thus zk as well as z0. We can then find

ξ = −h−1
0 (z0 + b0)

which gives ζ and

yk = i
hkξ + zk + bk

k · ω

30

To prove that X and Y are analytic, we use the following lemma

Lemma A2.1 : Let f be a function. If f is analytic on the
strip of the complex plane defined by Im(x) 6 ρ then it may
be expanded as a Fourier series with Fourier coefficients fk that
decrease exponentially: there exists K > 0 such that

|fk| < Ke−ρk.

Conversely, if f is expandable of a Fourier series and its Fourier
coefficients fk verify

|fk| < Ke−ρk.

for some constants K > 0 and ρ > 0, then f is analytic on the
strip of the complex plane defined by Im(x) < ρ.

Thus there exists K > 0 such that

|ak| < Ke−ρ‖k‖

which, using the diophantine condition, implies that

|xk| <
K

c
‖k‖ηe−ρ‖k‖

Thus for any 0 < h < p, X is analytic on strip of the complex plane defined by

Im(x) 6 ρ− h.

We may proceed similarly for yk and zk.

The terms of higher order in ε and P that we neglected in (A2.6) are

1

2
PTH(q)P +

∑
i

PTH(q)Pi
∂Yi
∂q

(q) + ε2B(q) ·

(
ξ +

∂X

∂q
(q) +

∑
i

Pi
∂Yi
∂q

(q)

)

+ε2

(
ξ +

∂X

∂q
(q) +

∑
i

Pi
∂Yi
∂q

(q)

)T
H

(
ξ +

∂X

∂q
(q) +

∑
i

Pi
∂Yi
∂q

(q)

) (A2.9)

as well as terms coming from O(‖p‖3). All of these terms are analytic in q and therefore
in Q. Thus H is analytic in Q and P. Therefore (A2.5) is of the form (A2.1), where ε is
replaced by ε2 and ρ by ρ− h. We can thus apply the same step again, which will yield

H(Q; P) = m+ εζ1 + ε2ζ2 + ω ·P +O(‖P‖2, ε4) (A2.10)

and so on.

To prove the theorem, we would need to prove that Y and X decrease, thus
proving the convergence of the change of variables (A2.4). We would then have to check

31

that after applying all the changes of variables, the Hamiltonian is still well defined and
analytic in a domain such that ρ > 0. The details of these questions can be found in
[Ar63a].

The questions regarding the convergence of the KAM iteration are non-trivial: in
the first step, we added terms not only of order ε2, but of all greater orders as well
(because of the dependenc in q instead of Q of the neglected terms). Therefore at a
given step h, the A and B and consequently X and Y will not only depend on the
iteration at h− 1 but on the entire history of the iteration. This is similar to a problem
that appears when studying the β-function flow in a renormalization group analysis. In
fact there is a common language for treating both of these problems that was developed
by G. Gallavotti [Ga94, Ga04]. The problem of the convergence of the KAM iteration is
re-expressed as the convergence of a Lindstedt series, that can be represented as a sum
over a set of trees, analogous to Feynman diagrams where the propagator is given by
the small divisor

1

ω · k
.

The problem is then solved by performing a re-summation of the trees, in the same way
as in renormalization group analyses.

A3. W as a Fourier series

In section 3, we have written r1, r2 and w as Fourier series, assuming these quanti-
ties are periodic analytic functions. However, since w is an angle, it can not necessarily
be written as a Fourier series. Instead, we may consider W (M) := eiw(M) which is a
periodic analytic complex function, that is thus expressible as a Fourier series. Further-
more, one notices that L can be expressed using only r1, r2 and W . To impose that w
is real, on must impose a constraint on the Fourier coefficients of W so that

|W | = 1⇐⇒ ∀k ∈ N,
∞∑

k′=−∞
Wk′Wk′−k = δk,0. (A3.1)

However, the condition (A3.1) is difficult to impose, in fact, if one only considers a finite
number of harmonics Wk, (A3.1) can only be satisfied if one of the Wk is equal to 1 and
the others are equal to 0 (see below). We can therefore not use W , instead, we write

w(M) = v ·M +
∑
k∈Z3

wke
ik·M (A3.2)

for some constant vector v such that vi = niωi for some integer vector n. The fact
that w can be expressed in the form (A3.2) is equivalent to the fact that W is Fourier
decomposable.

Since n is a vector of integers, assuming that w depends continuously on the
size of the interaction term Lint (which is a consequence of the KAM theorem if ω is

32

diophantine), and assuming that the interaction term is small enough, n is the same with
or without interactions. It can be explicitly computed for the Kepler problem, which
yields

w(M) = ω ·M +
∑
k∈Z3

wke
ik·M . (A3.3)

We now study the question of how to impose that w ∈ R if we consider W := eiw

as a variable. To that end, we shall consider the one dimensional case where W is a
function R −→ C such that

W (t) =

km∑
k=−km

Wke
ikt

with Wk ∈ R and
W (t)W ∗(t) = 1 (A3.4)

and prove that the only way of imposing (A3.4) is that one of the Wk is equal to 1 and
the others are equal to 0. We use the following notation to denote sets of consecutive
integers:

{n, · · · , n+ p} =: [|n, n+ p|].

Lemma A3.1 : We have

W (t)W (t)∗ = 1⇐⇒ ∀k ∈ [|0, 2km|],
km∑

k′=k−km

Wk′Wk′−k = δk,0

Proof: We compute the k’th Fourier coefficient of WW ∗: ∀k ∈ N, the term
in eikt is

km∑
k′=k−km

Wk′Wk′−k

and the term in e−ikt is
km−k∑
k′=−km

Wk′Wk′+k

Furthermore
km−k∑
k′=−km

Wk′Wk′+k =

km∑
k′=−km+k

Wk′−kWk′

This proves the lemma.

33

Theorem A3.1 For km ∈ N, let

W (t) :=

km∑
k=−km

Wke
ikt

If ∀t ∈ R
W (t)W (t)∗ = 1

then ∃k ∈ [| − km, km|] such that
Wk ∈ {−1,+1}

Wk′ = 0 if k′ 6= k

Proof: We prove the theorem by induction on km. For km = 0, the statement
is obvious. For km ∈ N∗, using the previous lemma, we find that ∀k ∈ [|0, 2km|]

km∑
k′=k−km

Wk′Wk′−k = δk,0

Therefore, by taking this expression for k = 2km,

WkmW−km = 0

and for k = 2km − 1,

Wkm−1W−km +WkmW−km+1 = δ2km−1,0

There are three cases:
∗ Wkm = 0 and Wkm−1 = 0
∗ Wkm = 0 and W−km = 0
∗ W−km = 0 and W−km+1 = 0

We will only treat the first case in detail, since the other ones can be treated in the same
way. We define

W̃ (km−1)(t) :=

km−1∑
k=−(km−1)

Wk−1e
ikt

We have
W (t) = e−itW̃ (km−1)(t)

so
W̃ (km−1)(t)W̃ (km−1)(t)∗ = 1

By using the induction assumption, ∃k ∈ [| − km, km − 2|] such that
Wk ∈ {−1,+1}

Wk′ = 0 if k′ 6= k

34

This equality also holds for Wkm−1 and Wkm since they are both equal to 0.

The other cases can be treated in the same way. The theorem is thus proven.

A4. The conjugate gradient method

In this appendix, we prove the conjugate gradient method. We use the following
notations: a set of consecutive integers {n, · · · , n+ p} is denoted by [|n, n+ p|], Mn(R)
is the set of n × n real matrices, GLn(R) is the set of invertible n × n real matrices.
Vectors are considered as column vectors, and T denotes the transposition operator.

The algorithm gives the solution of

Ax = b

with A ∈Mn(R) symmetric and b ∈ Rn, in at most n steps.

Lemma A4.1 Let A ∈ GLn(R) be a symmetric invertible matrix. Let g0 ∈ Rn \ {0}
and ∀i ∈ [|0, n|], we define

h0 := g0

λi :=
gTi hi

hTi Ahi

gi+1 := gi − λiAhi

γi :=
gTi+1gi+1

gTi gi

hi+1 := gi+1 + γihi.

Then ∀i ∈ [|1, n|], ∀j ∈ [|0, i− 1|],

gTi gj = 0 hTi Ahj = 0 gTi hj = 0.

Proof: We prove the theorem by induction on i:

• For i = 1,

gT1 g0 = gT0 g0 − λ0h
T
0 A

T g0

= gT0 g0 −
gT0 h0

hT0 Ah0
gT0 Ah0

= 0

35

and

hT1 Ah0 = − 1

λ0
hT1 (g1 − g0)

= − 1

λ0
(g1 + γ0h0)T (g1 − g0)

= − 1

λ0
(gT1 g1 − γ0g

T
0 g0)

= 0

and
gT1 h0 = gT1 g0 = 0.

• For a given i > 1,

gTi+1gi = gTi gi − λihTi AT gi

= gTi gi −
gTi hi

hTi Ahi
gTi Ahi

= gTi gi −
gTi (gi + γi−1hi−1)

hTi Ahi
(hi − γi−1hi−1)TAhi

using
gTi hi−1 = 0, hTi−1Ahi

we find
gTi+1gi = 0.

Then, for j ∈ [|1, i− 1|],

gTi+1gj = gTi gj − λihTi AT gj

= −λigTj Ahi

= −λi(hj − γj−1hj−1)TAhi

= 0.

Finally,
gTi+1g0 = gTi g0 − λihTi AT g0 = −λihTi ATh0

and
hTi A

Th0 = hTi Ah0 = 0

36

since A is symmetric. Furthermore, ∀j ∈ [|0, i|],

hTi+1Ahj = − 1

λj
hTi+1(gj+1 − gj)

and

hTi+1gj = (gi+1 + γihi)
T gj

=


gTi+1gi+1 if j = i+ 1

γih
T
i gj if not

...

=

i∏
k=j

γk g
T
j gj

=
gTi gi

gTj gj
gTj gj

= gTi gi

so
hTi+1Ahj = 0

and
gTi+1hj = (gi − λiAhi)Thj .

If j < i,
gTi+1hj = 0

and

gTi+1hi = gTi hi −
gTi hi

hTi Ahi
hTi Ahi = 0.

Comment : The invertibility of A is necessary for λi to be well defined, since

Vect ({hi}) = Vect ({gi}) = Rn

Notice that the λi are well defined since hi 6= 0 (consequence of the orthogonality of the
gi).

Therefore, the only issue may arise if hi = 0, which, by virtue of the orthogonality of
gi with al the preceding hi may only occur if gi = 0, in which case the result of the
following theorem remains true.

37

Theorem 5.1 Let x0 ∈ Rn, b ∈ Rn, A ∈Mn(R) symmetric,

g0 := Ax0 − b

and define for i ∈ [|0, n− 1|]
xi+1 := xi − λihi

with

h0 := g0

λi :=
gTi hi

hTi Ahi

gi+1 := gi − λiAhi

γi :=
gTi+1gi+1

gTi gi

hi+1 := gi+1 + γihi.

Then ∃k ∈ [|0, rank(A)|] such that xk verifies

Axk = b

Proof:

• If rank(A) = n, we prove by induction that ∀i ∈ [|1, n|], ∀j ∈ [|0, i− 1|] we have

hTj Axi = hTj b.

If i = 1,
hT0 Ax1 = hT0 A(x0 − λ0h0) = hTo (g0 + b)− gT0 h0 = hT0 b.

If i > 1, for j < i
hTj Axi+1 = hTj A(xi − λihi) = hTj b

and

hTi Axi+1 = hTi A(xi − λihi)

= hTi Axi − gTi hi

and a simple induction shows that

gi = Axi − b

which proves that ∀i ∈ [|1, n|], ∀j ∈ [|0, i− 1|] we have

hTj Axi = hTj b.

