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Abstract

In this paper, we prove the existence of a crystallization transition for a family of hard-core particle
models on periodic graphs in dimension d ≥ 2. We establish a criterion under which crystallization
occurs at sufficiently high densities. The criterion is more general than that in [Jauslin, Lebowitz,
Comm. Math. Phys. 364:2, 2018], as it allows models in which particles do not tile the space in the
close-packing configurations, such as discrete hard-disk models. To prove crystallization, we prove that
the pressure is analytic in the inverse of the fugacity for large enough complex fugacities, using Pirogov-
Sinai theory. One of the main new tools used for this result is the definition of a local density, based on
a discrete generalization of Voronoi cells. We illustrate the criterion by proving that it applies to two
examples: staircase models and the radius 2.5 hard-disk model on the square lattice.
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1 Introduction

Crystallization is a very well-known phenomenon. From a physical point of view, it has been studied
extensively, and much of what has been observed can be understood using a combination of effective
models and numerical simulations [42, 2, 33, 36, 28, 4, 18]. However, from a mathematical point of
view, there is still much to do. Even proving the existence of crystalline phases in (somewhat) realistic
particle models can pose significant challenges [12, 8, 16, 3, 9, 15, 37, 22, 20, 24, 25, 26, 27]. One model
which has received a considerable amount of attention for being both simple to state and somewhat
realistic (as well as having applications to other fields such as coding theory [7, 41]) is the hard-sphere
model [1, 5, 18], in which particles are represented as identical spheres that interact via the constraint
that no two can overlap. However, proving thermodynamic properties of this model has been a huge
challenge: even proving that there is crystallization at zero temperature remained open for centuries,
from the formulation of the problem by Kepler to the computer-assisted proof by Hales [15]. To this day,
sphere packing problems are still the subject of active research, with recent breakthroughs in eight and
twenty-four dimensions [7, 41]. At positive temperature, the problem of crystallization in the hard-sphere
model is still wide open. The main difficulty is that crystallization in a continuum model involves the
breaking of the continuous translation symmetry of the system. The intuition behind this difficulty is
that very small defects of a crystal can destroy long-range order.

In this paper, we will focus on a simpler setup: lattice models (throughout this paper, we use the word
lattice to mean periodic graph: we do not restrict ourselves to lattices in the algebraic sense), in which
the particles occupy sites of a discrete periodic graph instead of the continuum. This is a significant
simplification, as the breaking of a continuous symmetry required for crystallization in the continuum is
reduced to the breaking of a discrete symmetry, which is much easier to accomplish [30]. Nevertheless,
proving crystallization in lattice models is still challenging, and developing tools to overcome these
difficulties may lead to advances in continuum models as well [35]. For simplicity, we will further restrict
our attention to models in which particles interact solely via a hard-core repulsion, though the results
presented below could be adapted to more general potentials, provided that they are short-ranged and
sufficiently weak. We will call these Hard-Core Lattice Particle (HCLP) models.

This paper builds upon [19, 20], in which a class of HCLP models was considered, which satisfy
a non-sliding condition as well as a tiling condition. The non-sliding condition roughly means that,
at high densities, neighboring particles are locked into place, and cannot slide with respect to one
another. The tiling condition states that it is possible to tile the lattice with the supports of the
particles. (Technically, the condition in [19, 20] is stronger than just non-sliding and tiling, but those
are its important aspects.) Whereas the former condition is necessary for crystallization, the latter is
purely technical. In fact, Mazel, Stuhl, and Suhov, in their extensive review of lattice regularizations
of hard-disk models [24, 25, 26, 27], have constructed an infinite class of lattice regularizations of the
hard-disk model for which they proved crystallization. These models are non-sliding but do not tile the
plane because of the presence of interstitial space in between the disks.

In the present paper, we will extend [19, 20] by relaxing the tiling condition and prove, using Pirogov-
Sinai theory [6, 31, 44], that a much larger class of non-sliding HCLP models crystallize. In particular, all
the models studied by [19, 20] fall within our general framework. In addition, we can treat models that
do not tile the space, such as a model of hard disks of radius 2.5 on the square lattice; see Figure 7. We
will discuss some explicit examples in Section 6 of this paper (see Figures 4 and 7), but the framework
is rather general, and applies to models in two and more dimensions. (In one dimension, there are no
phase transitions, and thus no crystallization.) In addition, we have simplified the condition in [19, 20],
so the current work makes that criterion for proving crystallization in a HCLP model more easily usable.

Let us be more specific on the class of models for which we will prove crystallization. In this intro-
duction, we will not give formal definitions, which can be found in Section 2 below (see in particular
Assumption 1). We consider HCLP systems on periodic graphs in any dimension d ≥ 2. The crux of the
criterion concerns the close-packing configurations, which are configurations of particles that maximize
the density. The most important part of the criterion is that we require the number of close-packing
configurations to be finite; see Figure 2 for an example. This excludes sliding models: if one can slide
particles around without lowering the density, then the number of close-packings will be infinite, as is
the case for instance in the 2× 2-square model studied in [13].

The argument we will use is based on controlling defects in close-packing configurations: if the density
is sufficiently high (but not maximal), then the typical configurations will look similar to the close-packing

2



ones. In [19, 20], the models considered have close-packing configurations that tile the space, so defects
could be defined using sites in the lattice that are not covered by particles. Since we allow non-tiling
models, defining defects is more involved. To do so, we decompose the space into generalized Voronoi
cells (see Definition 2.5 below for a formal definition) which assign each and every point in the lattice to
its nearest particles. Thus, whereas the particles do not tile the space, the Voronoi cells cover it (with
the caveat that we define Voronoi cells in such a way that they may overlap). Defects are then defined
from the size of Voronoi cells: in close-packing configurations, the cells are all the same size, so when
the configuration deviates from a close-packing, cells will expand. To quantify this, we introduce a local
density for every particle in the configuration; see Definition 2.7. We then identify defects by finding
particles whose local density is lower than in the close-packing configurations.

In addition, we impose some extra restrictions on the system. For one, we require that the close-
packing configurations be distinct enough, in the sense that two different close-packings cannot merge
seamlessly. In addition, we assume that whenever a particle does not belong to a close-packing configu-
ration, it constrains the local density to dip, and this dip cannot occur arbitrarily far from the particle.
These two are important assumptions, without which the proof would fail dramatically. In addition to
these, we impose additional constraints, which make our arguments easier, but could, in principle, be
relaxed in future work, without changing the method too much. One of these is that we impose that
different close-packing configurations be related to each other by isometries, which ensures that the local
density will be the same in different close-packings. In addition, we exclude the possibility that the local
density could exceed the total density. This can happen in certain models [14], and this would break a
number of arguments made in our proof.

Under this condition, we prove that crystallization occurs at sufficiently high densities. To do so, we
follow the same philosophy as in [20], and prove that the model has a convergent high-fugacity expansion,
that is, an analytic expansion in the inverse of the fugacity (an expansion in eµ where µ is the chemical
potential). The idea of a high fugacity expansion for HCLP models dates back, at least, to Gaunt and
Fisher [12] (see also [8, 16]), and was systematized in [20]. The present work is a continuation of [20],
and we extend the treatment of such expansions to a much wider class of models. In particular, we prove
that the Lee-Yang zeros [43, 21] are all located inside a finite-radius disk in the complex fugacity plane.
Combining this with a classical Mayer expansion argument [23, 40, 34], we thus prove that the Lee-Yang
zeros lie in a finite annulus in the complex fugacity plane.

To prove the convergence of the high-fugacity expansion, we use Pirogov-Sinai theory [6, 31, 44],
which allows us to balance the entropy gains the defects produce with the costs coming from the dips in
the density caused by the defects.

The rest of this paper is structured as follows. In Section 2, we define the model more precisely, state
the condition under which we will prove crystallization (see Assumption 1), and state our main results.
In Section 3, we map the HCLP particle model to a contour model. Following [19, 20], we call these
contours Gaunt-Fisher configurations. These formalize the notion of defect mentioned above. In Section
4, we prove the crucial estimate that will allow Pirogov-Sinai theory to work for our system: the Peierls
condition. Roughly, it states that the cost of a defect is exponentially large in its size, which will allow us
to control the entropy of contours. In Section 5, we carry out the Pirogov-Sinai analysis. Our approach
is similar to that of Zahradńık [44] (see also the textbook [11]). Finally, in Section 6, we discuss some
explicit examples of models for which we prove Assumption 1: the staircase models, and the 12th nearest
neighbor exclusion.

2 Model and main result

Let Λ∞ be a periodic graph embedded in Rd with d ≥ 2. For example, Λ∞ could be Zd, the triangular
lattice, or the honeycomb lattice (which is not, strictly speaking, a lattice, but rather a periodic graph).
Denote by dΛ∞ the (usual) graph distance on Λ∞. Our interest is in Hard-Core Lattice Particle (HCLP)
systems on Λ∞, which we formalize as follows.

Each particle has a shape denoted by ω, which is a bounded subset of Rd and, for convenience, is
assumed to contain 0. Hence, a particle at x ∈ Λ∞ occupies the volume ωx := x + ω. We require that
each σx := ωx ∩ Λ∞ induce a connected subgraph of Λ∞. Pairs of particles interact via a hard-core
repulsion, that is, their supports may not overlap. Formally, given any Λ ⊆ Λ∞, we define the set of
particle configurations on Λ as

Ω(Λ) :=
{
X ⊆ Λ | ωx ∩ ωx′ = ∅ for all x ̸= x′ ∈ X

}
. (2.1)
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Figure 1: An example of a subset of Z2 and its exterior boundary: the boundary is 2-connected.

We will study this system in the grand canonical ensemble: if Λ is finite, we define the partition function
at fugacity z (:= eµ, where µ is the chemical potential) as

Ξz(Λ) :=
∑

X∈Ω(Λ)

z|X|, (2.2)

where |X| is the number of elements in X. Let

ρmax(Λ) :=
1

|Λ| max
X∈Ω(Λ)

|X| , ρmax := lim
Λ⇑Λ∞

ρmax(Λ) (2.3)

be the maximal density and its infinite-volume limit (the limits here are taken in the sense of van Hove).
Finally, define the finite-volume pressure of the system as

pz(Λ) :=
1

|Λ| log Ξz(Λ) (2.4)

and its infinite-volume limit
p(z) := lim

Λ⇑Λ∞
pz(Λ). (2.5)

Our main result is that, provided the model satisfies a non-sliding condition along with other geometric
constraints (see Assumption 1 below), the system crystallizes at high densities in the sense that there is
long-range order in the positions of particles that breaks the translation symmetry of Λ∞.

2.1 Assumption on the model

To specify the assumption on the model, we will need a few definitions.
First, we will assume that Λ∞ is such that the boundary of any simply connected set is connected in

a coarse-grained sense, which we will now define.

Definition 2.1. Two points x, y ∈ Λ∞ are neighbors if and only if dΛ∞(x, y) ≤ 1, which gives us a
natural notion of connectedness in Λ∞. In addition, a set S ⊂ Λ∞ is said to be r-connected if ∀x, y ∈ S,
there exists a path x ≡ x0, x1, · · · , xN ≡ y in S such that dΛ∞(xi, xj) ≤ r.

We will assume that Λ∞ is such that there existsR0 ∈ N such that the interior and exterior boundaries
(see Definition 2.2) of any simply connected set are R0-connected (see Item 1 of Assumption 1 below).
This is a very weak assumption that was shown to hold for a very large class of graphs [38] including
Zd (for which R0 = d), the triangular lattice (for which R0 = 1), and the honeycomb lattice (for which
R0 = 3). See Figure 1 for an example.

Definition 2.2. Given a connected set Λ ⊂ Λ∞, we define its interior boundary as

∂inΛ := {λ ∈ Λ :| dΛ∞(λ,Λc) = 1} (2.6)

and its exterior boundary as
∂exΛ := {λ ∈ Λc | dΛ∞(λ,Λ) = 1} . (2.7)

Now, let us define the notion of ground states, which could also be called close-packing states.
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Figure 2: A portion of one of the ground states for the 3-staircase model; see Section 6.1.

Definition 2.3 (ground state). A ground state in Λ is a configuration X ∈ Ω(Λ) that maximizes the
density: |X| = |Λ| ρmax(Λ). Taking the limit Λ ⇑ Λ∞ in the sense of van Hove, the ground states tend
to limiting configurations in Ω(Λ∞). An (infinite-volume) ground state is denoted by L# where # takes
values in a set which we denote by G. In other words, G is a set of indices, each of which specifies a
ground state.

See Figure 2 for an example.
We will assume that G is finite (see Item 2 of Assumption 1). Moreover, we will assume that the dif-

ferent ground states are related to each other by species-preserving isometries (see Item 3 of Assumption
1), which are invertible transformations of Rd that preserve the shapes of particles:

Definition 2.4 (species-preserving isometry). A species-preserving isometry is a Euclidean transforma-
tion ψ satisfying the following properties:

1. the restriction ψ|Λ∞
induces a graph automorphism of Λ∞ (in particular, it is an isometry with

respect to the graph distance dΛ∞);

2. it leaves the supports of the particles invariant: for all λ ∈ Λ∞, ψ(ωλ) = ωψ(λ).

Whereas ground states maximize the density, it is a priori possible for them not to maximize the
density locally. This can happen in certain models in which clusters that have a large local density may
form at the expense of lowering the local density elsewhere, so that these clusters do not form ground
states [14]. We will assume that this is not the case. To state this more precisely, we need to define the
notion of a local density, which is in turn based on discrete Voronoi cells [10, 29].