38

The previous result implies that (taking i = n)

Axn − b = 0

since
Vect ({hi}) = Vect ({gi}) = Rn.

• If rank(A) < n, then we change variables and consider a reduced matrix A′ ∈
GLrank(A)(R) in order to use the previous lemma.
• If, as was mentioned in the comment, the algorithm reaches a point where gi = 0, then

Axi = b

by virtue of gi = Axi − b (see earlier). If not, the algorithm continues until i reaches
rank(A).

A5. Derivatives of the action

In this appendix we give the expression of the derivatives of the action for the
three body problem in Hill-Jacobi variables. We split this computation into two parts:
we first find the expression of the two first derivatives of the action as a function of the
derivatives of the Lagrangian, then we compute the derivatives of the Lagrangian.

A5.1. Derivatives of the action as a function of the Lagrangian

We define

〈·〉−k =

∮
dΦ eik·Φ·

and recall

Sω[r1, r2, w] :=

∮
dΦ L(r1(Φ), r2(Φ), w(Φ);Dωr1(Φ), Dωr2(Φ), Dωw(Φ)) = 〈L〉0 .

If x is any of r1, r2 or w, and ak and bk are the real and imaginary parts of xk, using
the symmetry (3.10), we have for k 6= 0

∂x(Φ)

∂ak
= eik·Φ + e−ik·Φ

∂x(Φ)

∂bk
= ieik·Φ − ie−ik·Φ

and


∂x(Φ)

∂a0
= 1

∂x(Φ)

∂b0
= 0

and 
∂Dωx(Φ)

∂ak
= iω · k

(
eik·Φ − e−ik·Φ

)
∂Dωx(Φ)

∂bk
= −ω · k

(
eik·Φ + e−ik·Φ

) and


∂Dωx(Φ)

∂a0
= 0

∂Dωx(Φ)

∂b0
= 0

39

which implies that
∂Sω
∂ak

= 2Re
〈
∂L

∂x

〉
k

+ 2ω · k Im
〈
∂L

∂ẋ

〉
k

∂Sω
∂bk

= 2Im
〈
∂L

∂x

〉
k

− 2ω · k Re
〈
∂L

∂ẋ

〉
k

and


∂Sω
∂a0

=

〈
∂L

∂x

〉
0

∂Sω
∂b0

= 0

(A5.1)

and if x′ is any of r1, r2 or w and a′k and b′k are the real and imaginary parts of x′k, then
for any l 6= 0, we have

∂2Sω
∂a′l∂ak

= 2Re
((〈

∂2L

∂x′∂x

〉
k+l

+

〈
∂2L

∂x′∂x

〉
k−l

)

+(ω · k)(ω · l)
(
−
〈
∂2L

∂ẋ′∂ẋ

〉
k+l

+

〈
∂2L

∂ẋ′∂ẋ

〉
k−l

))

+2Im
(
ω · k

(〈
∂2L

∂ẋ′∂x

〉
k+l

+

〈
∂2L

∂ẋ′∂x

〉
k−l

)

+ω · l
(〈

∂2L

∂x′∂ẋ

〉
k+l

−
〈
∂2L

∂x′∂ẋ

〉
k−l

))

∂2Sω
∂b′l∂ak

= 2Im
((〈

∂2L

∂x′∂x

〉
k+l

−
〈
∂2L

∂x′∂x

〉
k−l

)

−(ω · k)(ω · l)
(〈

∂2L

∂ẋ′∂ẋ

〉
k+l

+

〈
∂2L

∂ẋ′∂ẋ

〉
k−l

))

+2Re
(
ω · k

(
−
〈
∂2L

∂ẋ′∂x

〉
k+l

+

〈
∂2L

∂ẋ′∂x

〉
k−l

)

−ω · l
(〈

∂2L

∂x′∂ẋ

〉
k+l

+

〈
∂2L

∂x′∂ẋ

〉
k−l

))

∂2Sω
∂b′l∂bk

= 2Re
((
−
〈
∂2L

∂x′∂x

〉
k+l

+

〈
∂2L

∂x′∂x

〉
k−l

)

+(ω · k)(ω · l)
(〈

∂2L

∂ẋ′∂ẋ

〉
k+l

+

〈
∂2L

∂ẋ′∂ẋ

〉
k−l

))

+2Im
(
ω · k

(
−
〈
∂2L

∂ẋ′∂x

〉
k+l

+

〈
∂2L

∂ẋ′∂x

〉
k−l

)

−ω · l
(〈

∂2L

∂x′∂ẋ

〉
k+l

+

〈
∂2L

∂x′∂ẋ

〉
k−l

))

(A5.2)

40

and

∂2Sω
∂a′0∂ak

= 2Re
〈
∂2L

∂x′∂x

〉
k

+ 2ω · k Im
〈
∂2L

∂x′∂ẋ

〉
k

∂2Sω
∂b′0∂ak

= 0

∂2Sω
∂a′0∂bk

= 2Im
〈
∂2L

∂x′∂x

〉
k

− 2ω · kRe
〈
∂2L

∂x′∂ẋ

〉
k

∂2Sω
∂b′0∂bk

= 0

and



∂2Sω
∂a′0∂a0

=

〈
∂2L

∂x′∂x

〉
0

∂2Sω
∂a′0∂b0

= 0

∂2Sω
∂b′0∂b0

= 0

One may notice that the terms in (A5.2) of the form 〈·〉k−l are not well defined since
k − l may not be in K. But this is not a problem since the derivatives of L are real so
we can use

Re (〈·〉k) + iIm (〈·〉k) = Re
(
〈·〉−k

)
− iIm

(
〈·〉−k

)
to express 〈·〉k−l using 〈·〉l−k.

A5.2. Derivatives of the Lagrangian

We now express the derivatives of the Lagrangian

L1 =
1

2
β1ṙ

2
1 +

µ1β1

r1
+

1

2
β1r

2
1ξ

2

L2 =
1

2
β2ṙ

2
2 +

µ2β2

r2
+ χ

(
β1r

2
1ξ −

1

2
β2r

2
2χ

)
Lint = −µ2β2

r2
+
µ2β2√

∆1
+

µ√
∆0

.

We define
LK := L1 + L2

which yields 

∂LK
∂r1

= −µ1β1

r2
1

+ β1r1ξ
2

∂LK
∂r2

= −µ2β2

r2
2

+ β2r2χ
2

∂LK
∂ẇ

= β1r
2
1ξ

and



∂LK
∂ṙ1

= β1ṙ1

∂LK
∂ṙ2

= β2ṙ2

∂LK
∂w

= 0

(A5.3)

41

and 

∂2LK
∂r1∂r1

=
2µ1β1

r3
1

+
β1

(
β2r

2
2 − 3β1r

2
1

)
β1r2

1 + β2r2
2

ξ2

∂2LK
∂r2∂r1

=
4β1r1β2r2

β1r2
1 + β2r2

2

ξχ

∂2LK
∂r2∂r2

=
2µ2β2

r3
2

+
β2

(
β1r

2
1 − 3β2r

2
2

)
β1r2

1 + β2r2
2

χ2

(A5.4)



∂2LK
∂ẇ∂r1

=
2β1r1β2r

2
2

β1r2
1 + β2r2

2

ξ

∂2LK
∂ẇ∂r2

=
2β1r

2
1β2r2

β1r2
1 + β2r2

2

χ

and



∂2LK
∂ṙ1∂ṙ1

= β1

∂2LK
∂ṙ2∂ṙ2

= β2

∂2LK
∂ẇ∂ẇ

=
β1r

2
1β2r

2
2

β1r2
1 + β2r2

2

(A5.5)

The other derivatives of LK are equal to 0. Furthermore

∂Lint
∂r1

= −µ2β2δ1 (δ1r1 + r2 cosw)

∆1(r1, r2, w)3/2
− µδ0 (δ0r1 + r2 cosw)

∆0(r1, r2, w)3/2

∂Lint
∂r2

=
µ2β2

r2
2

− µ2β2 (r2 + δ1r1 cosw)

∆1(r1, r2, w)3/2
− µ (r2 + δ0r1 cosw)

∆0(r1, r2, w)3/2

∂Lint
∂w

=
µ2β2δ1r1r2 sinw

∆1(r1, r2, w)3/2
+

µδ0r1r2 sinw

∆0(r1, r2, w)3/2

(A5.6)

42

and

∂2Lint
∂r1∂r1

=
µ2β2δ

2
1

∆1(r1, r2, w)3/2

(
2− 3r2

2 sin2(w)

∆1(r1, r2, w)

)
+

µδ2
0

∆0(r1, r2, w)3/2

(
2− 3r2

2 sin2(w)

∆0(r1, r2, w)

)

∂2Lint
∂r2∂r1

=
µ2β2δ1

∆1(r1, r2, w)3/2

(
2 cosw +

3δ1r1r2 sin2(w)

∆1(r1, r2, w)

)

+
µδ0

∆0(r1, r2, w)3/2

(
2 cosw +

3δ0r1r2 sin2(w)

∆0(r1, r2, w)

)

∂2Lint
∂w∂r1

= − µ2β2δ1r2 sinw

∆1(r1, r2, w)3/2

(
3 (δ1r1 + r2 cosw) δ1r1

∆1(r1, r2, w)
− 1

)

− µδ0r2 sinw

∆0(r1, r2, w)3/2

(
3 (δ0r1 + r2 cosw) δ0r1

∆0(r1, r2, w)
− 1

)

∂2Lint
∂r2∂r2

= −2µ2β2

r3
2

+
µ2β2

∆1(r1, r2, w)3/2

(
2− 3δ2

1r
2
1 sin2(w)

∆1(r1, r2, w)

)

+
µ

∆0(r1, r2, w)3/2

(
2− 3δ2

0r
2
1 sin2(w)

∆0(r1, r2, w)

)

∂2Lint
∂w∂r2

= − µ2β2δ1r1 sinw

∆1(r1, r2, w)3/2

(
3 (r2 + δ1r1 cosw) r2

∆1(r1, r2, w)
− 1

)

− µδ0r1 sinw

∆0(r1, r2, w)3/2

(
3 (r2 + δ0r1 cosw) r2

∆0(r1, r2, w)
− 1

)

∂2Lint
∂w∂w

=
µ2β2δ1r1r2

∆1(r1, r2, w)3/2

(
3δ1r1r2 sin2(w)

∆1(r1, r2, w)
+ cosw

)

+
µδ0r1r2

∆0(r1, r2, w)3/2

(
3δ0r1r2 sin2(w)

∆0(r1, r2, w)
+ cosw

)

(A5.7)

The other derivatives of Lint are equal to 0.

To find these expressions we use the following equalities:
ξ(r1, r2, ẇ) :=

ẇβ2r
2
2 +G

β1r2
1 + β2r2

2

= v̇1

χ(r1, r2, ẇ) :=
ẇβ1r

2
1 −G

β1r2
1 + β2r2

2

= v̇2

43



∂χ

∂r1
= ξ

2β1r1

β1r2
1 + β2r2

2

∂χ

∂r2
= −χ 2β2r2

β1r2
1 + β2r2

2

∂χ

∂ẇ
=

β1r
2
1

β1r2
1 + β2r2

2



∂ξ

∂r1
= −ξ 2β1r1

β1r2
1 + β2r2

2

= − ∂χ
∂r1

∂ξ

∂r2
= χ

2β2r2

β1r2
1 + β2r2

2

= − ∂χ
∂r2

∂ξ

∂ẇ
=

β2r
2
2

β1r2
1 + β2r2

2

∂2χ

∂r1∂r1
= ξ

2β1(
β1r2

1 + β2r2
2

)2 (β2r
2
2 − 3β1r

2
1

)
∂2χ

∂r2∂r1
= − (ξ − χ)

4β1r1β2r2(
β1r2

1 + β2r2
2

)2
∂2χ

∂ẇ∂r1
=

2β1r1β2r
2
2(

β1r2
1 + β2r2

2

)2
∂2χ

∂r2∂r2
= χ

2β2(
β1r2

1 + β2r2
2

)2 (3β2r
2
2 − β1r

2
1

)
∂2χ

∂ẇ∂r2
= − 2β1r

2
1β2r2(

β1r2
1 + β2r2

2

)2
∂2χ

∂ẇ∂ẇ
= 0

∂2ξ

∂x∂x′
= − ∂2χ

∂x∂x′

And



∂∆i

∂r1
= 2δi(δir1 + r2 cosw)

∂∆i

∂r2
= 2(r2 + δir1 cosw)

∂∆i

∂w
= −2δir1r2 sinw



∂2∆i

∂r1∂r1
= 2δ2

i

∂2∆i

∂r1∂r2
= 2δi cosw

∂2∆i

∂r1∂w
= −2δir2 sinw

∂2∆i

∂r2∂r2
= 2

∂2∆i

∂r2∂w
= −2δir1 sinw

∂2∆i

∂w∂w
= −2δir1r2 cosw

44

A6. Results for the simple system
In this appendix we give the results of the extremalization algorithm using the

quasi-Newton method applied to the system (5.3)

H(φ1, φ2, I1, I2) =
I2

1

2
+
I2

2

2
+ ε (cos(φ1 + φ2) + cos(φ1 − φ2)) .

We take

ε = 0.1, km = 16, ω = (1, 0.615).

In the following table, we give the 20 largest harmonics produced by our algorithm given
alongside the results of an independent numerical integration provided by J. Laskar.
We give φ̇1e

iφ1

k1 k2 computed amplitude compare

1 0 0.9402611215 0.9402611271

2 -1 0.3153598290 0.3153598289

0 1 0.1501049273 0.1501049272

3 -2 0.1045848880 0.1045848879

2 1 0.0470489075 0.0470489075

4 -3 0.0330532141 0.0330532141

3 0 0.0130709521 0.0130709521

0 -1 0.0110690954 0.0110690954

1 2 0.0104148751 0.0104148751

5 -4 0.0101128017 0.0101128017

-1 0 0.0046720595 0.0046720595

4 -1 0.0038272225 0.0038272225

6 -5 0.0030229781 0.0030229781

3 2 0.0014568229 0.0014568229

5 -2 0.0011064636 0.0011064636

1 -2 0.0010024737 0.0010024737

-1 2 0.0009160064 0.0009160064

7 -6 0.0008879908 0.0008879908

4 1 0.0003848985 0.0003848985

2 3 0.0003437432 0.0003437432

45

and φ̇2e
iφ2 :

k1 k2 computed amplitude compare

0 1 0.5782605897 0.5782605897

1 0 0.2440730526 0.2440730525

-1 2 0.0523702243 0.0523702242

1 2 0.0401220129 0.0401220129

-1 0 0.0179985290 0.0179985290

2 1 0.0122129590 0.0122129589

-2 3 0.0091585636 0.0091585637

-3 4 0.0082824759 0.0082824759

0 3 0.0080386356 0.0080386356

-2 1 0.0060366348 0.0060366348

2 -1 0.0055159514 0.0055159514

-4 5 0.0036828116 0.0036828116

0 -1 0.0028733166 0.0028733166

-3 2 0.0020019696 0.0020019696

-1 4 0.0016507370 0.0016507370

-5 6 0.0013538808 0.0013538808

2 3 0.0013242279 0.0013242279

-4 3 0.0006327064 0.0006327064

-6 7 0.0004547264 0.0004547264

3 2 0.0003781622 0.0003781622

The results are the same up to an error of 10−10. The independent numerical
integration gave frequencies equal to

ωnum = (1.0000000001, 0.6149999999).

46

A7. Specifications of the computer used for computations

∗ CPU: 8×Intel R© XeonTM MP, clock: 3.66 GHz, cache: 1 MB per CPU, architec-
ture: x86 64.
∗ Memory: 8 GB.
∗ Kernel: Linux 2.6.18-274.17.1.el5.

47

48

Programs

The programs provided in this appendix are written in the TRIP language, which
is easily readable. The code listings below can therefore be seen as detailed descriptions
of the algorithms we used.

We now give a rudimentary syntax guide for the TRIP language. Each line is ter-
minated by either $ or ;. A subroutine (or macro) is defined by macro name[args]{...};
and can be used by calling %name[args]. The symbol // comments the rest of the line.
Comments can also be enclosed between /* and */.

Numerical vectors (declared by vnumR in the real case and vnumC in the complex
case), are vectors with numbers as entries. Tables (declared by dim) can contain any
type of data, including series. Matrices are represented as tables of numerical vectors
using the syntax vnumR M[1:size]; followed by resize(M,size);.

The command initcf initializes an environment for Fourier series, in which the
maximal order of the harmonics in given. The operations on Fourier series are subse-
quently truncated at that maximal order.

TRIP is a symbolic language, and any undeclared symbol in an expression is
considered as a variable (as is the case for M in program P1).

49

P1. Kepler problem

The code for the program that computes the trajectories of a Kepler problem by ex-
tremalizing the action:

keplactio.t:

1 /*

2 Numerical computation of the trajectories of a Kepler problem

3 using a variational principle.

4 The parameters should be set in runExample and initIter.

5

6 The results are given in a vector rn: rn[j] holds the r computed

7 at the j-th step. RSA0 is the analytical solution (for comparison).

8 %norm gives the norm of a Fourier series, thus

9 %norm[rn[j]-RsA0]

10 will give the "distance" of the solution from the analytical one.

11 To run, simply execute %runExample.

12

13 The algorithm first attempts to find a solution with a Lagrange

14 multiplier in its usual form to impose the initial condition. If

15 this fails, it then uses the modified Lagrange multiplier we

16 introduced.

17

18 I.Jauslin - last modified 26/04/2012

19 */

20

21 //typical sequence of commands to run the algorithm

22 macro runExample{

23 //cutoff of the order of the harmonics

24 kMax=128$

25 %init[kMax];

26 //eccentricity

27 ee=0.4$

28 //maximal number of iterations using the usual Lagrange multiplier

29 Niter=20$

30 //maximal number of iterations using the modified Lagrange multiplier

31 NiterNew=300$

32 //stop the algorithm once it converged up to a precision of tol

33 tol=1e-12$

34 //stops the algorithm after maxCount convergent steps

35 maxCount=3$

36 //r to start the algorithm with

37 r0=1-ee*cos(M)$

38 //store it as a Fourier series

39 convcf(r0);

40 //Decompose it as a Fourier series

41 r0=%FourDecomp[r0]$

42 //run the program

50

43 %main[ee,kMax,r0,Niter,NiterNew];

44 };

45

46 //initializes the environment

47 macro init[kMax]{

48 //double precision floats

49 _modenum=NUMDBL$

50 //neglect anything below the given precision

51 _cleaneps=1e-25$

52 _cleanflag=1$

53

54 //size of a vector of Fourier coefficients

55 Nk=kMax+1$

56 //set the maximal order of Fourier series

57 initcf(X,-kMax,kMax)$

58 //define X as exp(iM)

59 X=expi(M,1,0)$

60 };

61

62 //runs the algorithm

63 macro main[ee,kMax,r0,nmax,nmaxNew]{

64 private rnp;

65 Niter=nmax$

66 %initIter[kMax,ee,r0]$

67 //runs the usual Lagrange multiplier algorithm

68 %iterOld[1,Niter]$

69 //if after trying with the usual Lagrange multiplier, DS!=0

70 if(sum(abs(%DAction[r]))>1e-10)then{

71 //modified Lagrange multiplier program

72 msg("newalg");

73 //extend the size of the vector rn

74 dim rnp[0:Niter+nmaxNew]$

75 rnp[0:Niter]=rn$

76 rn=rnp$

77 //if the old Lagrange multiplier failed to converge, reset

78 //to initial values

79 if(converges==0)then{r=r0$lam=0$};

80

81 %iterNew[Niter+1,Niter+nmaxNew]$

82 };

83 return(r)$

84 };

85

86 //sets constants and computes the analytical solution

87 macro initIter[kMax,ee,r0]{

88 //semi-major axis

89 a=1$

90 //mass of the star

91 mu=1$

51

92 //frequency

93 omega=sqrt(mu/a^3)$

94 //mass of the planet

95 B=1$

96 //square of the angular momentum

97 g2=B^2*mu*a*(1-ee^2)$

98

99 //analytical solution

100 RsA0=%rsa[kMax,ee,omega,mu,M]$

101 convcf(RsA0)$

102

103 //boundary condition

104 ri=a*(1-ee)$

105 //initialize r and lambda

106 r=r0$

107 lam=0$

108

109 //vector with r at each iteration step as a series

110 dim rn[0:Niter]$

111 rn[0]=%FourInvDecomp[r]$

112 convcf(rn[0]);

113 };

114

115 //analytical solution of the Kepler problem

116 macro rsa[kMax,ee,omega,mu,M]{

117 private a,E,cosEpM;

118 //semi-major axis

119 a=exp(1/3*log(mu/omega^2))$

120 //eccentric anomaly: initialize the algorithm

121 E=ee*sin(M)$

122 convcf(E)$

123

124 //algorithm to find the actual eccentric anomaly

125 for k=1 to 200{

126 //E_{n+1}=e*sin(E_n+M)

127 E=ee*real(sin(M)*cos(E)+cos(M)*sin(E))$

128 };

129 //r=a(1-e*cos(E+M))

130 cosEpM=real(cos(M)*cos(E)-sin(M)*sin(E))$

131 return(a*(1-ee*cosEpM))$

132 };

133

134

135 //the iteration with the usual Lagrange multiplier

136 macro iterOld[nmin,nmax]{

137 private j,stopCount,rlam,rdiff;

138 j=nmin$

139 //to stop the iteration after maxCount steps where r_n-r_{n+1}\approx0

140 stopCount=0$

52

141 while((j<=nmax)&&(stopCount<maxCount))do{

142 msg("step %2d\n",j);

143 //new r and lambda (Lagrange multiplier)

144 rlam=%iterFastLagrangeSym[r,lam]$

145 r=rlam[1:Nk]$

146 lam=rlam[Nk+1]$

147 //rn[j] is r as a series at the j-th step

148 rn[j]=%FourInvDecomp[r]$

149 convcf(rn[j]);

150

151 //the difference between the two latest steps

152 rdiff=%norm[rn[j]-rn[j-1]]$

153 //stop?

154 if(rdiff<tol)then{

155 stopCount=stopCount+1$

156 }

157 else{

158 stopCount=0$

159 };

160 j=j+1$

161 };

162 //if stopped, return to the last computed j

163 j=j-1$

164 //converged?

165 converges=0$

166 //if it converged before nmax steps, converges=1 and resize vectors

167 if(j<nmax)then{

168 rn=rn[0:j]$

169 Niter=j$

170 converges=1$

171 };

172 };

173

174 //the iteration with the modified Lagrange multiplier

175 macro iterNew[nmin,nmax]{

176 private j,stopCount,rlam,rdiff;

177 j=nmin$

178 //to stop the iteration after maxCount steps where r_n-r_{n+1}\approx0

179 stopCount=0$

180 while((j<=nmax)&&(stopCount<maxCount))do{

181 msg("step %2d\n",j);

182 //new r and lambda (Lagrange multiplier)

183 rlam=%iterFastLagrangeSymNew[r,lam]$

184 r=rlam[1:Nk]$

185 lam=rlam[Nk+1]$

186 //rn[j] is r as a series at the j-th step

187 rn[j]=%FourInvDecomp[r]$

188 convcf(rn[j]);

189

53

190 rdiff=%norm[rn[j]-rn[j-1]]$

191 //stop?