Definition 2.5 (discrete Voronoi cell). For X ∈ Ω(Λ∞) and x ∈ X, the (discrete) Voronoi cell of σx
(:= ωx ∩Λ∞) with respect to X is defined as the set of points that are closer (inclusively) to σx than to
any other particle:

VX(σx) :=

{
λ ∈ Λ∞ | dΛ∞(λ, σx) = min

y∈X
dΛ∞(λ, σy)

}
. (2.8)

Examples of Voronoi cells are provided in Figures 5 and 9 below.

Remark 2.6. Usually, the Voronoi cells are constructed to form a partition of the whole space, which
necessitates a choice on the cell boundaries. In contrast, the definition we take in this paper allows
distinct Voronoi cells to overlap, with the benefit of enabling us to implement Pirogov-Sinai theory in a
natural (i.e., choice-free) way, as we will see later.

We can now define the local density, which is the inverse of the size of the Voronoi cell surrounding
a particle, but adjusted for the fact that the Voronoi cells can overlap. Formally:

Definition 2.7 (local density). Given X ∈ Ω(Λ∞), define the local density at x ∈ X as

ρX(x) :=

 ∑
λ∈VX (σx)

1

|{z ∈ X | λ ∈ VX(σz)}|

−1

. (2.9)

Accordingly, the maximum local density of the model is

ρlocmax := sup
X∈Ω(Λ∞)
x∈X

ρX(x). (2.10)
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Examples of the computation of ρlocmax is provided in Figures 5 and 9 below.

Remark 2.8. Notice that ρlocmax = ρmax in the case of a tiling model, in which all sites are covered in the
ground states. For general models, however, this is not always the case. For instance, in the hard-sphere
model, it is possible to have localized configurations in which the local density (defined as the inverse of
the volume of the standard Voronoi cell in the continuum) exceeds the close-packing density [14]. In this
paper, we will only consider models for which the equality ρlocmax = ρmax holds (see Item 4 of Assumption
1), but without requiring the tiling property.

Next, we introduce the notion of #-correctness, which is inspired by the construction of the (graph)
Voronoi dual [17] and will later be used to identify defects in a configuration.

Definition 2.9 (neighbor and #-correctness). For a given configuration X, we define the neighbors of
a particle to be those in Voronoi cells adjacent to that of the particle: given x ∈ X,

NX(x) := {z ∈ X | dΛ∞(VX(σx), VX(σz)) ≤ 1} . (2.11)

(Note that this definition implies that x ∈ NX(x).) A particle x ∈ X is then said to be #-correct if its
neighbors in X are exactly its neighbors in L#, that is, x ∈ L# and

NX(x) = NL#(x). (2.12)

Finally, x ∈ X is said to be incorrect if x is not #-correct for any ground state # ∈ G.
In addition, we define a coarse-grained notion of #-correctness, which will come in useful throughout

the discussion.

Definition 2.10 (R2-neighbor and (#,R2)-correctness). Given R2 ∈ N (we use the subscript 2 for
reasons that will become apparent later), for X ∈ Ω(Λ∞) and x ∈ X, we define the set of R2-neighbors
of x as

N (R2)
X (x) := {z ∈ X | dΛ∞(VX(σx), VX(σz)) ≤ R2} . (2.13)

A particle x ∈ X is is said to be (#,R2)-correct if

for all y ∈ N (R2)
X (x), y is #−correct. (2.14)

In addition, x ∈ X is said to be R2-incorrect if x is not (#,R2)-correct for any # ∈ G. Finally,

given a ground state #, let C(R2)
# (X) denote the set of (#,R2)-correct particles in X, and I(R2)(X) :=

X \
⋃

#∈G C(R2)
# (X) the set of R2-incorrect particles.

We can now state the criterion under which we will prove crystallization.

Assumption 1. We require that the model satisfy the following properties:

1. d ≥ 2, and Λ∞ is a periodic graph embedded in Rd with finite maximal coordination number (the
number of neighbors is bounded), and is such that there exists R0 ∈ N such that the interior and
exterior boundaries (see Definition 2.2) of any simply connected set are R0-connected; see Definition
2.1.

2. There exist only finitely many ground states: G is finite and nonempty.

3. The ground states are related by species-preserving isometries (see Definition 2.4): given #,#′ ∈ G,
there exists a species-preserving isometry ψ such that ψ(L#) = L#′

.

4. The maximum density is equal to the maximum local density: ρlocmax = ρmax (see Definition 2.7 and
(2.3)).

5. Different ground states cannot merge seamlessly: for any X ∈ Ω(Λ∞), if x ∈ X is #-correct and
x′ ∈ NX(x) is #′-correct, then # = #′ (see Definition 2.9).

6. A particle that is incorrect leads to a localized dip in the local density: there exist R1,S1 ∈ N and
ϵ > 0 such that, for all X ∈ Ω(Λ) and x ∈ X, if x is R1-incorrect (see Definition 2.10), then there
exists y ∈ X such that dΛ∞(x, y) ≤ S1 and ρ−1

X (y) ≥ ρ−1
max + ϵ.

Remark 2.11. In the simplest cases, Item 6 holds for R1 = S1 = 0. These are cases in which the
local density is maximal if and only if a particle is (#, 0)-correct (note that (#, 0)-correct is not the
same as #-correct, but this is not an important distinction), which includes all of the tiling examples
discussed in [20], as well as the staircase models discussed in Section 6.1. For these models, it is relatively
straightforward to verify Item 6. However, there also may be situations in which the local density may
only dip at a finite, but large distance S1, in which case proving the assumption may be more difficult.
To deal with such cases, we prove the following lemma, which provides an equivalent assumption that
may be easier to verify.
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Lemma 2.12. Assuming Items 4 and 5 of Assumption 1 hold, Item 6 holds if and only if{
L# | # ∈ G

}
= gm := {X ∈ Ω(Λ∞) | ρX(x) = ρmax for all x ∈ X} (2.15)

(that is, the set of configurations that have a constant local density which is maximal is equal to the set
of ground states).

This lemma is proved in Section 4.3. It allows one to use our main result in situations where it is
easier to prove that

{
L# | # ∈ G

}
= gm than to prove Item 6 of Assumption 1.

We briefly describe how Assumption 1 will enter our analysis.

• Item 2 allows us to control the number of ways a ground state can be perturbed, thus controlling
the entropy of defects: if the number of ground states were infinite, there is a risk that there are
too many ways to create defects, which could lead to defect-formation being likely; see Lemma 5.4.

• Item 3 allows us to control the ratio of partition functions of defects of different ground states,
which is a standard step in Pirogov-Sinai theory; see Proposition 5.6, specifically (5.56).

• Item 4 excludes situations in which the local density can be larger than ρmax, which would break
the proof of Proposition 5.6; see also Lemma 3.4.

• Items 1 and 5 allow us to map the particle model to a contour model in a one-to-one way: using this
assumption, we can fully specify a defect-free region by only looking at the particles neighboring
this region; see Lemma 3.7 and Proposition 5.2.

• Item 6 ensures that the presence of a defect causes the local density to dip below its maximum
value and that this dip occurs close to the defect, from which we can conclude the validity of the
Peierls condition; see Lemma 4.4.

Remark 2.13 (necessity of Assumption 1). Assumption 1 excludes models that exhibit the sliding phe-
nomenon. For example, consider the model of 2× 2 squares on Z2, in which one can shift entire columns
of particles without disturbing a ground state [13]. Such moves generate an infinite number of ground
states, which violates Item 2. Due to the abundance of ground states that differ from each other only by
a number of columns, Item 5 is also violated.

Assumption 1, however, requires more of the model than simply that it does not permit sliding. In
principle, this suggests that the assumption can be relaxed. For instance, the requirement in Item 1 that
the graph Λ∞ is periodic is presumably not necessary, though this would require some changes in the
argument, and it is not clear that the rest of the assumptions could be satisfied for aperiodic graphs.
More interestingly, there exist non-sliding models that violate Item 4, but for which one nevertheless
expects crystallization to occur at high densities. Thus, it may also be possible to dispense of Item 4,
although our treatment of the Peierls condition in Lemma 4.4 would need to be adapted accordingly.

Finally, note that the requirement d ≥ 2 is technically redundant: if d = 1, then simply connected
sets will certainly not have R0-connected boundaries. However, it is worth emphasizing that our method
will not work for d = 1, as the Pirogov-Sinai analysis would fall through. (Rightfully so, there are no
crystalline phases in one dimension.)

Remark 2.14 (comparison of Assumption 1 with [20]). The condition in Assumption 1, under which we
prove crystallization, is more general than the condition in [20]. Obviously, we do not require the particle
to tile Λ∞, but the generalization goes a little further. For one, we do not require that the ground states
be periodic, as this can be proved from Items 1 and 2; see Lemma 3.1 below. In addition, the analog of
Item 6 in [20] requires the drop in the density to occur right next to the incorrect particle. Here, we are
more general and allow for the drop in density to occur farther away, which allows us to treat models
such as the one of hard disks of radius 2.5 in Section 6.2.

2.2 Main result

Our main result is that, under Assumption 1, there is more than one extremal Gibbs state for large
enough fugacities. In each of these states, the translation invariance is broken, which shows that these
high-fugacity states exhibit crystalline order. This proves the existence of a phase transition: indeed, a
Mayer expansion easily shows that the Gibbs state is unique at low fugacity. Note, however, that our
result does not give a value for the critical fugacity, or even on the number of phase transitions. We will
also derive, as a byproduct of our analysis, a convergent high-fugacity expansion for the pressure:

p(z) := lim
Λ⇑Λ∞

pz(Λ) = ρmax log z + f(z−1), (2.16)
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where ρmax := lim supΛ⇑Λ∞ ρmax(Λ), and f is analytic in z−1 for all sufficiently large |z|.
To show that there are multiple extremal Gibbs states, we will consider a family of boundary con-

ditions, each corresponding to a different instance of symmetry breaking. The precise definition of the
boundary condition is of little importance for the techniques used here. For the sake of convenience,
we choose a boundary condition that is well-adapted to the Pirogov-Sinai construction detailed below,
though a similar argument would allow us to treat more general situations. To introduce this boundary
condition, we must first define a coarse-graining, parametrized by a radius R2 ∈ N. We will choose R2

to be large enough so as to satisfy (3.13), (3.14), and (4.1) below. The utility of the coarse-graining
parameter R2 is technical and will become clear later.

Definition 2.15 (boundary condition). Given a ground state # and a finite region Λ ⋐ Λ∞, we define
the # boundary condition as follows: all the particles outside Λ are in L#, and all the particles along
the boundary of Λ are (#,R2)-correct. Formally, we define the set of configurations in Λ subject to the
boundary condition # as:

Ω#(Λ) :=
{
X ∈ Ω(Λ∞) | X \ Λ = L# \ Λ,

for all x ∈ X such that dΛ∞(VX(σx),Λ
c) ≤ 1, x is (#,R2)−correct

}
.

(2.17)

The (grand canonical) partition function on Λ at fugacity z with boundary condition # is

Ξ#
z (Λ) :=

∑
X∈Ω#(Λ)

z|X∩Λ|, (2.18)

and the probability of a configuration X ∈ Ω#(Λ) is defined as

z|X∩Λ|

Ξ#
z (Λ)

. (2.19)

We denote the corresponding expectation by ⟨·⟩#z,Λ.
Our main result can be formally stated as follows.

Theorem 2.16 (crystallization). Under Assumption 1, there exists a constant z0 > 0, independent of
Λ, such that, if z > z0, then

lim
Λ⇑Λ∞

⟨1x⟩#z,Λ =

{
ρmax +O(z−1) if x ∈ L#

O(z−1) otherwise
, (2.20)

where 1x denotes the characteristic function that x ∈ X.

Remark 2.17. We have computed a value for z0, which is deferred to the appendix: see (C.1). This
bound is quite far from optimal, but it is instructive to see how the parameters appearing in Assumption
1 affect our estimate on the radius of convergence.

As a consequence of Theorem 2.16, there are at least as many extremal Gibbs distributions as there
are close-packing configurations (|G|), in all of which the translational symmetry of Λ∞ is broken. Also,
as we have noted, an intermediate result in the proof of Theorem 2.16 is the construction of an expansion
of p(z)− ρmax log z in powers of z−1, which is shown to be absolutely convergent when |z| is sufficiently
large:

Theorem 2.18 (analyticity). Under Assumption 1, p(z)−ρmax log z is analytic in z
−1 on {z ∈ C | |z| > z0}.

Let us give a brief outline of the proof of Theorem 2.18, from which Theorem 2.16 is proved. The first
step is to map the model to a contour model. Here, a contour will be called a Gaunt-Fisher configuration,
in honor of [12], and abbreviated as GFc. The GFc’s are constructed from the incorrect particles, and
are chosen to be thick enough so that, in the effective GFc model, pairs of GFc’s only interact via a
hard-core repulsion. In addition, GFc’s will retain information on the particles inside them, and on the
index of the close-packing outside the GFc. This will allow the mapping between configurations and
GFc’s to be one-to-one. This is carried out in Section 3.

Next, we prove that the weight of a GFc in the effective GFc model is exponentially small in its size.
This is called the Peierls condition. To prove it, we use Item 6 to show that a certain proportion of sites
in the support of the GFc has a local density that is < ρmax. This is done in Section 4; see Lemma 4.4
in particular.
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We then unravel the Pirogov-Sinai machinery. The idea is to prove that the GFc model is dilute
enough that we can compute its observables using a convergent cluster expansion. We do so using the
Peierls condition. There is a difficulty we have to contend with: GFc’s actually interact with each other
through the fact that the close-packing outside two neighboring GFc’s has to be the same. To eliminate
this long-range interaction, we use the Minlos-Sinai trick, which consists in flipping contours in such
a way that they all have the same external close-packing. Doing so comes at a cost, which we can
estimate using the cluster expansion inductively. This is carried out in Section 5, and leads to the proof
of Theorem 2.18.