192 if(rdiff<tol)then{

193 stopCount=stopCount+1$

194 }

195 else{

196 stopCount=0$

197 };

198 j=j+1$

199 };

200 j=j-1$

201 //converged?

202 //if it converged before nmax steps, resize vectors

203 if(j<nmax)then{

204 rn=rn[0:j]$

205 Niter=j$

206 };

207 };

208

209 //iteration with the usual Lagrange multiplier

210 macro iterFastLagrangeSym[rr,llam]{

211 private rF,DS,D2S,Inv,rres,lres,ret,coefsDS,coefsD2S,k,l;

212 //Hessian of the action

213 //size Nk+1: the +1 is for the Lagrange multiplier

214 vnumR D2S[1:Nk+1]$

215 resize(D2S,Nk+1)$

216 //gradient of the action

217 vnumR DS$

218 resize(DS,Nk+1);

219 //r as a series

220 rF=%FourInvDecomp[rr]$

221 convcf(rF);

222 //Fourier coefficients of the gradient and Hessian of the Lagrangian

223 coefsDS=%FourCoefs[(g2-B^2*mu*rF)/(B*rF^3)]$

224 coefsD2S=%FourCoefs[(-3*g2+2*B^2*mu*rF)/(B*rF^4)]$

225 //make D2S and DS

226 DS[1]=coefsDS[0]+llam$

227 D2S[1][1]=coefsD2S[0]$

228 D2S[1][Nk+1]=1$

229 D2S[Nk+1][1]=1$

230 for kn=2 to Nk{

231 //kn is the index in the vector representation of a Fourier series

232 //k is the order of the harmonic kn corresponds to

233 k=kn-1$

234 DS[kn]=2*omega^2*k^2*B*rr[kn]+2*coefsDS[k]+2*llam$

235 D2S[kn][1]=2*coefsD2S[k]$

236 D2S[1][kn]=D2S[kn][1]$

237 //only take the 2*k term if it is not neglected

238 if(2*k<=kMax)then{

54

239 D2S[kn][kn]=2*omega^2*k^2*B+2*coefsD2S[0]+2*coefsD2S[2*k]$

240 }

241 else{

242 //no 2*k term

243 D2S[kn][kn]=2*omega^2*k^2*B+2*coefsD2S[0]$

244 };

245 //we only fill the upper triangular part of the (symmetric) Hessian

246 for ln=kn+1 to Nk{

247 l=ln-1$

248 if(k+l<=kMax)then{

249 D2S[kn][ln]=2*coefsD2S[k+l]+2*coefsD2S[k-l]$

250 }

251 else {

252 D2S[kn][ln]=2*coefsD2S[k-l]$

253 };

254 //symmetrize

255 D2S[ln][kn]=D2S[kn][ln]$

256 };

257 D2S[kn][Nk+1]=2$

258 D2S[Nk+1][kn]=2$

259 };

260 D2S[Nk+1][Nk+1]=0$

261 DS[Nk+1]=%r0[rr]-ri$

262 //inverse

263 Inv=D2S^-1$

264 y=%matProd[Inv,DS]$

265

266 rres=rr-y[1:Nk]$

267 lres=llam-y[Nk+1]$

268 ret=vnumR[rres:lres]$

269 return(ret)$

270 };

271

272 //iteration with the modified Lagrange multiplier

273 macro iterFastLagrangeSymNew[rr,llam]{

274 private rF,DS,D2S,Inv,rres,lres,ret,coefsDS,coefsD2S,k,l,rz;

275 //Hessian of the action

276 //size Nk+1: the +1 is for the Lagrange multiplier

277 vnumR D2S[1:Nk+1]$

278 resize(D2S,Nk+1)$

279 //gradient of the action

280 vnumR DS$

281 resize(DS,Nk+1);

282 //r as a series

283 rF=%FourInvDecomp[rr]$

284 convcf(rF);

285 //Fourier coefficients of the gradient and Hessian of the Lagrangian

286 coefsDS=%FourCoefs[(g2-B^2*mu*rF)/(B*rF^3)]$

287 coefsD2S=%FourCoefs[(-3*g2+2*B^2*mu*rF)/(B*rF^4)]$

55

288 //make D2S and DS

289 //r(M=0)-r_{initial}

290 rz=%r0[rr]-ri$

291 //to bypass the fact that D2S is not invertible when rz=0

292 if(rz!=0)then{

293 DS[1]=coefsDS[0]+llam*rz$

294 D2S[1][1]=coefsD2S[0]+llam$

295 D2S[1][Nk+1]=rz$

296 D2S[Nk+1][1]=rz$

297 for kn=2 to Nk{

298 //kn is the index in the vector representation of a Fourier series

299 //k is the order of the harmonic kn corresponds to

300 k=kn-1$

301 DS[kn]=2*omega^2*k^2*B*rr[kn]+2*coefsDS[k]+2*llam*rz$

302 D2S[kn][1]=2*coefsD2S[k]+2*llam$

303 D2S[1][kn]=D2S[kn][1]$

304 //only take the 2*k term if it is not neglected

305 if(2*k<=kMax)then{

306 D2S[kn][kn]=2*omega^2*k^2*B+2*coefsD2S[0]+2*coefsD2S[2*k]+4*llam$

307 }

308 else{

309 //no 2*k term

310 D2S[kn][kn]=2*omega^2*k^2*B+2*coefsD2S[0]+4*llam$

311 };

312 //we only fill the upper triangular part of the (symmetric) Hessian

313 for ln=kn+1 to Nk{

314 l=ln-1$

315 if(k+l<=kMax)then{

316 D2S[kn][ln]=2*coefsD2S[k+l]+2*coefsD2S[k-l]+4*llam$

317 }

318 else {

319 D2S[kn][ln]=2*coefsD2S[k-l]+4*llam$

320 };

321 //symmetrize

322 D2S[ln][kn]=D2S[kn][ln]$

323 };

324 D2S[kn][Nk+1]=2*rz$

325 D2S[Nk+1][kn]=2*rz$

326 };

327 D2S[Nk+1][Nk+1]=llam$

328 DS[Nk+1]=rz^2/2+llam^2/2$

329 //inverse

330 Inv=D2S^-1$

331 y=%matProd[Inv,DS]$

332

333 rres=rr-y[1:Nk]$

334 lres=llam-y[Nk+1]$

335 }

336 else{

56

337 //in this case D2S is only invertible if the Nk+1-th term is neglected

338 msg("rz=0");

339 //resize DS and D2S

340 vnumR D2S[1:Nk]$

341 resize(D2S,Nk);

342 resize(DS,Nk);

343

344 DS[1]=coefsDS[0]+llam*rz$

345 D2S[1][1]=coefsD2S[0]+llam$

346 for kn=2 to Nk{

347 k=kn-1$

348 DS[kn]=2*omega^2*k^2*B*rr[kn]+2*coefsDS[k]+2*llam*rz$

349 D2S[kn][1]=2*coefsD2S[k]+2*llam$

350 D2S[1][kn]=D2S[kn][1]$

351 if(2*k<=kMax)then{

352 D2S[kn][kn]=2*omega^2*k^2*B+2*coefsD2S[0]+2*coefsD2S[2*k]+4*llam$

353 }

354 else{

355 D2S[kn][kn]=2*omega^2*k^2*B+2*coefsD2S[0]+4*llam$

356 };

357 for ln=kn+1 to Nk{

358 l=ln-1$

359 if(k+l<=kMax)then{

360 D2S[kn][ln]=2*coefsD2S[k+l]+2*coefsD2S[k-l]+4*llam$

361 }

362 else {

363 D2S[kn][ln]=2*coefsD2S[k-l]+4*llam$

364 };

365 D2S[ln][kn]=D2S[kn][ln]$

366 };

367 };

368 Inv=D2S^-1$

369 y=%matProd[Inv,DS]$

370

371 rres=rr-y[1:Nk]$

372 //update lam=0

373 lres=0$

374 };

375 ret=vnumR[rres:lres]$

376 return(ret)$

377 };

378

379 //returns the initial value for a given r

380 macro r0[rr]{

381 return(rr[1]+2*sum(rr[2:Nk]))$

382 };

383

384 //matrix product of a square matrix with a column vector

385 macro matProd[M,x]{

57

386 private ret;

387 vnumR ret$

388 resize(ret,size(M))$

389 for n=1 to size(M){

390 ret[n]=real(sum(M[n]*x))$

391 };

392 return(ret)$

393 };

394

395 //Fourier series decomposition

396 //only the k>=0 are considered

397 macro FourDecomp[f]{

398 private ff;

399 vnumR ff$

400 resize(ff,Nk)$

401 cfcoef_tabexp(f,fcoefs,ffexp)$

402 //fcoefs is a vector with the coefficients corresponding to the

403 //exponents in ffexp[1] (which is also a vector).

404 for l=1 to size(fcoefs) {

405 if(ffexp[1][l]>=0)then{

406 ff[ffexp[1][l]+1]=real(fcoefs[l])$

407 };

408 };

409 return(ff)$

410 };

411 //Inverse

412 macro FourInvDecomp[ff]{

413 private f;

414 f=ff[1]$

415 for l=2 to Nk {

416 f=f+ff[l]*(X^(l-1)+X^(1-l))$

417 };

418 return(f)$

419 };

420 //Fourier coefficients

421 //with all the terms (e.g. ff[-3] is the -3 harmonic)

422 macro FourCoefs[f]{

423 private ff;

424 dim ff[-kMax:kMax]$

425 cfcoef_tabexp(f,fcoefs,ffexp)$

426 for l=1 to size(fcoefs) {

427 ff[ffexp[1][l]]=real(fcoefs[l])$

428 };

429 return(ff)$

430 };

431

432 //gradient of the action as a vector

433 macro DAction [rr]{

434 private DS,rF,k;

58

435 vnumR DS$

436 resize(DS,Nk);

437 rF=%FourInvDecomp[rr]$

438 convcf(rF)$

439 coefs=%FourCoefs[(g2-B^2*mu*rF)/(B*rF^3)]$

440 DS[1]=coefs[0]$

441 for kn=2 to Nk{

442 k=kn-1$

443 DS[kn]=2*omega^2*B*k^2*rr[kn]+2*coefs[k]$

444 };

445 return(DS)$

446 };

447

448 //norm of a Fourier transformable function: \sum |c_k|

449 macro norm[u]{

450 private nor;

451 cfcoef_tabexp(u,ucoef,uexp)$

452 nor=sum(abs(ucoef))$

453 return(nor)$

454 };

59

P2. Van Wijngaarden-Dekker-Brent algorithm

The code for the implementation of the Van Wijngaarden-Dekker-Brent algorithm to
compute a zero of a function:

brentZero:

1 /*

2 An implementation of the Van Wijngaarden-Dekker-Brent method

3 for finding a zero of a function. The function must be defined

4 a priori in a macro called func that takes one real argument and returns

5 a real value.

6

7 The algorithm first brackets the zero, in the sense that it

8 finds an interval in which the zero is, and then searches

9 for it inside the interval.

10

11 I.Jauslin - last modified 26/04/2012

12 */

13

14

15 //x1 and x2 are the starting points, tol is the tolerance: the

16 // algorithm stops if |f(b)|<tol, and d is a multiplication factor

17 //used in the initial bracketing: the algorithms searches for

18 //the bracket by multiplying its length by d, initfunca is the

19 //initial value of the function func at point x1;

20 //brackmax is the maximal number of iterations to find the

21 //initial bracket; itmax is the maximal number of iterations

22 //to find the zero.

23 //The macro requires to have a macro func of one variable

24 //previously defined

25 macro brentZero[x1,x2,tol,d,initfunca,brackmax,itmax]{

26 private a,b,c,R,S,T,P,Q,fa,fb,fc,L,maxiter,n,delta;

27 //the previous approximation

28 a=x1$

29 //the approximation

30 b=x2$

31 //extra point

32 c=a$

33 fa=initfunca$

34 fb=%func[b]$

35 fc=fa$

36

37 //initial bracketting

38 n=1$

39 //maximum number of attempts to bracket

40 maxiter=brackmax$

41 while((fa*fb>0)&&(n<maxiter))do{

42 if(abs(fa)<abs(fb))then{

60

43 //expand to the left

44 a=b+(a-b)*d$

45 fa=%func[a]$

46 }

47 else{

48 //expand to the right

49 b=a+(b-a)*d$

50 fb=%func[b]$

51 };

52 n=n+1$

53 };

54 n=1$

55 //if the zero still isn’t bracketed, try contracting

56 if(fa*fb>0)then{

57 b=x2$

58 while((fa*fb>0)&&(n<maxiter))do{

59 if(abs(fa)<abs(fb))then{

60 //contract from the left

61 a=b+(a-b)/d$

62 fa=%func[a]$

63 }

64 else{

65 //contract from the right

66 b=a+(b-a)/d$

67 fb=%func[b]$

68 };

69 n=n+1$

70 };

71 };

72 n=1$

73 //return a full step if the zero can’t be bracketed

74 if(fa*fb>0)then{

75 msg("error: can’t bracket zero, f(1)=%g\n",%func[1]);

76 return(x2);

77 exit;

78 };

79 reta=a$

80 retb=b$

81

82 //size of the bracket

83 L=b-a$

84 //increment

85 delta=L$

86 //maximum number of iterations

87 maxiter=itmax$

88 //loop while |f(b)|>tol

89 while((abs(fb)>tol)&&(n<maxiter))do{

90 //get c and a on the same side

91 if(fb*fc>0)then{

61

92 c=a$

93 fc=fa$

94 L=b-a$

95 delta=L$

96 };

97 //b should be closer to the zero than c

98 if(abs(fc)<abs(fb))then{

99 a=b$

100 b=c$

101 c=a$

102 fa=fb$

103 fb=fc$

104 fc=fa$

105 };

106 S=fb/fa$

107 if(a==c)then{

108 P=(c-b)*S$

109 Q=1-S$

110 }

111 else{

112 T=fa/fc$

113 R=fb/fc$

114 P=S*((c-b)*T*(T-R)-(b-a)*(R-1))$

115 Q=(T-1)*(R-1)*(S-1)$

116 };

117 //conditions to keep b within the brackets

118 if(P>0)then{Q=-Q$};

119 P=abs(P)$

120 //conditions to accept the step

121 if((2*P<3/2*(c-b)*Q)&&(2*P<abs(L*Q)))then{

122 L=delta$

123 delta=P/Q$

124 }

125 else{

126 //if step failed, bissection method

127 delta=(c-b)/2$

128 L=delta$

129 };

130 //update new points

131 a=b$

132 fa=fb$

133 b=b+delta$

134 fb=%func[b]$

135

136 n=n+1$

137 };

138 if(n==maxiter)then{

139 //failed, use the last attempted b

140 msg("max iterations, f(%g)=%g with a=%g and b=%g\n",b,%func[b],reta,retb);

62

141 }

142 else{

143 //success

144 msg("found f(%g)=%g after %d tries with a=%g and b=%g\n",b,fb,n,reta,retb);

145 };

146 return(b)$

147 };

63

P3. Three body problem

The code for the program that computes invariant tori for the three body problem using
the quasi-Newton algorithm:

threebodies quasiNewt.t:

1 /*

2 Numerical computation of invariant tori for the Sun-Jupiter-Saturn

3 system using a variational principle.

4 The parameters should be set in runExample and initIter.

5 The model is defined by the derivatives of the Lagrangian specified

6 in the macros of the form DS* and D2S*.

7 Uses a Quasi-Newton method.

8

9 Requires two auxiliary files: brentZero.t that computes the zero of a real

10 function of one variable; and inverseBlock6.t that inverts a matrix

11 made of 36 diagonal blocks.

12

13 To run, execute %runExample.

14 The results are given in the vectors rn_1, rn_2 and wn, containing the

15 positions as series computed at each step. DSn is a vector containing

16 the norm of the gradient of the action at each step.

17

18 I.Jauslin - last modified 26/04/2012

19 */

20

21 //include brentZero.t

22 //include inverseBlock6.t

23

24 //typical sequence of commands to run the algorithm

25 macro runExample{

26 //cutoff of the order of the harmonics

27 kMax=8$

28 %init[kMax];

29 //maximal number of iterations

30 Niter=2$

31 //stop the algorithm once it converged up to a precision of tol

32 tolerance=1e-18$

33 //stops the algorithm after maxCount convergent steps

34 maxCount=3$

35 //run the program

36 %main[kMax,Niter];

37 };

38

39

40 //initialize the environment

41 macro init[kMax]{

42 //double precision floats

64

43 _modenum=NUMDBL$

44 //neglect anything below the given precision

45 _cleaneps=1e-25$

46 _cleanflag=1$

47

48 //size of a vector of Fourier coefficients

49 Nku=kMax*(2*kMax+1)^2+kMax*(2*kMax+1)+(kMax+1)$

50

51 //declare the three M’s as variables

52 dimvar M[1:3]$

53 tabvar(M)$

54 //declare X_j=exp(iM_j)

55 dimvar X[1:3]$

56 tabvar(X)$

57 for j=1 to size(X){

58 X[j]=expi(M[j],1,0)$

59 };

60 //set the maximal order of Fourier series

61 initcf((X_1,-kMax,kMax),(X_2,-kMax,kMax),(X_3,-kMax,kMax))$

62 };

63

64 //runs the algorithm

65 macro main[kMax,Niter]{

66 %initIter[kMax]$

67 %iter[1,Niter]$

68 };

69

70 //sets constants

71 macro initIter[kMax]{

72 //masses are expressed in multiples of Saturn’s mass

73 //durations in years

74 //lengths in Astronomical Units (semi-major axis of the Earth)

75 //angles in radiants

76

77 //the three frequencies

78 omega=vnumR[0.529695:0.213265:-0.000114735]$

79 //the vector that defines the linear combination of v_1 and v_2 in w:

80 //w=v_1-v_2

81 W=vnumR[1:-1:0]$

82

83 //masses

84 m_0=3.49789799959e3$$

85 m_1=3.33976481134$

86 m_2=1$

87 //gravitational constant

88 Gr=2.959122082855911E-004*365.25^2*2.858859807E-004$

89

90 //constants

91 B_1=m_0*m_1/(m_0+m_1)$

65

92 B_2=m_2*(m_0+m_1)/(m_0+m_1+m_2)$

93 mu_1=Gr*(m_0+m_1)$

94 mu_2=Gr*m_0*(m_0+m_1+m_2)/(m_0+m_1)$

95 mu=Gr*m_1*m_2$

96 delta_1=m_1/(m_0+m_1)$

97 delta_0=m_0/(m_0+m_1)$

98

99 //semi-major axes

100 a_1=exp(1/3*log(mu_1/omega[1]^2))$

101 a_2=exp(1/3*log(mu_2/omega[2]^2))$

102 //eccentricities (only used to fix the total angular momentum)

103 e_1=0.04814707261917873$

104 e_2=0.05381979488308911$

105 //total angular momentum

106 G=B_1*sqrt(mu_1*a_1*(1-e_1^2))+B_2*sqrt(mu_2*a_2*(1-e_2^2))$

107

108 //analytical solution of a non-interacting torus

109 //stores the analytical r_1 in rsa_1, r_2 in rsa_2,

110 //v_1 in vsa_1, v_2 in vsa_2

111 msg("rsa");

112 %getRsa;

113 //to start the algorithm with

114 //added a term in cos(M_3) since the iteration would

115 //not create such a term

116 r01=%SeriesToVect[rsa_1-0.0001*cos(M_3)]$

117 r02=%SeriesToVect[rsa_2-0.0001*cos(M_3)]$

118 //SeriesToVectW must be used for the angles

119 // it gets rid of the linear part (omega_1*M_1-omega_2*M_2)

120 v01=%SeriesToVectW[vsa_1]$

121 v02=%SeriesToVectW[vsa_2]$

122 w0=v01-v02$

123

124 r_1=r01$

125 r_2=r02$

126 w=w0$

127 //initialize H

128 msg("Hinit");

129 %Hinit$

130

131 //vectors in which we store the results and the gradient of the action

132 dim rn_1[0:Niter]$

133 dim rn_2[0:Niter]$

134 dim wn[0:Niter]$

135 vnumR DSn$resize(DSn,Niter);

136

137 //initialize the vectors

138 rn_1[0]=%VectToSeries[r_1]$

139 convcf(rn_1[0]);

140 rn_2[0]=%VectToSeries[r_2]$

66

141 convcf(rn_2[0]);

142 wn[0]=%VectToSeriesW[w]$

143 convcf(wn[0]);

144 };

145

146 //get the analytical solution of the non-interacting problem

147 macro getRsa{

148 rsa_1=%r[kMax,e_1,omega[1],mu_1,M_1]$

149 vsa_1=integ(%dv[rsa_1,e_1,a_1],M_1)$

150 rsa_2=%r[kMax,e_2,omega[2],mu_2,M_2]$

151 vsa_2=integ(%dv[rsa_2,e_2,a_2],M_2)$

152 };

153

154 //the analytical r

155 macro r[kMax,ee,omega,mu,M]{

156 private a,E,cosEpM;

157 //semi-major axis

158 a=exp(1/3*log(mu/omega^2))$

159 //eccentric anomaly: initialize the algorithm

160 E=ee*sin(M)$

161 convcf(E)$

162 //algorithm to find the actual eccentric anomaly

163 for k=1 to 200{

164 //E_{n+1}=e*sin(E_n+M)

165 E=ee*real(sin(M)*cos(E)+cos(M)*sin(E))$

166 };

167 //r=a(1-e*cos(E+M))

168 cosEpM=real(cos(M)*cos(E)-sin(M)*sin(E))$

169 return(a*(1-ee*cosEpM))$

170

171 };

172

173 //the analytical \dot v

174 macro dv[r,ee,a]{

175 return(a^2*sqrt(1-ee^2)/r^2)$

176 };

177

178

179 //initialize H

180 macro Hinit{

181 private rF_1,rF_2,wF,D2Sr1r1,D2Sr1r2,D2Sr1w,D2Sr2r2,D2Sr2w,D2Sww;

182 //declare H

183 //the size is 6*Nku since there is 2 Nku per variable (1 for the

184 //real and 1 for the imaginary part)

185 vnumR H[1:6*Nku]$

186 resize(H,6*Nku,0)$

187 //r’s and w as series

188 rF_1=%VectToSeries[r_1]$

189 convcf(rF_1);

67

190 rF_2=%VectToSeries[r_2]$

191 convcf(rF_2);

192 //VectToSeriesW adds the linear part (omega_1*M_1-omega_2*M_2)

193 wF=%VectToSeriesW[w]$

194 convcf(wF)$

195

196 //the blocks in the Hessian of the action

197 D2Sr1r1=%D2Sr1r1[rF_1,rF_2,wF]$

198 D2Sr1r2=%D2Sr1r2[rF_1,rF_2,wF]$

199 D2Sr1w=%D2Sr1w[rF_1,rF_2,wF]$

200 D2Sr2r2=%D2Sr2r2[rF_1,rF_2,wF]$

201 D2Sr2w=%D2Sr2w[rF_1,rF_2,wF]$

202 D2Sww=%D2Sww[rF_1,rF_2,wF]$

203 //the Hessian of the action

204 //it is a degree three tensor: D2S[i,j][k] is the element

205 //of the block (i,j) on the diagonal position (k,k)