To prove Theorem 2.16, we allow the fugacity to vary infinitesimally and locally, and compute deriva-
tives with respect to local fluctuations of the fugacity. Using the convergent expansion proved in Theorem
2.18, this allows us to compute the required observables to the required order in z−1.

3 Gaunt-Fisher configurations

The main step toward deriving the analyticity in Theorem 2.18 is to map the particle model to a contour
model. Intuitively, the contours associated to a particle configuration form a localized, complete record
of defects, that is, deviations of the configuration from the ground states. Following [12, 20], we will refer
to contours as Gaunt-Fisher configurations (abbreviated as GFc’s).

3.1 Some useful lemmas

We will consider R2-incorrect particles as responsible for the formation of defects and accordingly con-
struct GFc’s from particle configurations using the R2-incorrect particles. Before delving into the study
of defects, however, let us first investigate the properties of particles living in defect-free configurations,
that is, the ground states.

We first prove that ground states must be periodic, which will be useful in proving Lemmas 3.4 and
3.3 below.

Lemma 3.1. The ground states are periodic: for any # ∈ G, there exist linearly independent vectors
k1, · · · , kd ∈ Rd such that, for all i = 1, · · · , d,

L# = L# + ki. (3.1)

Proof. We prove this by contradiction: suppose that for every linearly independent family k1, · · · , kd,
L# is not invariant under ki translations. Choose an infinite family of ki that are translations of Λ∞.
In this case, there would be an infinite number of ground states, obtained from L# by translating by ki,
which contradicts Item 2 of Assumption 1.

We will refer to the Voronoi cell of a particle in a ground state as a reference Voronoi cell. To each
point in a reference Voronoi cell (of a ground state #), we will also assign a fractional weight that is
the reciprocal of the number of particles in # to which it is equidistant (recall that the Voronoi cells
overlap; see Definition 2.5). Later on, the weights will enable us to quantify the drop in density due to
the presence of defects.

Definition 3.2 (reference Voronoi cell). Given a ground state # and x ∈ L#, we denote the reference
Voronoi cell of a particle x in the ground state # by

σ#
x := VL#(σx). (3.2)

Moreover, we define a weight function v# : σ#
x → Q on the reference Voronoi cell,

v#(λ) :=
1∣∣∣{z ∈ L# | λ ∈ σ#

z

}∣∣∣ . (3.3)

Note that, by Definition 2.7, ∑
λ∈σ#

x

v#(λ) = ρL#(x)−1. (3.4)

We note a few basic properties of the reference Voronoi cells.

Lemma 3.3. The support of a reference Voronoi cell in any ground state # is bounded by a radius reff
that is independent of #.
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Proof. By contradiction, suppose that the reference Voronoi cell of x ∈ L# has infinite size. Then, for
all r ∈ N, there exists z ∈ σ#

x such that dΛ∞(x, z) > r. By Definition 2.5, the ball of radius r around z
must be devoid of particles: for all y ∈ L#, dΛ∞(z, σy) > r. Since the support ω of a particle is bounded,
one can always choose r large enough that a particle fits well inside the ball of radius r centered at z,
which contradicts the fact that L# is a ground state. Thus, the support of the reference Voronoi cells
in the ground state # is bounded. Finally, we can make the bound reff independent of # by taking the
largest value among the close-packings (using Item 2 of Assumption 1 and Lemma 3.1).

This lemma has several useful consequences. The first is that the local density of every ground state
is constant.

Lemma 3.4. The local density (see Definition 2.7) of a ground state is constant: for all x ∈ L#,

ρL#(x) = ρmax. (3.5)

In particular, ∑
λ∈σ#

x

v#(λ) = ρ−1
max. (3.6)

Proof. By Definition 2.7, for any X ⋐ L#,∑
x∈X

ρL#(x)−1 =
∑
x∈X

∑
λ∈σ#

x

1∣∣∣{z ∈ L# | λ ∈ σ#
z

}∣∣∣ , (3.7)

so, if ΛX :=
⋃
x∈X σ

#
x ,

∑
x∈X

ρL#(x)−1 =
∑
λ∈ΛX

∣∣{x ∈ X | λ ∈ σ#
x

}∣∣∣∣∣{z ∈ L# | λ ∈ σ#
z

}∣∣∣ =
∑
λ∈ΛX

1−
∣∣{x ∈ L# \X | λ ∈ σ#

x

}∣∣∣∣∣{z ∈ L# | λ ∈ σ#
z

}∣∣∣
 , (3.8)

and thus
1

|X|
∑
x∈X

ρL#(x)−1 =
|ΛX |
|X| −

∑
λ∈ΛX

∣∣{x ∈ L# \X | λ ∈ σ#
x

}∣∣∣∣∣{z ∈ L# | λ ∈ σ#
z

}∣∣∣ . (3.9)

Now, taking a limit in which X → L# such that ΛX ⇑ Λ∞ (there are many senses in which this limit
can be taken; see, for instance, Definition 4.5), we find that

lim
X→L#

1

|X|
∑
x∈X

ρL#(x)−1 = ρ−1
max. (3.10)

However, by Item 4 of Assumption 1, ρmax = ρlocmax, so, for all x ∈ X other than a set of size o(|X|),
ρL#(x) = ρmax. Finally, by Lemma 3.1, L# is periodic, if one x ∈ X has a larger density, then a fraction
of order |X| will have a larger density as well. This proves (3.5).

Having done this, (3.6) then follows from (3.4).

Lemma 3.5. Given a configuration X ∈ Ω, if x is #-correct, then

VX(σx) = σ#
x . (3.11)

In particular, if x is #-correct, then VX(σx) has a radius of at most reff .

Proof. Since x is #-correct, its neighbors are all in L#, but the discrete Voronoi cell VX(σx) only depends
on x and its neighbors; see Definition 2.5.

Lemma 3.6. µ := min
λ∈σ#

x
v#(λ) > 0.

Proof. This is a direct consequence of Lemma 3.3: the maximum number of particles whose support
(intersected with Λ∞) is at a given distance from a fixed site is finite.

Finally, we prove that Item 5 of Assumption 1 implies a coarse-grained version of the assumption. In
Definition 3.8 below, this will ensure that the labeling function on a GFc is well-defined.

Lemma 3.7. If R2 > 0, then given a configuration X ∈ Ω(Λ) and x, y ∈ X such that dΛ∞(x, y) < R2,
if x is (#,R2)-correct and y is (#′,R2)-correct, then # = #′.

Proof. Since y is (#′,R2)-correct, every particle inside the ball of radius R2 centered at y is #′-correct.
Therefore, if dΛ∞(x, y) < R2, then x is #′-correct. Finally, since x is #-correct, by Item 5 of Assumption
1, # = #′.

10



3.2 Gaunt-Fisher configurations

We are now ready to construct GFc’s.

Definition 3.8 (Gaunt-Fisher configuration associated to a particle configuration). Consider a config-
uration X ∈ Ω#(Λ) for some #. We associate a GFc to each connected component of the union of the
Voronoi cells of the R2-incorrect particles in X (recall Definition 2.10), where R2 satisfies (3.13), (3.14),
and (4.1): ⋃

x∈I(R2)(X)

VX(σx) =:
⋃
i

γ̄i, (3.12)

where γ̄i and γ̄j are disconnected for i ̸= j. Each such GFc has a support, an internal configuration, and
a labeling function.

1. The support of a GFc is the set γ̄i itself.

2. The internal configuration is Xγi := X ∩ γ̄i.
3. Let ext(γi), int1(γi), . . . , intN (γi) be the connected components of γ̄ci := Λ∞ \ γ̄i with ext(γi) being

the unique unbounded component (so that int1(γi), · · · intN (γi) are the holes in γ̄i). Now, given
Aj ∈ {int1(γi), · · · , intN (γi)}, Aj is simply connected, so, by Item 1 of Assumption 1, the interior
boundary of Aj is R0-connected (see Definition 2.1). Thus, provided that

R2 ≥ R0, (3.13)

all the particles in Aj whose Voronoi cell intersects ∂
inAj are (#j ,R2)-correct and all these particles

have the same #j ∈ G (using Lemma 3.7). Similarly, if Aj = ext(γi), then we consider the
exterior boundary of Acj , which is simply connected, and apply the same reasoning to find that
the interior boundary of Aj is lined with (#j ,R2)-correct particles. The labeling function µγi :
{ext(γi), int1(γi), · · · , intN (γi)} → G assigns this ground state #j to Aj .

See Figure 3 for an example.
Hence, each GFc is a triplet γ := (γ̄, Xγ , µγ), but these are not arbitrary: there is a compatibility

condition that ensures that a collection of GFc’s corresponds to a particle configuration. For one, the
labels µγ must be compatible: if a GFc lies inside another, their labels must match up. In addition,
the hard-core repulsion imposes an a priori constraint on the Xγ , but we will now dispense with it by
assuming that R2 is large enough, which prevents the particles in different GFc’s from interacting with
each other.

Lemma 3.9. Suppose that

R2 > max {dΛ∞(x, y) | x, y ∈ Λ, ωx ∩ ωy ̸= ∅} . (3.14)

Consider a configuration X ∈ Ω#(Λ) and its corresponding family of GFc’s {γ1, · · · , γn}. For each GFc
γi, we construct a configuration ξγi in which the holes of γi are filled:

ξγi := Xγi ∪
[
ext(γi) ∩ Lµγi

(ext(γi))
]
∪
⋃
j

[
intj(γi) ∩ Lµγi

(intj(γi))
]
. (3.15)

This configuration is a valid particle configuration: ξγi ∈ Ω(Λ∞).

Proof. Let Aj ∈ {ext(γi), int1(γi), · · · , intN (γi)} and consider the set X ∩ Aj of particles in Aj . Let us
remove the particles that are not in Lµγi

(Aj), which will leave gaps, which we then fill with particles
in Lµγi

(Aj). Proceeding in this way, we construct ξγi . The proof then reduces to showing that the
newly added particles do not overlap with any of the existing ones. Obviously, particles in Lµγi

(Aj)

can only overlap with particles in L#′
with #′ ̸= µγi(Aj). But such particles in L#′

must be a dis-
tance of at least R2 away (this follows straightforwardly from the fact that different GFc’s are dis-
connected, so the extra particles are surrounded by (µγi(Aj),R2)-correct particles, which implies that
the nearest particles that are not in Lµγi

(Aj) are at least a distance R2 away). Therefore, as long as
R2 > max {dΛ∞(x, y) | x, y ∈ Λ, ωx ∩ ωy ̸= ∅}, there can be no interaction.

The converse to Lemma 3.9 follows.

Proposition 3.10. For each GFc γ, the canonical configuration ξγ has γ as its unique GFc.

The proof of this fact is simple, though writing it out is a touch tedious, so we postpone it to Appendix
A.

Let us now define the set of configurations of GFc’s.
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Figure 3: An example of a GFc associated to a particle configuration for the 3-staircase model; see Section
6.1. The blue and light blue particles (the two outermost rings) are in one ground state and the red and
light orange particles (the innermost) are in another ground state. For this model, R2 = 3. The light blue
and light orange particles are R2-incorrect, and thus are in the GFc. Taking the union of the supports of
their Voronoi cells, we find the support of the GFc, which is delineated by a thick line.
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Definition 3.11. We define the set C#(Λ) of GFc’s as the set of triplets (γ̄, Xγ , µγ), where γ̄ is a
connected subset of Λ, Xγ ∈ Ω(γ̄), and µγ is a map from {ext(γ), int1(γ), · · · , intN (γ)} → G, in such a
way that ξγ ∈ Ω#(Λ).

Note that # is the exterior close-packing index of the GFc regardless of whether the GFc is surrounded
by another one. This does not cause problems, due to our using the Minlos-Sinai trick in Section 5: we
only ever need to study GFc’s that have # as their external index; see Section 5.1.

3.3 Relations to species-preserving isometries

We briefly comment on the relation between GFc’s and species-preserving isometries. The basic observa-
tion is that the latter preserve not only the continuous support ωx but also the discrete support σx, in the
sense that ψ(σx) = σψ(x) for any species-preserving isometry ψ. Since the Voronoi cells are constructed
in a choice-free manner, a multitude of convenient properties follow without effort:

1. preservation of Voronoi cells: given X ∈ Ω(Λ∞) containing x, ψ(VX(σx)) = Vψ(X)(σψ(x));

2. preservation of #- and (#,R2)-correctness: x ∈ X is #-correct (resp. (#,R2)-correct) if and only
if ψ(x) ∈ ψ(X) is ψ(#)-correct (resp. (ψ(#),R2)-correct);

3. preservation of reference Voronoi cells: if x ∈ L#, then ψ(σ#
x ) = σ

ψ(#)

ψ(x) ;

4. action on GFc’s: ψ acts on the set of all GFc’s by

ψ · γ = ψ · (γ̄, Xγ , µγ) := (ψ(γ̄), ψ(Xγ), ψ ◦ µγ). (3.16)

This will be useful in the proof of Proposition 5.6 below.

4 Peierls condition

We now formulate the Peierls condition in the context of HCLP systems. Since the GFc’s are defined
from R2-incorrect particles, we can prove that they come at a large cost by showing that somewhere near
an R2-incorrect particle (in a sense made precise below), the local density must be bounded away from
ρmax = ρlocmax. When the fugacity is sufficiently large, the probability of having such a dip in the local
density is low, which in turn induces a cost for each GFc that is proportional to its volume.

4.1 Cost of an R2-incorrect particle

Thus, we must prove that any R2-incorrect particle induces a dip in the local density. This is a similar
statement to Item 6 of Assumption 1, except for the fact that the dip in the density must hold for
R2-incorrect particles, instead of R1-incorrect ones, whenever R2 ≥ R1.

Lemma 4.1. For any R2 such that
R2 ≥ R1, (4.1)

we define
S0 := S1 +R2 + 4reff (4.2)

(recall that reff was defined in Lemma 3.3). We have that, for all X ∈ Ω(Λ) and x ∈ X, if x is
R2-incorrect, then there exists y ∈ X such that dΛ∞(x, y) ≤ S0 and

ρ−1
X (y) ≥ ρ−1

max + ϵ, (4.3)

where R1, S1 and ϵ are the quantities appearing in Item 6 of Assumption 1.

Proof. Consider x ∈ X that is R2-incorrect. We first prove that there exists z ∈ N (R2)
X (x) (see Definition

2.10) such that z is incorrect. We proceed by contradiction: suppose that for every z ∈ N (R2)
X (x) there

exists a #z ∈ G such that z is #z-correct. A priori, #z may depend on z, but we will now show that #z

has to be the same for all z ∈ N (R2)
X . Indeed, let us assume that z ̸= x, and consider the shortest path

through Λ∞ that goes from z to x. By the definition of N (R2)
X (x), all of the Voronoi cells that this path

goes through belong to particles in N (R2)
X (x). In particular, this path goes through at least one neighbor

z′ ∈ NX(z) satisfying dΛ∞(z′, x) < dΛ∞(z, x). Now, by Item 5 of Assumption 1,

#z′ = #z. (4.4)
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By induction, this shows that #z = #x. And, because z was chosen arbitrarily, this implies that, for all
z ∈ N (R2)

X (x), #z = #x, and, therefore, that x is (#x,R2)-correct, a contradiction.

Thus, there exists z ∈ N (R2)
X (x) such that z is incorrect. We choose the incorrect z such that

dΛ∞(VX(z), VX(x)) is minimal. Since z is incorrect, it is also R1-incorrect. By Item 6 of Assumption 1,
there exists y such that dΛ∞(z, y) ≤ S1 and ρ−1

X (y) ≥ ρ−1
max + ϵ.

Finally, we prove that dΛ∞(x, z) ≤ R2 + 4reff . Indeed, if z = x, then this is obvious. Otherwise,
consider the shortest path from x to z. If this path crosses the Voronoi cell of a particle z′, then
z′ ∈ N (R2)

X (x). Among the possible choices of z′, we choose the one that is closest to the particle at
z, which must therefore neighbor the particle at z. In addition, since z minimizes the distance between
VX(z) and VX(x) among incorrect particles, z′ must be #z′ -correct for some #z′ ∈ G. Therefore, z is

the neighbor of z′ in L#′
z , and, by Lemma 3.5,

dΛ∞(z, z′) ≤ 2reff . (4.5)

In addition, since z ̸= x, x is also #z′ -correct, so

dΛ∞(x, z′) ≤ R2 + 2reff (4.6)

and thus
dΛ∞(x, z) ≤ R2 + 4reff . (4.7)

4.2 Peierls condition

To prove the Peierls condition from Lemma 4.1, we first need to define the effective volume of a GFc.

Definition 4.2 (effective volume). Define the effective volume of a GFc γ = (γ̄, Xγ , µγ) by starting
with γ̄ and removing the weights due to the particles that are outside the GFc but whose Voronoi cell
intersects its support (see Definitions 2.10 and 3.2 for the notations):

∥γ̄∥ :=
∑
λ∈γ̄

1−∑
#

∑
x∈C(R2)

#
(X): σ

#
x ∋λ

v#(λ)

 , (4.8)

where X is any configuration of which γ is a GFc. We note that it is not difficult to verify that (4.8) is
independent of the choice of X.

For an example, see the GFc in Figure 3, in which the sites in γ̄ that contribute less than 1 to ∥γ̄∥
are the uncovered sites that neighbor the thick black lines.

The following simple bound on the effective volume will be useful.

Lemma 4.3. For any GFc γ, ∥γ̄∥ ≥ µ |γ̄|, where µ is as in Lemma 3.6.

Proof. Recall the definition of the configuration ξγ in (3.15). It suffices to show that the summand in

∥γ̄∥ =
∑
λ∈γ̄

1−∑
#

∑
x∈C(R2)

#
(ξγ): σ

#
x ∋λ

v#(λ)

 , (4.9)

is bounded below by µ for each λ ∈ γ̄. If the double sum does not vanish, then exactly one ground state
# contributes by Item 5 of Assumption 1. In this case, the summand reduces to

1−
∑

x∈C(R2)
#

(ξγ): σ
#
x ∋λ

v#(λ) = 1−

∣∣∣{x ∈ C(R2)
# (ξγ) | λ ∈ σ#

x

}∣∣∣∣∣∣{z ∈ L# | λ ∈ σ#
z

}∣∣∣ . (4.10)

Here, λ is in the support of the reference Voronoi cells associated to a particle outside the GFc. However,
since λ ∈ γ̄, λ is also in the Voronoi cell of some particle in I(R2)(ξγ) located on the boundary of the
GFc. By Definition 2.10, this particle is also in L#. Therefore,∣∣∣{z ∈ L# | λ ∈ σ#

z

}∣∣∣ ≥ 1 +
∣∣∣{x ∈ C(R2)

# (ξγ) | λ ∈ σ#
x

}∣∣∣ (4.11)
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and so

1−

∣∣∣{x ∈ C(R2)
# (ξγ) | λ ∈ σ#

x

}∣∣∣∣∣∣{z ∈ L# | λ ∈ σ#
z

}∣∣∣ ≥ 1∣∣∣{z ∈ L# | λ ∈ σ#
z

}∣∣∣ ≥ µ. (4.12)

We are now ready to state the Peierls condition.

Lemma 4.4 (Peierls condition). The Peierls condition is satisfied: defining

ρ0 :=
1

ρ−1
max + ϵ

N
(4.13)

where ϵ appears in Item 6 of Assumption 1 and N is the number of particles inside the ball of radius S0

(see Lemma 4.1):
N := max

X∈Ω(Λ∞)
|{x ∈ X | dΛ∞(x,0) ≤ S0}| , (4.14)

we have, for any GFc γ,
|Xγ | ≤ ρ0 ∥γ̄∥ . (4.15)

Proof. Given a GFc γ, consider the associated configuration ξγ defined in (3.15). By Proposition
3.10,Xγ ⊂ ξγ coincides with the set I(R2)(ξγ) of R2-incorrect particles in ξγ . Hence, by (2.9),

∥γ̄∥ =
∑
x∈Xγ

ρξγ (x)
−1. (4.16)

By Lemma 4.1, for every x ∈ Xγ , there exists a ball of radius S0 where at least one of the particles
satisfies (4.3). In addition, Xγ will contain at least |Xγ | /N such balls. Therefore,

∥γ̄∥ ≥ |Xγ |
N (ρ−1

max + ϵ) +

(
|Xγ | −

|Xγ |
N

)
ρ−1
max =

(
ρ−1
max +

ϵ

N

)
|Xγ | . (4.17)

Therefore, the Peierls condition is satisfied with

ρ0 :=
1

ρ−1
max + ϵ

N
< ρmax. (4.18)

4.3 Proof of Lemma 2.12

To close this section, let us prove Lemma 2.12, which provides an alternative to Item 6 of Assumption
1. First, we introduce a few definitions.

Definition 4.5. Denote by △ the symmetric difference of two sets. Define a metric d on the space
Ω(Λ∞) of all particle configurations by

d(X,Y ) :=
∑

λ∈X△Y

2−dΛ∞ (λ,0). (4.19)

Our choice of the metric d is fairly standard: under this metric, two configurations are close to each
other if they coincide on a large region containing the origin [11, §6.4.1]. Formally, we characterize
convergence under this metric in the following manner, which is straightforward to verify:

Lemma 4.6. Given X ∈ Ω(Λ∞) and a sequence {Xn} ⊂ Ω(Λ∞), the following are equivalent:

1. d(Xn, X) → 0 (we also write Xn → X);

2. 1Xn(λ) → 1X(λ) for all λ ∈ Λ∞;

3. 1Xn → 1X on all finite Λ ⋐ Λ∞.

In addition, Ω(Λ∞) is sequentially compact under the metric topology induced by d.

We can now prove Lemma 2.12.
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Proof of Lemma 2.12. First of all, let us prove that Item 6 implies (2.15). Given # ∈ G, by Lemma
3.4, ρL#(x) = ρmax, so L# ∈ gm. Now, given X in gm, we prove that all particles are (#,R1)-correct
for the same #. By Item 6, no particle can be R1-incorrect, otherwise X ̸∈ gm. Therefore, every
x ∈ X is (#x,R1)-correct. However, by Item 5, all #x must be the same, and therefore, all particles
are (#,R1)-correct for some #. In particular, every particle is in L#, and, since the local density is
maximal, X = L#.

We now turn to the more difficult direction, namely that (2.15) implies Item 6.
We proceed by contradiction, assuming that Item 6 does not hold. In other words, there exists a

sequence {Xn} ⊂ Ω(Λ∞) such that, for each n, there exists an R0-incorrect xn ∈ Xn for which all y ∈ Xn
with dΛ∞(y, xn) ≤ n are such that

ρXn(y)
−1 ≤ ρloc −1

max +
1

n
. (4.20)

By translation invariance, we can assume that xn = 0 for all n. By Lemma 4.6, there exists a subsequence
{Xnk} and a configuration X ∈ Ω(Λ∞) such that Xnk → X.

Let us first prove that X ∈ gm. Let x ∈ X. For all sufficiently large k, we have that x ∈ Xnk by
Lemma 4.6, and

ρXnk
(x)−1 ≤ ρloc −1

max +
1

nk
(4.21)

by setting (y, xnk ) = (x,0) in (4.20). Decomposing

Λ∞ =

∞⊔
m=0

Sm, where Sm := {λ ∈ Λ∞ | dΛ∞(λ,0) = m} , (4.22)

we have, by Fatou’s lemma,

∞∑
m=0

lim inf
k→∞

∑
λ∈Sm

1VXnk
(σx)(λ)∣∣∣{z ∈ Xnk | λ ∈ VXnk

(σz)
}∣∣∣
 ≤ lim inf

k→∞

 ∞∑
m=0

∑
λ∈Sm

1VXnk
(σx)(λ)∣∣∣{z ∈ Xnk | λ ∈ VXnk

(σz)
}∣∣∣
 .

(4.23)
By (4.21), we have that

RHS = lim inf
k→∞

ρXnk
(x)−1 ≤ ρloc −1

max . (4.24)

To study the LHS, notice first that, for a fixed λ ∈ Sm, the value of the indicator function is determined
locally, that is, by the restriction of the configuration Xnk to the finite region

Λ1 := {µ ∈ Λ∞ | dΛ∞(λ, σµ) < dΛ∞(λ, σx)} . (4.25)

Hence, by Lemma 4.6, the value of the indicator function converges to 1VX (σx)(λ) as k → ∞. If
λ ∈ VX(σx), notice again that the denominator is determined locally, this time by the restriction of Xnk

to the finite region
Λ2 := {µ ∈ Λ∞ | dΛ∞(λ, σµ) = dΛ∞(λ, σx)} . (4.26)

Thus, by Lemma 4.6, the denominator converges to |{z ∈ X | λ ∈ VX(σz)}| as k → ∞. Since Sm is finite
for each m,

LHS =

∞∑
m=0

∑
λ∈Sm

1VX (σx)(λ)

|{z ∈ X | λ ∈ VX(σz)}|
= ρX(x)−1. (4.27)

Combining (4.23), (4.24), and (4.27) with the obvious bound ρX(x)−1 ≥ ρloc −1
max , we deduce that

ρX(x) = ρlocmax, (4.28)

and, therefore, that X ∈ gm.

Since 0 ∈ Xnk for all k, we have 0 ∈ X by Lemma 4.6. By (2.15), X is a ground state, so 0 ∈ X is
(X,R0)-correct. Since (X,R0)-correctness is a local property, we conclude from Lemma 4.6 that 0 ∈ Xnk

is (X,R0)-correct for large enough k, a contradiction.

5 High-fugacity expansion

In this section, we prove Theorems 2.18 and 2.16. Our argument consists of two main steps: converting
the particle model into a GFc model, and subsequently evaluating the partition functions using cluster
expansion techniques within the framework of Pirogov-Sinai theory.
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5.1 Passing to a GFc model

We begin by restating the boundary condition (Definition 2.15) in terms of GFc’s. That the two formu-
lations of boundary conditions are equivalent is clear from the construction.

Definition 5.1 (boundary condition). Given a ground state # and a finite region Λ ⋐ Λ∞, define the
set of configurations in Λ subject to the boundary condition # as

Ω#(Λ) := {X ∈ Ω(Λ∞) | X \ Λ = L# \ Λ, all GFc’s associated to X are contained in Λ

and at distance dΛ∞ ≥ 1 from ∂inΛ}.
(5.1)

We will convert our particle model into a GFc model by rewriting the partition functions in terms of
certain weights of the GFc’s. During the process, we will make use of the following standard notions in
Pirogov-Sinai-type arguments:

1. for each ground state #, define C# := ∪Λ⋐Λ∞C#(Λ) as the set of all GFc’s of type #;

2. two GFc’s γ1, γ2 of the same type are said to be compatible if and only if dΛ∞(γ̄1, γ̄2) > 1;

3. define the support of a collection Γ of GFc’s as Γ̄ := ∪γ∈Γγ̄, that is, the union of the supports of
all the GFc’s contained in Γ;

4. given a GFc γ, define int#′ γ, called the interior of γ of type #′, as the union of the holes in γ̄ (cf.
Definition 3.8) that are assigned the label #′ by µγ .