206 vnumR D2S[1:6,1:6]$

207 //put the blocks in D2S

208 D2S[1:2,1:2]=D2Sr1r1$

209 D2S[1:2,3:4]=D2Sr1r2$

210 D2S[1:2,5:6]=D2Sr1w$

211 D2S[3:4,1:2]=%transpose[D2Sr1r2]$

212 D2S[3:4,3:4]=D2Sr2r2$

213 D2S[3:4,5:6]=D2Sr2w$

214 D2S[5:6,1:2]=%transpose[D2Sr1w]$

215 D2S[5:6,3:4]=%transpose[D2Sr2w]$

216 D2S[5:6,5:6]=D2Sww$

217

218 //must correct the term in b_0: all the b_0=0, so we put ones on the

219 //diagonal terms corresponding to b_0 and 0 on the non-diagonal terms

220 //thus D2S is invertible, but does not touch the b_0 term

221 for n=1 to 3{

222 D2S[2*n,2*n][1]=1$

223 };

224

225 //inverse using the formula in inverseBlock6.t

226 Inv=%inverseBlock[D2S]$

227

228 //set H to the inverse

229 for n=0 to 5{

230 for m=0 to 5{

231 for k=1 to Nku{

232 H[n*Nku+k][m*Nku+k]=Inv[n+1,m+1][k]$

233 };

234 };

235 };

236 };

237

238 //the transpose of a degree three tensor with respect to its

68

239 //two first components: M[i,j][k]^T=M[j,i][k]

240 macro transpose[M]{

241 private ret;

242 ret=M$

243 ret[1,2]=M[2,1]$

244 ret[2,1]=M[1,2]$

245 return(ret)$

246 };

247

248

249 //The iteration

250 macro iter[nmin,nmax]{

251 private j,stopCount,rdiff_1,rdiff_2,wdiff;

252 j=nmin$

253 stopCount=0$

254 while((j<=nmax)&&(stopCount<maxCount))do{

255 msg("step %2d\n",j);

256 //run the algorithm: updates r_1,r_2,w and H

257 %iterThreeBodies$

258 //fill the results vectors

259 rn_1[j]=%VectToSeries[r_1]$

260 convcf(rn_1[j]);

261 rn_2[j]=%VectToSeries[r_2]$

262 convcf(rn_2[j]);

263 wn[j]=%VectToSeriesW[w]$

264 convcf(wn[j]);

265 //the norm of the gradient of the action at the latest step

266 DSn[j]=sum(abs(DS))$

267

268 //the difference between the two latest steps

269 rdiff_1=%norm[rn_1[j]-rn_1[j-1]]$

270 rdiff_2=%norm[rn_2[j]-rn_2[j-1]]$

271 wdiff=%norm[wn[j]-wn[j-1]]$

272

273 //stop?

274 if((rdiff_1<tolerance)&&(rdiff_2<tolerance)&&//

275 (wdiff<tolerance))then

276 {stopCount=stopCount+1$}else{stopCount=0$};

277 j=j+1$

278 };

279 };

280

281 //The algorithm: changes r_1,r_2,w and H from their value to the next

282 macro iterThreeBodies{

283 private lam,rnew,xn,sn,xs,Hs,sHs;

284 //the gradient of the action before the step is performed

285 DS=%DAction[r_1,r_2,w]$

286 //the three variables concatenated

287 ro=vnumR[r_1:r_2:w]$

69

288 //H*DS, is not private since it must be called by func

289 //the brackets around H make it so it is not copied in RAM

290 hds=%matProd[[H],DS]$

291 //lamb that extremalizes the action in the direction hds

292 //calls func

293 //macro in brentZero.t

294 //0,0.1 are the first guesses to bracket the extremum

295 //1e-12 is the required precision, 2 is a parameter

296 //5 is the maximum number of attempts to bracket the extremum

297 //20 is the maximum number of steps to compute it

298 lam=%brentZero[0,0.1,1e-12,2,%scalar[hds,DS],5,20]$

299 //new r_1,r_2 and w

300 rnew=ro-lam*hds$

301

302 //x_n

303 xn=rnew-ro$

304 //s_n, DSnew is set by evaluating func in %brentZero

305 sn=DSnew-DS$

306 xs=%scalar[xn,sn]$

307 Hs=%matProd[[H],sn]$

308 sHs=%scalar[sn,Hs]$

309 //update H

310 for k=1 to 6*Nku{

311 H[k]=H[k]+xn[k]*xn/xs*(1+sHs/xs)-(Hs[k]*xn+xn[k]*Hs)/xs$

312 };

313

314 //update r_1,r_2 and w

315 r_1=rnew[:2*Nku]$

316 r_2=rnew[2*Nku+1:4*Nku]$

317 w=rnew[4*Nku+1:6*Nku]$

318 };

319

320 //the function to be extremalized by %brentZero

321 //(H\partial S)*\partial S(r_n-lam*H\partial S)

322 //the gradient of the action in the proposed new r_1,r_2 and w

323 //is stored in DSnew which is then used by %iterThreeBodies

324 macro func[lam]{

325 DSnew=%DAction[ro[1:2*Nku]-lam*hds[1:2*Nku]//

326 ,ro[2*Nku+1:4*Nku]-lam*hds[2*Nku+1:4*Nku]//

327 ,ro[4*Nku+1:6*Nku]-lam*hds[4*Nku+1:6*Nku]]$

328 return(%scalar[hds,DSnew])$

329 };

330

331

332 //gradient of the action

333 macro DAction[r_1,r_2,w]{

334 private rF_1,rF_2,wF,DSr1,DSr2,DSw,DS;

335 //r_1,r_2 and w as Fourier series

336 rF_1=%VectToSeries[r_1]$

70

337 convcf(rF_1);

338 rF_2=%VectToSeries[r_2]$

339 convcf(rF_2);

340 wF=%VectToSeriesW[w]$

341 convcf(wF)$

342

343 //gradient

344 DSr1=%DSr1[rF_1,rF_2,wF]$

345 DSr2=%DSr2[rF_1,rF_2,wF]$

346 DSw=%DSw[rF_1,rF_2,wF]$

347 DS=vnumR[DSr1:DSr2:DSw]$

348 return(DS)$

349 };

350

351

352

353 //The derivatives of the Lagrangian

354

355 macro DSr1[r_1,r_2,w]{

356 private fk,fi1,fi0,DS,xi;

357 xi=%xi[r_1,r_2,%Dw[w]]$

358 fk=-mu_1*B_1/r_1^2+B_1*r_1*xi^2$

359 fi1=-mu_2*B_2*delta_1*(delta_1*r_1+r_2*%cosw[w])/sqrt(%Delta_1[r_1,r_2,w])^3$

360 fi0=-mu*delta_0*(delta_0*r_1+r_2*%cosw[w])/sqrt(%Delta_0[r_1,r_2,w])^3$

361 DS=%DS[fk+fi1+fi0,B_1*%Dw[r_1]]$

362 return(DS)$

363 };

364

365 macro DSr2[r_1,r_2,w]{

366 private fk,fi1,fi0,DS,chi;

367 chi=%chi[r_1,r_2,%Dw[w]]$

368 fk=-mu_2*B_2/r_2^2+B_2*r_2*chi^2$

369 fi1=mu_2*B_2/r_2^2-mu_2*B_2*(r_2+delta_1*r_1*%cosw[w])/sqrt(%Delta_1[r_1,r_2,w])^3$

370 fi0=-mu*(r_2+delta_0*r_1*%cosw[w])/sqrt(%Delta_0[r_1,r_2,w])^3$

371 DS=%DS[fk+fi1+fi0,B_2*%Dw[r_2]]$

372 return(DS)$

373 };

374

375 macro DSw[r_1,r_2,w]{

376 private fkdx,fi1,fi0,DS,xi;

377 xi=%xi[r_1,r_2,%Dw[w]]$

378 fkdx=B_1*r_1^2*xi$

379 fi1=-mu_2*B_2*delta_1*r_1*r_2*%sinw[w]/sqrt(%Delta_1[r_1,r_2,w])^3$

380 fi0=-mu*delta_0*r_1*r_2*%sinw[w]/sqrt(%Delta_0[r_1,r_2,w])^3$

381 DS=%DS[fi1+fi0,fkdx]$

382 return(DS)$

383 };

384

385

71

386 macro D2Sr1r1[r_1,r_2,w]{

387 private D2S,fk,fi1,fi0,fdxdx,xi;

388 xi=%xi[r_1,r_2,%Dw[w]]$

389 fk=2*mu_1*B_1/r_1^3+B_1*xi^2//

390 *(B_2*r_2^2-3*B_1*r_1^2)/(B_1*r_1^2+B_2*r_2^2)$

391 fi1=mu_2*B_2*delta_1^2/sqrt(%Delta_1[r_1,r_2,w])^3//

392 *(2-3*r_2^2*%sinw[w]^2/%Delta_1[r_1,r_2,w])$

393 fi0=mu*delta_0^2/sqrt(%Delta_0[r_1,r_2,w])^3//

394 *(2-3*r_2^2*%sinw[w]^2/%Delta_0[r_1,r_2,w])$

395 fdxdx=B_1$convcf(fdxdx);

396 D2S=%D2S[fk+fi1+fi0,0,0,fdxdx]$

397 return(D2S)$

398 };

399

400 macro D2Sr1r2[r_1,r_2,w]{

401 private D2S,fk,fi1,fi0,xi,chi;

402 xi=%xi[r_1,r_2,%Dw[w]]$

403 chi=%chi[r_1,r_2,%Dw[w]]$

404 fk=4*B_1*r_1*B_2*r_2/(B_1*r_1^2+B_2*r_2^2)*xi*chi$

405 fi1=mu_2*B_2*delta_1/sqrt(%Delta_1[r_1,r_2,w])^3//

406 *(2*%cosw[w]+3*delta_1*r_1*r_2*%sinw[w]^2/%Delta_1[r_1,r_2,w])$

407 fi0=mu*delta_0/sqrt(%Delta_0[r_1,r_2,w])^3//

408 *(2*%cosw[w]+3*delta_0*r_1*r_2*%sinw[w]^2/%Delta_0[r_1,r_2,w])$

409 D2S=%D2S[fk+fi1+fi0,0,0,0]$

410 return(D2S);

411 };

412

413 macro D2Sr1w[r_1,r_2,w]{

414 private D2S,fkdxx,fi1,fi0,xi;

415 xi=%xi[r_1,r_2,%Dw[w]]$

416 fkdxx=2*B_1*r_1*B_2*r_2^2/(B_1*r_1^2+B_2*r_2^2)*xi$

417 fi1=-mu_2*B_2*delta_1*r_2*%sinw[w]/sqrt(%Delta_1[r_1,r_2,w])^3//

418 *(3*(delta_1*r_1+r_2*%cosw[w])*delta_1*r_1/%Delta_1[r_1,r_2,w]-1)$

419 fi0=-mu*delta_0*r_2*%sinw[w]/sqrt(%Delta_0[r_1,r_2,w])^3//

420 *(3*(delta_0*r_1+r_2*%cosw[w])*delta_0*r_1/%Delta_0[r_1,r_2,w]-1)$

421 D2S=%D2S[fi1+fi0,fkdxx,0,0]$

422 return(D2S)$

423 };

424

425 macro D2Sr2r2[r_1,r_2,w]{

426 private D2S,fk,fi1,fi0,fdxdx,chi;

427 chi=%chi[r_1,r_2,%Dw[w]]$

428 fk=2*mu_2*B_2/r_2^3+B_2*chi^2//

429 *(B_1*r_1^2-3*B_2*r_2^2)/(B_1*r_1^2+B_2*r_2^2)$

430 fi1=-2*mu_2*B_2/r_2^3+mu_2*B_2/sqrt(%Delta_1[r_1,r_2,w])^3//

431 *(2-3*delta_1^2*r_1^2*%sinw[w]^2/%Delta_1[r_1,r_2,w])$

432 fi0=mu/sqrt(%Delta_0[r_1,r_2,w])^3//

433 *(2-3*delta_0^2*r_1^2*%sinw[w]^2/%Delta_0[r_1,r_2,w])$

434 fdxdx=B_2$convcf(fdxdx);

72

435 D2S=%D2S[fk+fi1+fi0,0,0,fdxdx]$

436 return(D2S)$

437 };

438

439 macro D2Sr2w[r_1,r_2,w]{

440 private D2S,fkdxx,fi1,fi0,chi;

441 chi=%chi[r_1,r_2,%Dw[w]]$

442 fkdxx=2*B_1*r_1^2*B_2*r_2/(B_1*r_1^2+B_2*r_2^2)*chi$

443 fi1=-mu_2*B_2*delta_1*r_1*%sinw[w]/sqrt(%Delta_1[r_1,r_2,w])^3//

444 *(3*(r_2+delta_1*r_1*%cosw[w])*r_2/%Delta_1[r_1,r_2,w]-1)$

445 fi0=-mu*delta_0*r_1*%sinw[w]/sqrt(%Delta_0[r_1,r_2,w])^3//

446 *(3*(r_2+delta_0*r_1*%cosw[w])*r_2/%Delta_0[r_1,r_2,w]-1)$

447 D2S=%D2S[fi1+fi0,fkdxx,0,0]$

448 return(D2S)$

449 };

450

451 macro D2Sww[r_1,r_2,w]{

452 private D2S,fkdxdx,fi1,fi0;

453 fkdxdx=B_1*r_1^2*B_2*r_2^2/(B_1*r_1^2+B_2*r_2^2)$

454 fi1=mu_2*B_2*delta_1*r_1*r_2/sqrt(%Delta_1[r_1,r_2,w])^3//

455 *(3*delta_1*r_1*r_2*%sinw[w]^2/%Delta_1[r_1,r_2,w]+%cosw[w])$

456 fi0=mu*delta_0*r_1*r_2/sqrt(%Delta_0[r_1,r_2,w])^3//

457 *(3*delta_0*r_1*r_2*%sinw[w]^2/%Delta_0[r_1,r_2,w]+%cosw[w])$

458 D2S=%D2S[fi1+fi0,0,0,fkdxdx]$

459 return(D2S)$

460 };

461

462

463 //functions for the derivatives of the Lagrangian

464 macro Delta_0[r_1,r_2,w]{

465 return(r_2^2+delta_0^2*r_1^2+2*delta_0*r_1*r_2*%cosw[w])$

466 };

467 macro Delta_1[r_1,r_2,w]{

468 return(r_2^2+delta_1^2*r_1^2+2*delta_1*r_1*r_2*%cosw[w])$

469 };

470

471 macro xi[r_1,r_2,dw]{

472 return((dw*B_2*r_2^2+G)/(B_1*r_1^2+B_2*r_2^2))$

473 };

474 macro chi[r_1,r_2,dw]{

475 return((dw*B_1*r_1^2-G)/(B_1*r_1^2+B_2*r_2^2))$

476 };

477

478

479 //gradient of the action from the gradient of the Lagrangian

480 macro DS[DLx,DLdx]{

481 private coefsDSx,coefsDSdx,omk,vk,complex,DS;

482 //Fourier coefficients

483 coefsDSx=%FourDecomp[DLx]$

73

484 coefsDSdx=%FourDecomp[DLdx]$

485 //vector with the term in omega*k

486 vnumR omk;

487 resize(omk,2*Nku);

488 for j=1 to Nku{

489 //order

490 vk=%orderFromVect[j]$

491 //the term in DLdx

492 complex=2*%scalar[omega,vk]*coefsDSdx[j]$

493 omk[j]=imag(complex)$

494 omk[j+Nku]=-real(complex)$

495 };

496 //gradient of the action

497 DS=vnumR[2*real(coefsDSx)+omk[1:Nku]:2*imag(coefsDSx)+omk[Nku+1:]]$

498 //correct the term in a_0

499 DS[1]=DS[1]/2$

500 //correct the term b_0

501 DS[Nku+1]=0$

502 return(DS)$

503 };

504

505 //approximate Hessian, for use with %Hinit

506 macro D2S[D2Lxx,D2Ldxx,D2Lxdx,D2Ldxdx]{

507 private D2S,D2Skpl,coefsD2Sxx,coefsD2Sdxx,coefsD2Sxdx,coefsD2Sdxdx//

508 ,vk,omk,kml;

509 //the approximate Hessian

510 vnumR D2S[1:2,1:2]$

511 resize(D2S,Nku,0);

512 //Fourier coefficients

513 coefsD2Sxx=%FourDecomp[D2Lxx]$

514 coefsD2Sdxx=%FourDecomp[D2Ldxx]$

515 coefsD2Sxdx=%FourDecomp[D2Lxdx]$

516 coefsD2Sdxdx=%FourDecomp[D2Ldxdx]$

517 //the index corresponding to k=0.

518 kml=%piv[0,0,0]$

519 for k=1 to Nku{

520 //order

521 vk=%orderFromVect[k]$

522 //omega*k

523 omk=%scalar[omega,vk]$

524 //D2Saa

525 D2S[1,1][k]=2*real(coefsD2Sxx[kml]

526 +omk*omk*coefsD2Sdxdx[kml])$

527 //D2Sab

528 D2S[1,2][k]=2*real(omk*coefsD2Sdxx[kml]//

529 -omk*coefsD2Sxdx[kml])$

530 //D2Sba

531 D2S[2,1][k]=-D2S[1,2][k]$

532 //D2Sbb

74

533 D2S[2,2][k]=D2S[1,1][k]$

534 };

535 //correct the terms in a_0 and b_0.

536 D2S[1,1][1]=D2S[1,1][1]/2$

537 D2S[1,2][1]=0$

538 D2S[2,1][1]=0$

539 D2S[2,2][1]=0$

540 return(D2S)$

541 };

542

543

544

545 //various useful tools

546

547 //D_\omega derivation operator

548 macro Dw[x]{

549 return(omega[1]*deriv(x,M_1)+omega[2]*deriv(x,M_2)+omega[3]*deriv(x,M_3))$

550 };

551

552 //cosine and sine for an angle with a linear term

553 macro cosw[w]{

554 return(cos(%cancelLinTerm[w])*cos(M[1]*W[1]+M[2]*W[2]+M[3]*W[3])//

555 -sin(%cancelLinTerm[w])*sin(M[1]*W[1]+M[2]*W[2]+M[3]*W[3]))$

556 };

557

558 macro sinw[w]{

559 return(sin(%cancelLinTerm[w])*cos(M[1]*W[1]+M[2]*W[2]+M[3]*W[3])//

560 +cos(%cancelLinTerm[w])*sin(M[1]*W[1]+M[2]*W[2]+M[3]*W[3]))$

561 };

562

563 //position of the harmonic (k_1,k_2,k_3) in a vector

564 macro piv[k_1,k_2,k_3]{

565 return(k_1*(2*kMax+1)^2+k_2*(2*kMax+1)+(k_3+1))$

566 };

567 //order of the harmonic from its position in a vector

568 macro orderFromVect[j]{

569 private k_1,k_2,k_3,N,ret;

570 N=2*kMax+1$

571 k_3=mod(j+kMax-1,N)-kMax$

572 k_2=mod(nint((j-k_3-1)/N+kMax),N)-kMax$

573 k_1=nint((j-(k_3+1)-k_2*N)/N^2)$

574 ret=vnumR[k_1:k_2:k_3]$

575 return(ret)$

576 };

577 //same as %piv but with a vector of three integers as input

578 macro pivV[vk]{

579 return(vk[1]*(2*kMax+1)^2+vk[2]*(2*kMax+1)+(vk[3]+1))$

580 };

581

75

582 //Fourier decomposition

583 macro FourDecomp[f]{

584 private ff,fcoefs,ffexp;

585 vnumC ff;

586 resize(ff,Nku)$

587 cfcoef_tabexp(f,fcoefs,ffexp)$

588 //fcoefs is a vector with the coefficients corresponding to the

589 //exponents of M_j in ffexp[j]

590 for l=1 to size(fcoefs) {

591 //only store the positive k’s

592 if((ffexp[1][l]>0)||((ffexp[1][l]==0)&&((ffexp[2][l]>0)||//

593 ((ffexp[2][l]==0)&&(ffexp[3][l]>=0)))))then{

594 ff[%piv[ffexp[1][l],ffexp[2][l],ffexp[3][l]]]=fcoefs[l]$

595 };

596 };

597 return(ff)$

598 };

599

600 //convert a Fourier series to a vector

601 macro SeriesToVect[f]{

602 private ff,fcoefs,ffexp,fourdecomp;

603 vnumR ff;

604 resize(ff,2*Nku)$

605 fourdecomp=%FourDecomp[f]$

606 ff[:Nku]=real(fourdecomp)$

607 ff[Nku+1:]=imag(fourdecomp)$

608 return(ff)$

609 };

610 //for use with angles: ignores the linear term

611 macro SeriesToVectW[f]{

612 return(%SeriesToVect[%cancelLinTerm[f]])$

613 };

614

615 //convert a vector to a Fourier series

616 macro VectToSeries[ff]{

617 private f,vk;

618 f=ff[1]$

619 for j=2 to Nku{

620 if(j!=jK)then{

621 vk=%orderFromVect[j]$

622 f=f+(ff[j]+I*ff[j+Nku])*X_1^(vk[1])*X_2^(vk[2])*X_3^(vk[3])//

623 +(ff[j]-I*ff[j+Nku])*X_1^(-vk[1])*X_2^(-vk[2])*X_3^(-vk[3])$

624 };

625 };

626 return(f)$

627 };

628 //for use with angles: adds a linear term

629 macro VectToSeriesW[ff]{

630 return(%VectToSeries[ff]+W[1]*M[1]+W[2]*M[2]+W[3]*M[3])$

76

631 };

632

633 //cancels the linear term from a series

634 macro cancelLinTerm[ff]{

635 private fcoefs,ffexp;

636 coef_tabexp(ff,fcoefs,ffexp,M_1,M_2,M_3);

637 return(fcoefs[1])$

638 };

639

640

641 //scalar product

642 macro scalar[x,y]{

643 return(sum(x*y))$

644 };

645

646 //matrix product of a square matrix with a column vector

647 macro matProd[M,x]{

648 private ret;

649 vnumR ret$

650 resize(ret,size(M))$

651 for n=1 to size(M){

652 ret[n]=%scalar[M[n],x]$

653 };

654 return(ret)$

655 };

656

657 //exterior product of vectors

658 macro extProd[x,y]{

659 private ret;

660 vnumR ret[1:size(x)]$

661 for n=1 to size(x){

662 ret[n]=x[n]*y$

663 };

664 return(ret)$

665 };

666

667

668 //norm of a Fourier transformable function: \sum |c_k|

669 macro norm[u]{

670 private nor,ucoef,uexp;

671 cfcoef_tabexp(u,ucoef,uexp)$

672 nor=sum(abs(ucoef))$

673 return(nor)$

674 };

675

676

677 //to keep on going until Nfin iterations

678 macro keepOnGoing[Nfin]{

679 private Nold;

77

680 rn_1=%resizeDim[rn_1,Nfin]$

681 rn_2=%resizeDim[rn_2,Nfin]$

682 wn=%resizeDim[wn,Nfin]$

683 DSn=%resizeVect[DSn,Nfin]$

684

685 Nold=Niter$

686 Niter=Nfin$

687 %iter[Nold+1,Nfin]$

688 };

689

690 //resize a numerical vector

691 macro resizeVect[v,ns]{

692 private vp;

693 vnumR vp$

694 resize(vp,ns)$

695 vp[1:size(v)]=v$

696 return(vp)$

697 };

698 //resize a vector of series

699 macro resizeDim[v,ns]{

700 private vp;

701 dim vp[0:ns]$

702 vp[0:size(v)-1]=v$

703 return(vp)$

704 };

78

P4. Block inversion

The code for the program that inverts a matrix made of 36 diagonal blocks. We only
show the beginning and end of the 8 000 line long program to give an idea of what it
contains.

blockInverse6.t:

1 /*

2 Provides a macro to compute the inverse of a matrix made

3 of 36 diagonal blocks. The matrix is represented by a degree three

4 tensor: M[i,j][k] gives the diagonal element (k,k) of the block

5 (i,j) for i and j between 1 and 6.