As we will see, to evaluate the correlation functions as in Theorem 2.16 requires us to differentiate
the partition functions with respect to the fugacity z. To this end, it will be convenient to allow variable
fugacities, which we encode in a single fugacity function z : Λ∞ → (0,∞). Accordingly, for each ground
state #, we define the (grand canonical) partition function with boundary condition # and fugacity
function z as

Ξ#
z (Λ) :=

∑
X∈Ω#(Λ)

∏
x∈X∩Λ

z(x). (5.2)

Finally, given a ground state # and a finite region Λ ⋐ Λ∞, we write z#(Λ) :=
∏
x∈L#∩Λ z(x).

Proposition 5.2 (GFc model). Define the weight w#
z (γ) of a GFc γ ∈ C# as

w#
z (γ) :=

∏
x∈Xγ

z(x)∏
x∈(L#∩γ̄) z(x)

∏
#′

Ξ#′
z (int#′ γ)

Ξ#
z (int#′ γ)

. (5.3)

Then,
Ξ#

z (Λ)

z#(Λ)
=

∑
Γ⊆C#(Λ):
compatible

∏
γ∈Γ

w#
z (γ). (5.4)

Proof. Following a standard strategy in Pirogov-Sinai theory, we will first map the particle model into a
model of external GFc’s and then apply a recursion argument.

Let γ1, . . . , γn be the GFc’s associated to a configuration X ∈ Ω#(Λ). By construction, these GFc’s
are mutually disconnected: dΛ∞(γ̄i, γ̄j) > 1 whenever i ̸= j. Define the interior of a GFc γi as int γi :=
∪#′ int#′ γi. We say that a GFc γi is external (relative to the collection {γ1, . . . , γn}) if γi is not contained
in the interior of any other GFc γj . Notice that any external GFc in the above collection is necessarily
of type #.

Conversely, given any compatible collection Γ ⊆ C#(Λ) of external GFc’s (relative to Γ), there exist
configurations X ∈ Ω#(Λ) from which the GFc’s in Γ are the only external GFc’s that arise. The general
form of such configurations is given by

X =

(
L# \

⋃
γ∈Γ

Int γ

)
∪
⋃
γ∈Γ

Xγ ∪
⋃
#′

(
X#′

int#′ γ ∩ int#′ γ
) , (5.5)

where we use the notation Int γ := γ̄ ∪
⋃

#′ int#′ γ.
Therefore, we can write

Ξ#
z (Λ) =

∑
Γ⊆C#(Λ):
compatible
external

 ∏
x∈(L#∩Λ)\

⋃
γ∈Γ Int γ

z(x)

∏
γ∈Γ

 ∏
x∈Xγ

z(x)

∏
#′

Ξ#′
z (int#′ γ)

 . (5.6)
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Dividing both sides by z#(Λ), we get

Ξ#
z (Λ)

z#(Λ)
=

∑
Γ⊆C#(Λ):
compatible
external

∏
γ∈Γ

( ∏
x∈Xγ

z(x)∏
x∈(L#∩γ̄) z(x)

)∏
#′

Ξ#′
z (int#′ γ)

z#(int#′ γ)

 . (5.7)

Applying the Minlos-Sinai trick [11], we get

Ξ#
z (Λ)

z#(Λ)
=

∑
Γ⊆C#(Λ):
compatible
external

∏
γ∈Γ

w#
z (γ)

∏
#′

Ξ#
z (int#′ γ)

z#(int#′ γ)

 . (5.8)

The computation can then be repeated for the inner ratios. The recursion will terminate when
int#′ γ is too small to accommodate any GFc’s of type #, in the sense that C#(int#′ γ) = ∅. In this
case, Ξ#

z (int#′ γ) = z#(int#′ γ). The proposition follows.

5.2 Technical estimates

Here, we prepare several technical estimates for the proof of the main theorems. We will use the following
condition for the convergence of the cluster expansion, quoted directly from [11, 39].

Lemma 5.3 (cluster expansion). Suppose that there exists a function a : ∪#C# → R>0 such that, given
any ground state # and a GFc γ∗ ∈ C#,∑

γ∈C#

dΛ∞ (γ̄,γ̄∗)≤1

∣∣∣w#
z (γ)

∣∣∣ ea(γ) ≤ a(γ∗). (5.9)

Then, given any ground state # and γ1 ∈ C#,

1 +

∞∑
k=2

k
∑
γ2∈C#

· · ·
∑

γk∈C#

|φ(γ1, γ2, . . . , γk)|
k∏
j=2

∣∣∣w#
z (γj)

∣∣∣ ≤ ea(γ1), (5.10)

where φ is the Ursell function. In addition, for any finite subregion Λ ⋐ Λ∞, the series expansion

log
Ξ#

z (Λ)

z#(Λ)
=

∞∑
m=1

∑
γ1∈C#(Λ)

· · ·
∑

γm∈C#(Λ)

φ(γ1, . . . , γm)

m∏
i=1

w#
z (γi) (5.11)

converges absolutely.

Lemma 5.4. There exists a constant τ0 > 0 such that the following holds: if τ ≥ τ0 and
∣∣w#

z (γ)
∣∣ ≤ e−τ |γ̄|

uniformly in # and γ, then (5.9) holds with a(γ) := χ |γ̄|, where χ is the maximal coordination number
of Λ∞.

Proof. Fix # and γ∗ ∈ C#. Notice that any γ ∈ C# with dΛ∞(γ̄, γ̄∗) ≤ 1 must intersect the set
{λ ∈ Λ∞ | dΛ∞(λ, γ̄∗) ≤ 1}. Bounding the size of the latter by χ |γ̄∗|, we estimate∑

γ∈C#

dΛ∞ (γ̄,γ̄∗)≤1

∣∣∣w#
z (γ)

∣∣∣ eχ|γ̄| ≤ χ |γ̄∗| sup
λ∈Λ∞

∑
γ∈C#

γ̄∋λ

e−(τ−χ)|γ̄|. (5.12)

Recalling that a GFc γ ∈ C# is a triple (γ̄, Xγ , µγ), we bound the RHS of (5.12) as follows. Suppose
that |γ̄| = n. We bound the number of γ̄ with γ̄ ∋ λ and |γ̄| = n by the number of walks on Λ∞ of length
2n starting at λ, which does not exceed χ2n. Then, fixing γ̄, each site therein is either occupied by a
particle or not, so there are at most 2n distinct configurations on γ̄. Finally, each hole in γ̄ is adjacent
to some point in γ̄, so there are at most χn such holes, each of which is assigned a label from the finite
set G. Hence, for a fixed γ̄, there are at most |G|χn possibilities for µγ . Therefore, uniformly in λ ∈ Λ∞,

∑
γ∈C#

γ̄∋λ

e−(τ−χ)|γ̄| ≤
∞∑
n=1

e−(τ−χ)n (2χ2 |G|χ
)n ≤ 1 (5.13)
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for all sufficiently large τ . In this case, from (5.12), we get∑
γ∈C#

dΛ∞ (γ̄,γ̄∗)≤1

∣∣∣w#
z (γ)

∣∣∣ eχ|γ̄| ≤ χ |γ̄∗| . (5.14)

Next, we prove that the cardinality difference between the intersections of two ground states with the
same region Λ ⋐ Λ∞ is a boundary term.

Lemma 5.5. For every finite region Λ ⋐ Λ∞ and any ground state # ∈ G,∣∣∣∣∣∣Λ ∩ L#
∣∣∣− ρmax |Λ|

∣∣∣ ≤ µ−1
∣∣∣∂inΛ

∣∣∣ (5.15)

where ∂inΛ is the interior boundary of Λ (see Definition 2.2) and µ was defined in Lemma 3.6. In
particular, for all #′ ∈ G, ∣∣∣∣∣∣Λ ∩ L#

∣∣∣− ∣∣∣Λ ∩ L#′
∣∣∣∣∣∣ ≤ 2µ−1

∣∣∣∂inΛ
∣∣∣ . (5.16)

Proof. Recalling Definition 3.2,

|Λ| =
∑
x∈L#

∑
λ∈σ#

x ∩Λ

v#(λ) (5.17)

which we split as

|Λ| =
∑

x∈L#: σ
#
x ⊂Λ

∑
λ∈σ#

x

v#(λ) +
∑

x∈L#: σ
#
x ∩Λc ̸=∅

∑
λ∈σ#

x ∩Λ

v#(λ). (5.18)

By (3.6),

|Λ| = ρ−1
max

∣∣∣{x ∈ L# | σ#
x ⊂ Λ

}∣∣∣+ ∑
x∈L#∩Λ: σ

#
x ∩Λc ̸=∅

∑
λ∈σ#

x ∩Λ

v#(λ). (5.19)

Therefore, splitting∣∣∣{x ∈ L# | σ#
x ⊂ Λ

}∣∣∣ = ∣∣∣Λ ∩ L#
∣∣∣− ∣∣∣{x ∈ L# ∩ Λ | σ#

x ∩ Λc ̸= ∅
}∣∣∣ (5.20)

we find that

|Λ| − ρ−1
max

∣∣∣Λ ∩ L#
∣∣∣ = ∑

x∈L#∩Λ: σ
#
x ∩Λc ̸=∅

∑
λ∈σ#

x ∩Λ

v#(λ)− ρ−1
max

∣∣∣{x ∈ L# ∩ Λ | σ#
x ∩ Λc ̸= ∅

}∣∣∣ . (5.21)

By (3.6), the RHS of (5.21) is nonpositive, so∣∣∣|Λ| − ρ−1
max

∣∣∣Λ ∩ L#
∣∣∣∣∣∣ ≤ ρ−1

max

∣∣∣{x ∈ L# ∩ Λ | σ#
x ∩ Λc ̸= ∅

}∣∣∣ . (5.22)

Since σ#
x is connected,∣∣∣{x ∈ L# ∩ Λ | σ#

x ∩ Λc ̸= ∅
}∣∣∣ ≤ ∣∣∣{x ∈ L# | σ#

x ∩ ∂inΛ ̸= ∅
}∣∣∣ . (5.23)

Now, recalling the definition of µ in Lemma 3.6, we have that each point in σ#
x can belong to the reference

Voronoi cell of at most µ−1 particles. Therefore,∣∣∣{x ∈ L# | σ#
x ∩ ∂inΛ ̸= ∅

}∣∣∣ ≤ µ−1
∣∣∣∂inΛ

∣∣∣ . (5.24)

We now derive the central estimates of this subsection.

Proposition 5.6. Suppose that z(x) ≡ z for all but n sites x1, . . . , xn ∈ Λ∞, for which there exists a
constant c > 0 such that e−

c
n |z| ≤ |z(xi)| ≤ e

c
n |z| for all i. There exist constants τ ≥ τ0, ς, η > 0

and z0 > 1 such that, whenever |z| ≥ z0, the following hold for all finite regions Λ ⋐ Λ∞, ground states
#,#′ ∈ G, and GFc’s γ ∈ C#(Λ): ∣∣∣w#

z (γ)
∣∣∣ ≤ e−τ |γ̄|, (5.25)∣∣∣∣ ∂

∂ log z(xi)
log

Ξ#
z (Λ)

z#(Λ)

∣∣∣∣ ≤ η1xi∈Λ, (5.26)∣∣∣∣∣Ξ#′
z (Λ)

Ξ#
z (Λ)

∣∣∣∣∣ ≤ |z|
∣∣∣Λ∩L#′ ∣∣∣

|z||Λ∩L#| e
ς|∂inΛ|. (5.27)
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Remark 5.7. To derive the analyticity of the pressure, we will allow the fugacity function z to take
complex values, but in this case we require that z be a constant function on Λ∞. In the case of non-
constant z as is needed in (5.26), the function is required to take only real values.

Proof. Following the version of Pirogov-Sinai theory proposed by Zahradńık [44], we assign a cutoff
weight to each GFc γ in such a way that

ŵ#
z (γ) := min


∏
x∈Xγ

|z(x)|∏
x∈(L#∩γ̄) |z(x)|

∏
#′

∣∣∣∣∣ Ξ̂#′
z (int#′ γ)

Ξ̂#
z (int#′ γ)

∣∣∣∣∣ , e−τ0|γ̄|
 , (5.28)

where Ξ̂#
z (Λ) is defined as in (5.4) but with the true weight w#

z (γ) replaced by the cutoff weight ŵ#
z (γ).

It is a standard result that there exists a unique way to execute this assignment; see for instance [32,
Theorem 10.5.1.2]. The benefit of using the cutoff weights is suggested by the presence of τ0 in (5.28):
since these weights are sufficiently small, Lemma 5.4 guarantees that we can use the cluster expansion
to evaluate the associated partition functions.

In what follows, we prove (5.26) and (5.27) inductively, in addition to the following bound on the
cutoff weights

ŵ#
z (γ) ≤ e−τ |γ̄|, (5.29)

which immediately implies (5.25) as τ ≥ τ0; see for instance [32, Theorem 10.5.2.1].
If |Λ| is too small to accommodate any GFc of any type, then there is nothing to prove about (5.29).

On the other hand, Ξ#
z (Λ) = z#(Λ) for each #, so (5.26) holds trivially. As for (5.27), given # and #′,

we estimate ∣∣∣∣∣Ξ#′
z (Λ)

Ξ#
z (Λ)

∣∣∣∣∣ =
∏
x∈Λ∩L#′ |z(x)|∏
x∈Λ∩L# |z(x)| ≤ e2c

|z|
∣∣∣Λ∩L#′ ∣∣∣

|z||Λ∩L#| ≤ eς|∂
inΛ| |z|

∣∣∣Λ∩L#′ ∣∣∣
|z||Λ∩L#| , (5.30)

where the last inequality holds as long as
ς ≥ 2c. (5.31)

Assume henceforth that (5.29), (5.26), and (5.27) hold for all proper subregions of Λ.
We begin with (5.29). Fix a ground state #, and consider γ ∈ C#(Λ). Applying (5.29) and (5.27)

inductively, we get ∣∣∣ŵ#
z (γ)

∣∣∣ = ∏
x∈Xγ

|z(x)|∏
x∈(L#∩γ̄) |z(x)|

∏
#′

∣∣∣∣∣Ξ#′
z (int#′ γ)

Ξ#
z (int#′ γ)

∣∣∣∣∣
≤ e2c

|z||Xγ |

|z||(L#∩γ̄)|
∏
#′

 |z|
∣∣∣int#′ γ∩L#′ ∣∣∣

|z||int#′ γ∩L#| e
ς|∂in int#′ γ|


= e2c+ς

∑
#′ |∂in int#′ γ| |z||Xγ |+∑

#′
∣∣∣int#′ γ∩L#′ ∣∣∣−|Int γ∩L#| .

(5.32)

Notice that, by Lemma 3.4,

|Xγ |+
∑
#′

∣∣∣int#′ γ ∩ L#′
∣∣∣− ∣∣∣Int γ ∩ L#

∣∣∣
= |Xγ | − ρmax

 ∑
x∈Int γ∩L#

∥∥∥σ#
x

∥∥∥−∑
#′

∑
x∈int#′ γ∩L#′

∥∥∥σ#′
x

∥∥∥


= |Xγ | − ρmax ∥γ̄∥ ≤ −(ρmax − ρ0) ∥γ̄∥ ≤ −µ(ρmax − ρ0) |γ̄| ,

(5.33)

where, in an abuse of notation, we write, for x ∈ L#,∥∥∥σ#
x

∥∥∥ :=
∑
λ∈σ#

x

v#(λ), (5.34)

and we use the Peierls condition in the first inequality and Lemma 4.3 in the second. Hence,∣∣∣ŵ#
z (γ)

∣∣∣ ≤ e2c+ς
∑

#′ |∂in int#′ γ| |z|−µ(ρmax−ρ0)|γ̄| ≤ e−[µ(ρmax−ρ0) log z0−2c−ςχ]|γ̄| ≤ e−τ |γ̄|, (5.35)
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where the last inequality holds as long as

µ(ρmax − ρ0) log z0 − 2c− ςχ ≥ τ. (5.36)

We now prove (5.26). If xi ̸∈ Λ, then the inequality holds trivially, so we assume otherwise. As long
as

τ ≥ τ0, (5.37)

the cluster expansion

log
Ξ#

z (Λ)

z#(Λ)
=

∞∑
m=1

∑
γ1∈C#(Λ)

· · ·
∑

γm∈C#(Λ)

φ(γ1, . . . , γm)

m∏
j=1

w#
z (γj) (5.38)

converges absolutely by Lemma 5.4. Differentiating the series term by term (which, by a corollary of
the dominated convergence theorem, will be justified as soon as we show that the series of derivatives is
bounded absolutely and uniformly for z(xi) ∈ [e−

c
n |z| , e

c
n |z|]; indeed, the latter is guaranteed by (5.43)

and (5.48) as we compute below) and using Lemma 5.3, we get∣∣∣∣ ∂

∂ log z(xi)
log

Ξ#
z (Λ)

z#(Λ)

∣∣∣∣
≤

∞∑
m=1

∑
γ1∈C#(Λ)

· · ·
∑

γm∈C#(Λ)

|φ(γ1, . . . , γm)|
m∑
j=1

∣∣∣∣ ∂w#
z (γj)

∂ log z(xi)

∣∣∣∣∏
k ̸=j

∣∣∣w#
z (γk)

∣∣∣
≤

∑
γ1∈C#(Λ)

∣∣∣∣ ∂w#
z (γ1)

∂ log z(xi)

∣∣∣∣
1 + ∞∑

m=2

m
∑

γ2∈C#(Λ)

· · ·
∑

γm∈C#(Λ)

|φ(γ1, . . . , γm)|
m∏
j=2

∣∣∣w#
z (γj)

∣∣∣


≤
∑

γ∈C#(Λ)

∣∣∣∣ ∂w#
z (γ)

∂ log z(xi)

∣∣∣∣ eχ|γ̄|.

(5.39)

Since
∂w#

z (γ)

∂ log z(xi)
= w#

z (γ)
∂ logw#

z (γ)

∂ log z(xi)
, (5.40)

we need to study

logw#
z (γ) =

∑
x∈Xγ

log z(x)−
∑

x∈(L#∩γ̄)

log z(x)


+
∑
#′

(
log

Ξ#′
z (int#′ γ)

z#′(int#′ γ)
− log

Ξ#
z (int#′ γ)

z#(int#′ γ)

)

+
∑
#′

 ∑
x∈int#′ γ∩L#′

log z(x)−
∑

x∈int#′ γ∩L#

log z(x)

 .

(5.41)

Differentiating the above and applying (5.26) inductively, we get∣∣∣∣∂ logw#
z (γ)

∂ log z(xi)

∣∣∣∣ ≤ ∣∣1x1∈Xγ − 1xi∈(L#∩γ̄)
∣∣

+ 2η
∑
#′

1xi∈int#′ γ∩L#′ +
∑
#′

∣∣∣1xi∈int#′ γ∩L#′ − 1xi∈int#′ γ∩L#

∣∣∣
≤31xi∈Int γ ,

(5.42)

where the last inequality holds as long as
η ≤ 1. (5.43)

Therefore, ∣∣∣∣ ∂

∂ log z(xi)
log

Ξ#
z (Λ)

z#(Λ)

∣∣∣∣ ≤ 3
∑

γ∈C#(Λ)
xi∈Int γ

e−(τ−χ)|γ̄|. (5.44)
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Notice that every γ ∈ C# with xi ∈ γ̄ has at most |Intγ | distinct translates γ′ ∈ C#(Λ) such that
x1 ∈ Int γ′. Using the isoperimetric inequality,

|Int γ| ≤ Id |γ̄|d , (5.45)

we get ∑
γ∈C#(Λ)
xi∈Int γ

e−(τ−χ)|γ̄| ≤
∑
γ∈C#

xi∈γ̄

Id |γ̄|d e−(τ−χ)|γ̄| ≤ Idd!
∑
γ∈C#

xi∈γ̄

e−(τ−χ−1)|γ̄|. (5.46)

Bounding the series the same way as in (5.13), we get∣∣∣∣ ∂

∂ log z(xi)
log

Ξ#
z (Λ)

z#(Λ)

∣∣∣∣ ≤ 3Idd!

∞∑
s=1

e−(τ−χ−1)s (2χ2 |G|χ
)s ≤ η, (5.47)

where the last inequality holds as long as τ ≥ τ1, where τ1 satisfies τ1 ≥ τ0 and

∞∑
s=1

e−(τ1−χ−1)s (2χ2 |G|χ
)s ≤ η

3Idd!
. (5.48)

It remains to prove (5.27). If z is non-constant (in which case, recall from Remark 5.7 that it can
only take real values), then we first get rid of the non-constancy as follows. By the mean-value theorem,
there exists z̃(xi) ∈ [z, z(xi)] (or possibly [z(xi), z]) for each i such that

log
Ξ#′

z (Λ)

Ξ#
z (Λ)

− log
Ξ#′
z (Λ)

Ξ#
z (Λ)

=

n∑
i=1

[
∂

∂z(xi)
log

Ξ#′
z (Λ)

Ξ#
z (Λ)

∣∣∣∣∣
z̃

(z(xi)− z)

]
, (5.49)

where we extend z̃(x) := z for all x ̸= x1, . . . , xn. Notice that (5.26) remains valid since nothing has
been used about z̃ except that it satisfies the constraint stated in the proposition, so

n∑
i=1

∣∣∣∣∣ ∂

∂z(xi)
log

Ξ#′
z (Λ)

Ξ#
z (Λ)

∣∣∣∣∣
z̃

∣∣∣∣∣ |z(xi)− z|

≤
n∑
i=1

(∣∣∣∣∣ ∂

∂z(xi)
log

Ξ#′
z (Λ)

z#′(Λ)

∣∣∣∣∣
z̃

∣∣∣∣∣+
∣∣∣∣ ∂

∂z(xi)
log

Ξ#
z (Λ)

z#(Λ)

∣∣∣∣
z̃

∣∣∣∣
+

∣∣∣∣∣ ∂ log z#
′
(Λ)

∂z(xi)

∣∣∣∣∣
z̃

− ∂ log z#(Λ)

∂z(xi)

∣∣∣∣
z̃

∣∣∣∣∣
)
|z(xi)− z|

≤
n∑
i=1

|z(xi)− z|
|z̃(xi)|

(
2η1xi∈Λ +

∣∣∣1xi∈L#′∩Λ − 1xi∈L#∩Λ

∣∣∣)
≤

n∑
i=1

(e
c
n + 1)(2η + 1).

(5.50)

We now turn to

log
Ξ#′
z (Λ)

Ξ#
z (Λ)

= log
Ξ#′
z (Λ)

|z||L#′∩Λ| − log
Ξ#
z (Λ)

|z||L#∩Λ| + log
|z|

∣∣∣L#′
∩Λ

∣∣∣
|z||L#∩Λ| . (5.51)

By Lemma 5.3, we expand

log
Ξ#
z (Λ)

|z||L#∩Λ| =

∞∑
m=1

∑
γ1∈C#(Λ)

· · ·
∑

γm∈C#(Λ)

φ(γ1, . . . , γm)

m∏
i=1

ŵ#
z (γi), (5.52)

where we substitute in the cutoff weights (which coincide with the true weights for the GFc’s in C#(Λ)
by (5.28) and (5.29)) in anticipation of extending the summation to be over tuples of GFc’s in C#. Using
the identity

1 =
1∣∣Γ̄ ∩ L#

∣∣ ∑
λ∈Λ∩L#

1λ∈Γ̄ (5.53)
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for each tuple Γ = (γ1, . . . , γm) of GFc’s in C#(Λ) contributing to (5.52) (where, by an abuse of notation,
we write Γ̄ := ∪iγ̄i), we get

∞∑
m=1

∑
γ1∈C#(Λ)

· · ·
∑

γm∈C#(Λ)

φ(γ1, . . . , γm)

m∏
i=1

ŵ#
z (γi)

=
∑

λ∈Λ∩L#

∞∑
m=1

∑
γ1∈C#(Λ)

· · ·
∑

γm∈C#(Λ)

1λ∈Γ̄

1∣∣Γ̄ ∩ L#
∣∣φ(γ1, . . . , γm)

m∏
i=1

ŵ#
z (γi)

=
∑

λ∈Λ∩L#

 ∞∑
m=1

∑
γ1∈C#

· · ·
∑

γm∈C#

1λ∈Γ̄

1∣∣Γ̄ ∩ L#
∣∣φ(γ1, . . . , γm)

m∏
i=1

ŵ#
z (γi)

−
∞∑
m=1

∑
γ1∈C#

· · ·
∑

γm∈C#

1Γ ̸⊏C#(Λ)1λ∈Γ̄

1∣∣Γ̄ ∩ L#
∣∣φ(γ1, . . . , γm)

m∏
i=1

ŵ#
z (γi)

 ,

(5.54)

where the involvement of GFc’s in C# is justified by the estimate

∞∑
m=1

∑
γ1∈C#

· · ·
∑

γm∈C#

1λ∈Γ̄

1∣∣Γ̄ ∩ L#
∣∣ |φ(γ1, . . . , γm)|

m∏
i=1

∣∣∣ŵ#
z (γi)

∣∣∣
≤
∑
γ1∈C#

γ̄1∋λ

∣∣∣ŵ#
z (γ1)

∣∣∣ ∞∑
m=1

m
∑
γ2∈C#

· · ·
∑

γm∈C#

|φ(γ1, . . . , γm)|
m∏
i=2

∣∣∣ŵ#
z (γi)

∣∣∣
≤
∑
γ∈C#

λ∈γ̄

e−(τ0−χ)|γ̄| ≤ 1

(5.55)

as a consequence of Lemmas 5.3 and 5.4 (in particular (5.13)). By (3.16), the first series

∞∑
m=1

∑
γ1∈C#

· · ·
∑

γm∈C#

1λ∈Γ̄

1∣∣Γ̄ ∩ L#
∣∣φ(γ1, . . . , γm)

m∏
i=1

ŵ#
z (γi) (5.56)

appearing in (5.54) is independent of the ground state # and the site λ ∈ L#. On the other hand, the
support Γ̄ of each tuple Γ that contributes to the other series in (5.54),∑

λ∈Λ∩L#

∞∑
m=1

∑
γ1∈C#

· · ·
∑

γm∈C#

1Γ̸⊏C#(Λ)1λ∈Γ̄

1∣∣Γ̄ ∩ L#
∣∣φ(γ1, . . . , γm)

m∏
i=1

ŵ#
z (γi) (5.57)

necessarily intersects ∂inΛ by the definition of the Ursell function φ. Hence, this latter series is a boundary
term:∑

λ∈Λ∩L#

∞∑
m=1

∑
γ1∈C#

· · ·
∑

γm∈C#

1Γ̸⊏C#(Λ)1λ∈Γ̄

1∣∣Γ̄ ∩ L#
∣∣ |φ(γ1, . . . , γm)|

m∏
i=1

∣∣∣ŵ#
z (γi)

∣∣∣
≤
∣∣∣∂inΛ

∣∣∣ max
λ∈∂inΛ

∑
γ1∈C#

γ̄1∋λ

∣∣∣ŵ#
z (γ1)

∣∣∣ ∞∑
m=1

m
∑
γ2∈C#

· · ·
∑

γm∈C#

|φ(γ1, . . . , γm)|
m∏
i=2

∣∣∣ŵ#
z (γi)

∣∣∣ ≤ ∣∣∣∂inΛ
∣∣∣ , (5.58)

again using (5.55). Therefore,∣∣∣∣∣log Ξ#
z (Λ)

|z||L#∩Λ| − log
Ξ#′
z (Λ)

|z||L#′∩Λ|

∣∣∣∣∣ ≤ ∣∣∣∣∣∣Λ ∩ L#
∣∣∣− ∣∣∣Λ ∩ L#′

∣∣∣∣∣∣+ 2
∣∣∣∂inΛ

∣∣∣ ≤ (2 + 2µ−1) ∣∣∣∂inΛ
∣∣∣ (5.59)

where we use Lemma 5.5 in the last inequality. Putting together (5.49), (5.50), (5.51), and (5.59), we get∣∣∣∣∣∣log Ξ#′
z (Λ)

Ξ#
z (Λ)

− log
|z|

∣∣∣L#′
∩Λ

∣∣∣
|z||L#∩Λ|

∣∣∣∣∣∣ ≤
n∑
i=1

(e
c
n + 1)(2η + 1) +

(
2 + 2µ−1) ∣∣∣∂inΛ

∣∣∣ ≤ ς
∣∣∣∂inΛ

∣∣∣ , (5.60)

where the last inequality holds as long as

ς ≥ 3n(e
c
n + 1) + 2 + 2µ−1. (5.61)
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5.3 Proof of the main theorems

Our main theorems follow directly from the estimates in Proposition 5.6.