6 The macro was computed using Mathematica.

7

8 I.Jauslin - last modified 26/04/2012

9 */

10

11 //inverts the block matrix

12 macro inverseBlock[M]{

13 private Inv,

14 aa,ab,ac,ad,ae,af,

15 ba,bb,bc,bd,be,bf,

16 ca,cb,cc,cd,ce,cf,

17 da,db,dc,dd,de,df,

18 ea,eb,ec,ed,ee,ef,

19 fa,fb,fc,fd,fe,ff;

20

21 //declare the inverse

22 vnumR Inv[1:6,1:6];

23 //the blocks

24 aa=M[1,1]$ab=M[1,2]$ac=M[1,3]$ad=M[1,4]$ae=M[1,5]$af=M[1,6]$

25 ba=M[2,1]$bb=M[2,2]$bc=M[2,3]$bd=M[2,4]$be=M[2,5]$bf=M[2,6]$

26 ca=M[3,1]$cb=M[3,2]$cc=M[3,3]$cd=M[3,4]$ce=M[3,5]$cf=M[3,6]$

27 da=M[4,1]$db=M[4,2]$dc=M[4,3]$dd=M[4,4]$de=M[4,5]$df=M[4,6]$

28 ea=M[5,1]$eb=M[5,2]$ec=M[5,3]$ed=M[5,4]$ee=M[5,5]$ef=M[5,6]$

29 fa=M[6,1]$fb=M[6,2]$fc=M[6,3]$fd=M[6,4]$fe=M[6,5]$ff=M[6,6]$

30

31 Inv[1,1]=(bf*ce*dd*ec*fb - be*cf*dd*ec*fb - bf*cd*de*ec*fb + bd*cf*de*ec*fb +

32 be*cd*df*ec*fb - bd*ce*df*ec*fb - bf*ce*dc*ed*fb + be*cf*dc*ed*fb +

33 bf*cc*de*ed*fb - bc*cf*de*ed*fb - be*cc*df*ed*fb + bc*ce*df*ed*fb +

34 bf*cd*dc*ee*fb - bd*cf*dc*ee*fb - bf*cc*dd*ee*fb + bc*cf*dd*ee*fb +

35 bd*cc*df*ee*fb - bc*cd*df*ee*fb - be*cd*dc*ef*fb + bd*ce*dc*ef*fb +

36 be*cc*dd*ef*fb - bc*ce*dd*ef*fb - bd*cc*de*ef*fb + bc*cd*de*ef*fb -

etc...

7981 ac*bb*cd*da*ee - ab*bc*cd*da*ee - ad*bc*ca*db*ee + ac*bd*ca*db*ee +

7982 ad*ba*cc*db*ee - aa*bd*cc*db*ee - ac*ba*cd*db*ee + aa*bc*cd*db*ee +

7983 ad*bb*ca*dc*ee - ab*bd*ca*dc*ee - ad*ba*cb*dc*ee + aa*bd*cb*dc*ee +

79

7984 ab*ba*cd*dc*ee - aa*bb*cd*dc*ee - ac*bb*ca*dd*ee + ab*bc*ca*dd*ee +

7985 ac*ba*cb*dd*ee - aa*bc*cb*dd*ee - ab*ba*cc*dd*ee + aa*bb*cc*dd*ee)*ff)

7986 $

7987

7988 return(Inv)$

7989 };

80

P5. Conjugate gradient - numerical instability

The code for the program that shows the numerical instability of the conjugate gradient
algorithm.

conjGradTest.t:

1 /*

2 Test of the conjugate gradient method.

3 The macro testInverse computes a random symmetric matrix A

4 and a random vector b, computes x such that Ax=b, and returns

5 ||Ax-b||/N

6 where N is the size of b.

7 To run the algorithm execute testInverse, for example

8 %testInverse[20,1,100];

9

10 I.Jauslin - last modified 27/04/2012

11 */

12

13 //environment

14

15 //quadruple precision floats

16 _modenum=NUMQUAD$

17 //neglect anything below the given precision

18 _cleaneps=1e-32$

19 _cleanflag=1$

20

21

22 //tests the inversion procedure

23 //generates a random symmetric matrix A and a random vector b

24 //nn is the size of the vectors and matrices

25 //nMax is the largest value allowed in the random matrix

26 //nrand is the number of integers the random number generator chooses from

27 macro testInverse[nn,nMax,nrand]{

28 vnumR A[1:nn]$

29 resize(A,nn)$

30 vnumR b$

31 resize(b,nn);

32 for j=1 to nn{

33 A[j][j]=((nrand-1)/2-random(nrand-1))*2*nMax/(nrand-1)$

34 for k=j+1 to nn{

35 A[j][k]=((nrand-1)/2-random(nrand-1))*2*nMax/(nrand-1)$

36 A[k][j]=A[j][k]$

37 };

38 b[j]=((nrand-1)/2-random(nrand-1))*2*nMax/(nrand-1)$

39 };

40 x=%inverse[A,b,b]$

41 return(sum(abs(%matProd[A,x]-b))/size(b))$

42 };

81

43

44

45 //gives the (exact) solution of Ax=b

46 //using an iterative algorithm starting from an arbitrary x0

47 macro inverse[A,b,x0]{

48 private g,h,lambda,gamma,ng,x,ah;

49 g=%matProd[A,x0]-b$

50 h=g$

51 x=x0$

52 n=1$

53 //stop the algorithm if the right x has been reached

54 while((n<=size(b)) && (sum(abs(%matProd[A,x]-b))>1E-15)) do {

55 ah=%matProd[A,h]$

56 lambda=%scalar[g,h]/%scalar[h,ah]$

57 x=x-lambda*h$

58 ng=g-lambda*ah$

59 gamma=%scalar[ng,ng]/%scalar[g,g]$

60 g=ng$

61 h=g+gamma*h$

62 n=n+1$

63 };

64 msg("last step: %d/%d\n",n-1,size(b))$

65 return(x)$

66 };

67

68

69 //scalar product

70 macro scalar[x,y]{

71 return(sum(x*y))$

72 };

73 //matrix product of a square matrix with a column vector

74 macro matProd[M,x]{

75 private ret;

76 vnumR ret$

77 resize(ret,size(M))$

78 for n=1 to size(M){

79 ret[n]=%scalar[M[n],x]$

80 };

81 return(ret)$

82 };

82

References

[Ar63a] V.I. Arnol’d - Proof of a theorem of A.N. Kolmogorov on the preservation of
conditionally periodic motions under a small perturbation of the Hamiltonian,
Uspehi Matematicheskih Nauk, Vol. 18, p. 13-40, english translation: Russian
mathematical surveys, Vol. 18, n. 5, p. 9-36, 1963.

[Ar63b] V.I. Arnol’d - Small denominators and problems of stability of motion in clas-
sical and celestial mechanics, Uspehi Matematicheskih Nauk, Vol. 18, p.91-196,
english translation: Russian mathematical surveys, Vol. 18, p.85-193, 1963.

[Ar78] V.I. Arnol’d - Mathematical methods of classical mechanics, Springer, 1978.

[Ar88] V.I. Arnol’d - Dynamical systems III, in the series Encyclopædia of Mathemat-
ical Sciences, Vol. 3, edited by R.V. Gamkrelidze, Springer, 1988.

[CC97] A. Celletti, L. Chierchia - On the stability of realistic three-body problems, Com-
munications in Mathematical Physics, Vol. 186, p. 413-449, 1997.

[CC98] A. Celletti, L. Chierchia - KAM stability estimates in celestial mechanics, Plan-
etary and Space Science, Vol. 46, n. 11-12, p. 1433-1440, 1998.

[Ga94] G. Gallavotti - Twistless KAM tori, Communications in Mathematical Physics,
Vol. 164, pp145-156, 1994.

[Ga04] G. Gallavotti, F. Bonetto, G. Gentile - Aspects of Ergodic, Qualitative and
Statistical Theory of Motion, Springer, 2004.

[GL10] M. Gastineau, J. Laskar - TRIP: a computer algebra system dedicated to ce-
lestial mechanics and perturbation series, ISSAC 2010 Software Presentations,
2010.

[GL12] M. Gastineau, J. Laskar - TRIP 1.2a4, IMCCE, Observatoire de Paris, 2012.

[Ko54] A.N. Kolmogorov - Preservation of conditionally periodic movements with small
change in the Hamilton function, Doklady Akademii Nauk S.S.S.R., Vol. 98,
p. 527-530, 1954.

83

[La89] J. Laskar - A numerical experiment on the chaotic behavior of the Solar System,
Nature, Vol. 338, p. 237-238, 1989.

[La99] J. Laskar - Introduction to frequency map analysis, Proceedings of NATO ASI,
Hamiltonian systems with three or more degrees of freedom, p. 134-150, 1999.

[LG09] J. Laskar, M. Gastineau - Existence of collisional trajectories of Mercury, Mars
and Venus with the Earth, Nature, Vol. 459, 817-819, 2009.

[La10] J. Laskar - Le Système Solaire est-il stable?, Séminaire Poincaré XIV, p. 221-
246, 2010.

[LG05] U. Locatelli, A. Giorgilli - Construction of Kolmogorov’s normal form for a
planetary system, Regular and Chaotic Dynamics, Vol. 10, n. 2, p. 153-171,
2005.

[Ma82a] J.N. Mather - Concavity of the Lagrangian for quasi-periodic orbits, Comentarii
Mathematici Helvetici, Vol. 57, n. 1, p. 356-376, 1982.

[Ma82b] J.N. Mather - Existence of quasi-periodic orbits for twist homeomorphisms of
the annulus, Topology, Vol. 21, n. 4, p. 457-467, 1982.

[Mo62] J. Moser - On invariant curves of area-preserving mappings of an annulus,
Nachrichten der Akademie der Wissenschaften zu Göttingen Mathematisch-
Physikalische Klasse, p. 1-20, 1962.

[Mo86] J. Moser - Minimal solutions of variational problems on a torus, Annales de
l’IHP, section C, Vol. 3, n. 3, p. 229-272, 1986.

[Mo88] J. Moser - A stability theorem for minimal foliations on a torus, Ergodic theory
and Dynamical systems, Vol. 8* (Charles Conley memorial issue), p. 251-281,
1988.

[NR] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B. P. Flannery - Numerical
Recipes, the art of scientific computing, third edition, Cambridge University
Press, 2008.

[Pe79] I.C. Percival - A variational principle for invariant tori of fixed frequency, Jour-
nal of Physics A, Vol. 12, n. 3, L57, 1979.

84

[Po71] E. Polak - Computational methods in optimization, Academic Press, 1971.

[Ro95] P. Robutel - Stability of the planetary three-body problem - II. KAM theory and
existence of quasiperiodic motions, Celestial Mechanics and Dynamical Astron-
omy, Vol. 62, n. 3, p. 219-261, 1995.

[SZ89] D. Salamon, E. Zehnder - KAM theory in configuration space, Commentarii
Mathematici Helvetici, Vol. 64, p. 84-132, 1989.

85