Proof of Theorem 2.18. By (5.25) and (5.28), the cutoff weights coincide exactly with the true weights.
Thus, it follows from (5.54) that

p#z (Λ) :=
1

|Λ| log Ξ
#
z (Λ)

=

∣∣L# ∩ Λ
∣∣

|Λ|

log z + ∞∑
m=1

∑
γ1∈C#

· · ·
∑

γm∈C#

1λ∈Γ̄

1∣∣Γ̄ ∩ L#
∣∣φ(γ1, . . . , γm)

m∏
i=1

w#
z (γi)

+
O(
∣∣∂inΛ

∣∣)
|Λ| .

(5.62)
Taking the limit Λ ⇑ Λ∞, we obtain the expansion

p(z)− ρmax log z = ρmax

∞∑
m=1

∑
γ1∈C#

· · ·
∑

γm∈C#

1λ∈Γ̄

1∣∣Γ̄ ∩ L#
∣∣φ(γ1, . . . , γm)

m∏
i=1

w#
z (γi), (5.63)

where the series converges uniformly for |z| ≥ z0 by (5.58). Hence, to prove the analyticity of (5.63), it
suffices to check that the summands are analytic. Indeed, for each GFc γ ∈ C#, the weight w#

z (γ) is a
rational function of z (cf. (5.2) and (5.3)) and bounded on |z| ≥ z0 by (5.25), hence analytic. The proof
is now complete.

Proof of Theorem 2.16. First, we prove that the series

∞∑
m=1

∑
γ1∈C#

· · ·
∑

γm∈C#

|φ(γ1, . . . , γm)|

∣∣∣∣∣ ∂

∂ log z(x)

m∏
i=1

w#
z (γi)

∣∣∣∣∣
z

∣∣∣∣∣ (5.64)

converges for z ≥ z0. Indeed, bounding (5.64) by Line 2 of (5.39) with C#(Λ) replaced by C#, the
computations from (5.39) to (5.47) can be repeated with all instances of C#(Λ) replaced by C#, which
shows that (5.64) is uniformly bounded by 1. Note that this justifies the interchange of differentiation
and summation in

∂

∂ log z(x)
log

Ξ#
z (Λ)

z#(Λ)

∣∣∣∣
z

=

∞∑
m=1

∑
γ1∈C#(Λ)

· · ·
∑

γm∈C#(Λ)

φ(γ1, . . . , γm)
∂

∂ log z(x)

m∏
i=1

w#
z (γi)

∣∣∣∣∣
z

. (5.65)

Second, we show that the RHS of (5.65) converges to

∞∑
m=1

∑
γ1∈C#

· · ·
∑

γm∈C#

φ(γ1, . . . , γm)
∂

∂ log z(x)

m∏
i=1

w#
z (γi)

∣∣∣∣∣
z

(5.66)

uniformly for z ≥ z0 in the limit Λ ⇑ Λ∞. Indeed, their difference is bounded by

∞∑
m=1

∑
γ1∈C#

· · ·
∑

γm∈C#

1Γ̸⊏C#(Λ) |φ(γ1, . . . , γm)|

∣∣∣∣∣ ∂

∂ log z(x)

m∏
i=1

w#
z (γi)

∣∣∣∣∣
z

∣∣∣∣∣ . (5.67)

Notice that the support of any tuple Γ contributing to (5.67) must intersect ∂inΛ and, by Line 2 of (5.39)
and (5.42), enclose the point x in the sense that x ∈ ∪γ∈X′ Int γ. Hence, (5.67) is bounded by

∞∑
m=1

∑
γ1∈C#

· · ·
∑

γm∈C#

1vol(Γ)≥dΛ∞ (x,∂inΛ) |φ(γ1, . . . , γm)|

∣∣∣∣∣ ∂

∂ log z(x)

m∏
i=1

w#
z (γi)

∣∣∣∣∣
z

∣∣∣∣∣ , (5.68)

where we define the volume of a tuple Γ as vol(Γ) :=
∑
i |γ̄i|. Since dΛ∞(x, ∂inΛ) → ∞ as Λ ⇑ Λ∞, by

the first step, (5.68) vanishes uniformly in the thermodynamic limit.
Finally, by the same argument as in the proof of Theorem 2.18, we conclude that (5.66) is (real)

analytic in z for z ≥ z0.
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Figure 4: The 3- and 4-staircase.

6 Examples

Verifying Assumption 1 boils down to computing and inspecting a set of local configurations in the model
that maximize the local density around a given particle.

Definition 6.1. Without loss of generality, a local configuration is a configuration of particles that
includes a particle at 0. The density of a local configuration is the local density (2.9) of the particle at
0: ρX(0). A maximal-density local configuration maximizes the local density at 0.

Below, we discuss two concrete models of interest: the 3- and 4-staircase model on Z2, and the disk
model on Z2 of radius 5/2. The argument in both cases consists in computing the local configurations
that maximize the local density, and extending them to close-packings on L∞. To prove that these are
ground states, we use the following lemma.

Lemma 6.2. If Λ∞ is a periodic graph, then

ρlocmax ≥ ρmax (6.1)

(see (2.3) and Definition 2.7).

Proof. Given X ∈ Ω(Λ∞) and Λ ⋐ Λ∞ with Λ ∩X ̸= ∅, we have, by Definition 2.7,

(ρlocmax)
−1 ≤ 1

|X ∩ Λ|
∑

x∈X∩Λ

ρX(x)−1 =
1

|X ∩ Λ|
∑

x∈X∩Λ

∑
λ∈VX (σx)

1

|{z ∈ X | λ ∈ VX(σz)}|

=
1

|X ∩ Λ|
∑
λ∈Λ

|{x ∈ X ∩ Λ | λ ∈ VX(σx)}|
|{z ∈ X | λ ∈ VX(σz)}|

≤ |Λ|
|X ∩ Λ| .

(6.2)

Therefore,
(ρlocmax)

−1 ≤ ρ−1
max(Λ) (6.3)

after which we pass to the limit Λ ⇑ Λ∞ (which exists because of the periodicity of Λ∞).

6.1 3- and 4-staircases

For n ≥ 3, the n-staircase model on Z2 is defined as follows: the support of the particles is

ωn :=
⋃

(x,y)∈Z2

x,y≥0, x+y≤n−1

(
x− 1

2
, x+ 1

2

]
×
(
x− 1

2
, x+ 1

2

]
. (6.4)

See Figure 4.
We will prove that the 3- and 4-staircase models satisfy Assumption 1, and, therefore, crystallize at

high fugacities. The arguments can be extended to the general case of n-staircases. In fact, the analog
of Lemma 6.3 is proved in Appendix B. Let us mention that in the general case, even and odd n behave
differently, which is why we discuss both examples n = 3, 4.

Lemma 6.3. If n = 4, then the density of any local configuration X is maximized if and only if

{±(2, 2),±(−4, 2),±(2,−4)} ⊆ X (6.5)

and if n = 3, the density is maximized if and only if

{±(2, 1),±(−3, 2),±(1,−3)} ⊆ X or {±(1, 2),±(−3, 1),±(2,−3)} ⊆ X (6.6)

see Figure 5. A configuration that does not include these has, for n = 3, 4,

ρ−1
X (0) ≥ ρlocmax

−1 + ϵn, ϵ3 =
1

3
, ϵ4 =

1

6
. (6.7)
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(a) (b)

Figure 5: Maximal-density local configurations in the 3- and 4-staircase models on Z2. The
Voronoi cell of the central (blue) particle consists of the support of the particle along with the
light green sites. Each light green site carries a weight of 1

3
.

1. If n = 3, there are exactly two maximal-density local configurations; the one shown in
Figure 5a and its reflection across the line y = x. The local density of the blue particle
is 1

7
.

2. If n = 4, there is exactly one maximal-density local configuration as shown in Figure 5b.
The local density of the blue particle is 1

12
.

Proof. First of all, we compute the local density for the configurations in Figure 5:

ρX(0) =

{
1
7

for n = 3
1
12

for n = 4
. (6.8)

We seek to maximize the local density, in other words, to minimize

ρ−1
X (0) :=

∑
λ∈VX (σ0)

1

|{z ∈ X | λ ∈ VX(σz)}|
(6.9)

(see (2.9)).
First, note that an uncovered site λ that neighbors σ0: dZ2(λ, σ0) = 1, can neighbor at most two

other particles. Therefore, such a site can be in the Voronoi cell of at most 3 particles, so its contribution
to ρ−1

X is ≥ 1
3
.

Now, because of the hard-core repulsion, for n = 3, one sees from Figure 6a that at least 3 of the
sites neighboring σ0 must be left uncovered. Since each site contributes at least 1

3
,

ρ−1
X (0) ≥ 7. (6.10)

For n = 4, by Figure 6b, at least 6 sites must be left uncovered. Since each site contributes at least 1
3
,

ρ−1
X (0) ≥ 12. (6.11)

Thus, by (6.8), the configurations (6.5)-(6.6) maximize the local density.
Let us now check that these are the only ones. Consider n = 3 first. (To follow this discussion, it

may be helpful to draw the particles on a sheet of graph paper as they are added.) Choose which of the
two light blue sites is covered. Without loss of generality, let us assume it is (2, 1). Notice that the gray
sites must be covered to maximize the local density. Having placed a particle at (2, 1), the gray site (3, 0)
can be covered in only one way. Having placed this latest particle, the light green site (2,−1) cannot be
covered, so the other two light green sites must be covered, which can only be done in one way. Once this
is done, the blue site (−1, 1) can no longer be covered, so the other blue site (−1, 2) must be covered,
which can only be done in one way. This then leaves a unique way of covering the remaining gray site
(0, 3). Thus, the maximal-density local configuration is unique, once we have chosen which light blue
site is to be covered.
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(a) (b)

Figure 6: For n = 3, at least one of the blue, one of the light green, and one of the light blue sites must be
left uncovered. For n = 4, at least two of the blue, two of the light green, and two of the light blue sites
must be left uncovered.

The argument for n = 4 is similar. (Again, it is recommended to follow along with graphing paper.)
Let us first try to place a particle in one of the light blue sites that is not (2, 2), say (3, 1). In this
case, the other two light blue sites (2, 2) and (1, 3) are left unoccupied. However, (2, 3) will also be left
unoccupied, so (2, 2) and (1, 3) will each only neighbor two particles, so their contribution to ρ−1 will
be at least 1

2
each, so the density will not be maximal. Therefore, the only light blue site that can

be occupied in the maximal density configuration is (2, 2). Having fixed (2, 2), there are two ways of
covering the gray site (4, 0), but one of these will leave the light blue site (3, 1) with only two neighbors,
and will thus not be the maximal density. There is then just one possibility left to cover the gray site
(4, 0). Having placed this particle, the light green site (3,−1) must be left uncovered. If we tried to cover
the light green site (1,−1), then (3,−1) would only neighbor two particles, and the density would not
be maximal. Therefore, the light green site (1,−1) must be left uncovered, and so the light green site
(2,−1) must be covered, which can only be done in one way. We repeat this argument to cover the gray
site at (0, 4) and the blue site (−1, 2). At this point, there is a unique way of covering the remaining
sites at (−1, 0) and (0,−1).

Thus, for n = 4, there is a unique way to maximize the local density.
Finally, let us estimate ϵ. For n = 3, the only way to deviate from the construction above is if one

had an extra empty site among the blue, light green, and light blue. This would increase ρ−1
X by ≥ 1

3
.

(In fact, there exists a local configuration with ρ−1
X = 7+ 1

3
, (obtained by placing a particle at (2, 2)) so

this is optimal.)
For n = 4, one can deviate from the construction above in two ways: by adding an extra site, which

would increase ρ−1
X by ≥ 1

3
, or by having one empty site neighbor 2 particles instead of 3, which would

increase ρ−1
X by ≥ 1

2
− 1

3
= 1

6
. This is presumably not an optimal estimate.

Using Lemma 6.3, we construct configurations that have a constant maximal local density by extend-
ing the local configurations in Figure 5. To do so, we apply Lemma 6.3 to a neighbor of 0 and repeat.

We now verify Assumption 1.

1. Z2 is a periodic graph with coordination number 4 and it is easy to check (and also well-known
[38]) that the boundary of any simply connected set is 2-connected.

2. By considering the possible translations of the packings in Lemma 6.3, we find that there are
6× 2 = 12 ground states for n = 3 and 10 ground states for n = 4.

3. If n = 4, the ground states are related by translations. If n = 3, they are related to each other by
translations and the reflection (x, y) 7→ (y, x). These preserve the shapes of the particles.

4. By Lemma 6.2, ρmax is smaller or equal to the local density of the configurations in Figure 5
(which is the maximal local density). Since those can be extended to a configuration on all of Λ∞,
ρmax = ρlocmax.

5. Without loss of generality, let us consider a #-correct particle at 0, which, by Lemma 6.3, must
then be in one of the local configurations (6.5)-(6.6). By Figure 5, no site at dΛ∞ = 1 from σ0 can
neighbor any other particle than those already appearing in the local configuration. In other words,
the neighbors of 0 are precisely those specified in the local configuration. Now, if any neighbor of 0
is correct, it must too be in a local configuration specified in Lemma 6.3, but it is straightforward
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to check that the only way this does not cause particles to overlap is if it is in the same local
configuration as is 0, so they must be #-correct for the same # ∈ G.

6. By Lemma 6.3, if a particle x is incorrect, then

ρ−1
X (0) ≥ ρlocmax

−1 + ϵn (6.12)

where ϵn was defined in (6.7). Thus, Item 6 holds with R1 = S1 = 0.

Thus, for this model, Theorems 2.16 and 2.18 hold for |z| ≥ z0. We can get an explicit value for z0
from Appendix C; see (C.1): for Λ∞ = Z2,

χ = 4, Id =
1

16
(6.13)

For n = 3,

|G| = 12, τ = 5 + log 2433024, µ =
1

3
, ς = 14 (6.14)

R0 = 2, R1 = S1 = 0, R2 = 3, reff = 3, S0 = 15 (6.15)

and since the set
{
λ ∈ Z2 | dZ2(λ, 0) ≤ S0

}
has area

2S2
0 + 2S0 − 1 (6.16)

the maximal number of particles in this set is bounded by

N ≤ 2S2
0 + 2S0 − 1

|σx|
=

479

6
≤ 80 (6.17)

ρmax =
1

7
, ρ0 ≤ 479

3355
(6.18)

and so

z0 ≥ exp

(
70455

2
(61 + log(2433024))

)
≈ exp(2.67× 106) (6.19)

For n = 4,

|G| = 10, τ = 5 + log
3520000

3
, µ =

1

3
, ς = 14 (6.20)

R0 = 2, R1 = S1 = 0, R2 = 4, reff = 4, S0 = 20 (6.21)

N ≤ 839

10
(6.22)

ρmax =
1

12
, ρ0 ≤ 2517

30209
(6.23)

so

z0 ≥ exp

(
1087524

5

(
61 + log

(
3520000

3

)))
≈ exp(1.63× 107). (6.24)

Obviously, these values of z0 are far from optimal, and could be improved with relatively little work.
Nevertheless, it is worth pointing out that our construction gives explicit values.

6.2 Disks of radius 5/2

The hard-disk model on Z2 of radius 5/2 has particles whose support is

ω :=
{
(x, y) ∈ R2 |

√
x2 + y2 < 5/2

}
. (6.25)

This model is the 12th nearest neighbor exclusion, and is equivalent to the hard octagon model; see Figure
7.

Lemma 6.4. The density of a local configuration is maximal if and only if one of the following holds
(see Figure 9):

1.
Π1Π2 {(2, 5), (−3, 4), (−5,−1), (−2,−5), (3,−4), (5, 1)} ⊂ X (6.26)

where Π1 is one of the following operators: the identity, or the horizontal, or vertical reflection and
Π2 is one of the following operators: the identity, or the rotation by one of π/2, π,−π/2.
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Figure 7: The hard-core model based on the disk of radius 2.5 is equivalent to that with octagons.

(a) (b) (c)

Figure 8: 8a: the 16 neighbors of the disk. 8b: the light green particle covers 3 neighbors of the blue particle,
and the two light blue sites must be left uncovered. In addition, the light blue sites cannot neighbor more
than 2 particles, so their weight is at least 1

2 . 8c: the light green particles cover 2 neighbors of the blue
particle, and the two light yellow sites must be left uncovered. In this case, the light yellow sites can neighbor
up to 3 particles, so the weight is at least 1

3 .

2.
Π {(0, 5), (−5, 1), (−3,−4), (3,−4), (5, 1)} ⊂ X (6.27)

where Π is one of the following operators: the identity, or the rotation by one of π/2, π,−π/2.

Proof. We will prove this lemma by first reducing it to a finite (and somewhat small) number of cases,
and will then leave it up to the reader to check each case.

First of all, the inverse of the local density of the configurations in Figure 9 is 23, that is, the 21 sites
covered by the particle at 0 plus 2. Thus, any maximal-density local configuration must leave empty
sites near the particle at 0 whose weight totals at most 2.

Let us now emphasize a few properties.

1. There are 16 sites that neighbor the particle at 0 (that is, that are at distance 1 from σ0). See
Figure 8a.

2. A particle can cover at most 3 of these neighboring sites, and each empty site among these neighbors
has a weight that is at least 1/3 (since it can neighbor at most three particles).

3. Whenever a particle covers at least one neighbor of σ0, there are at least 2 sites that must be left
empty, and these sites neighbor σ0 and either neighbor the particle or are at (±1,±1) from the
particle. If the particle covers 3 sites, then the two sites left uncovered have weight at least 1/2.
See Figure 8.

By Items 1 and 2, a close-packing configuration must involve at least 4 particles other than the one
at 0, as (16− 3× 3)/3 > 2.

Similarly, for a configuration with 4 particles other than the one at 0 to be a close-packing, it must
have at least 2 particles in a position in which they cover 3 neighbors, as (16 − 2 × 3 − 2 × 2)/3 = 2.
Now, the only positions in which a particle covers 3 neighbors are (0, 5), (0,−5), (5, 0) and (−5, 0). Let
us first attempt to place a particle at (0, 5) and one at (5, 0): this leaves a site uncovered whose weight
is 1, and at least two more with weight 1/2. However, adding an extra particle will generate yet another
empty site, so the density cannot be maximal. Let us now try to place a particle at (0, 5) and one at
(0,−5): by Item 3, this leaves four sites uncovered that each have a weight of at least 1/2, so their total
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weight is 2. Because any extra particle that is placed will leave extra sites uncovered, this cannot be a
maximal density configuration.

Thus, maximal density configurations have to have at least 5 particles in addition to the one at 0.
The argument above still holds that we cannot have 2 particles covering 3 sites, so there must be at most
1 particle that covers 3 sites, and the others cover at most 2 sites.

Let us first attempt the case in which 1 particle covers 3 sites (without loss of generality, assume it
is at (0, 5) and use the symmetry of the model), and the others cover at most 2. By Item 3, this particle
leaves two sites uncovered with a weight of at least 1/2 each. By Item 3 again, if there were 6 particles,
there would also be at least 6 empty sites, and if two of these have weight 1/2, the total weight of the
empty sites is at least 7/3 > 2, and so the density would not be maximal. Thus, when 1 particle covers 3
sites, we can only have 5 particles that neighbor σ0. By Item 3, the total number of empty sites is at least
5, two of which have a weight 1/2, so for the density to be maximal, the remaining 3 must have weight
1/3, and so must neighbor 3 particles. At this stage, there are not very many possibilities: we have 5
particles other than that at 0, one of which is at (0, 5), the other 4 must cover two neighbors of σ0, and
three of the empty sites that neighbor σ0 must all neighbor three particles each. It is straightforward to
check that there is only one way to do this, which is the one in Figure 9b.

Now, if no particle covers 3 sites, then all cover at most 2. Thus, if there are 5 particles other than
the one at 0, then there must be at least 6 empty sites that neighbor σ0. If there are 6 particles, then by
Item 3, there are at least 6 empty sites that neighbor σ0 as well. Therefore, in either case, there must be
exactly 6 empty sites (if there were more, then their total weight would be > 2 and the density would not
be maximal), whose weight is exactly 1/3 each. By symmetry, we can assume without loss of generality
that two of the sites {(0, 3), (1, 3), (−1, 3)} are covered (since there are 6 vacancies, at least one of the 4
possible rotations of {(0, 3), (1, 3), (−1, 3)} must have two sites covered). There are 5 ways to cover two
of those sites.

• First, consider placing particles at (3, 4) and (−3, 4). Following the prescription that every empty
site must neighbor 3 particles, there are few possibilities for what goes next. In fact, one easily
checks that there are no possible local configurations that follow the prescription.

• Next, consider placing particles at (2, 5) and (−3, 4). One then checks that there is only one way
to follow the prescription: the one in Figure 9a.

• Otherwise, one can place the particles at (−2, 5) and (3, 4), which is the symmetric of the previous
case.

• Next, one could place a particle at (1, 5). Following the prescription we find only one possibility: the
x↔ y symmetric version of Figure 9a (that is, a π/2 rotation followed by a horizontal reflection).

• Finally, one could place a particle at (−1, 5), which is symmetric to the previous point.

Using Lemma 6.4, we construct configurations that have a constant maximal local density by extend-
ing those in Figure 9. We first note that the configuration in Figure 9b cannot be extended: consider the
particle at (3,−4), if its local density is to be maximal, then it must be part of a local configuration of the
form of Figure 9 and its reflections and rotations, but because of the presence of the particle at (−3,−4),
it is clear that this cannot be the case. Thus, Figure 9b cannot lead to a close-packing configuration.

On the other hand, Figure 9a can be extended: each light yellow particle in the figure looks locally
like the blue one. The completion of the close-packing is unique. Indeed, consider the particle at (2, 5).
Because of the presence of the particle at (5, 1), it can only have a maximal density if it is surrounded
in the same way as the blue particle in Figure 9a, or its rotation by π. But since Figure 9a is symmetric
under rotations by π, this construction is unique. We can make the same argument for each of the
particles surrounding σ0, which makes the extension of the figure unique.

Therefore, taking into account the horizontal and vertical reflections, as well as the π/2 rotation,
there are 6 maximal density local configurations that can be extended to distinct close-packings. Taking
into account the translations of the particle at 0, this yields a total of 18 × 6 = 108 close-packing
configurations.

We now verify Assumption 1. Items 1, 4, and 5 are the same arguments as for the staircases; see
above.

2. By considering the possible symmetries of the packings in Lemma 6.4, we find that there are
18× 6 = 108 ground states.
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3. The ground states are related by translations, rotations, and reflections. These preserve the shapes
of the particles.

6. We take R1 = 0 and consider a particle x that is incorrect (and thus also 0-incorrect). By the
construction in the proof of Lemma 6.4, there are two ways the particle at x can be incorrect. The
first is that the local configuration around x is not like those in Figure 9, in which case

ρ−1
X (x) ≥ ρlocmax

−1 +
1

6
(6.28)

where 1
6

= 1
2
− 1

3
is the smallest possible defect contribution: instead of an empty site being

surrounded by 3 particles, it is surrounded by 2. The second is that the local configuration around
x is Like those in Figure 9b, in which case, as was argued above, the particle at x+ (3,−4) cannot
have a maximal density, so that particle has a density that is

ρ−1
X (x+ (3,−4)) ≥ ρlocmax

−1 +
1

6
. (6.29)

Thus, Item 6 holds with R1 = 0, S1 = dZ2(0, (3,−4)) = 7 and ϵ = 1
6
.

Similarly to the staircases, we can, in principle, compute z0 for this model. The details are omitted
here, as the computation is very similar to the staircases.

(a) (b)

Figure 9: Two possible maximal-density local configurations for the hard-disk model. The
Voronoi cell of the central (blue) particle consists of the support of the particle along with
the light blue and light yellow sites. The light yellow sites have a weight 1

3
and the light blue

sites 1
2
. Thus, since the particle itself covers 21 sites, the local density in these configurations

is 1
23
.
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A Proof of Proposition 3.10

The proof of Proposition 3.10 requires several preliminary results. Although their statements are intu-
itively obvious, the proofs are quite long and tedious. Nevertheless, we present them in full detail in this
appendix.

First, we prove that any particle in Xγ has the same neighbors in any configuration having γ as a
GFc as in the canonical configuration ξγ .

Lemma A.1. If a configuration X has γ as a GFc and x ∈ Xγ , then NX(x) = Nξγ (x).

Proof. The GFc γ is fully surrounded by R2-correct particles, in the sense that every particle z ∈ X \Xγ
with dΛ∞(VX(σz), γ̄) ≤ 1 is (#,R2)-correct in X, where # ∈ G is given by the labeling function µγ
applied to the connected component of γ̄c to which z belongs. We divide into two cases.

1. x lies on the surface of the GFc: dΛ∞(VX(x), γ̄c) = 1. Since γ is fully surrounded by R2-correct
particles, by Definition 2.10, x is #-correct in X for some #. Thus, its neighbors in X coincide
with its #-neighbors, which are either located in Xγ or immediately surrounding γ. Either way,
they are contained in ξγ . Moreover, all the other particles in L#∩ξγ are strictly farther from σx, so
none can neighbor x in ξγ . Finally, notice that the particles in ξγ from holes with a different label
than # cannot neighbor x in ξγ , since differently labeled holes are well-separated by construction.

2. x lies deep inside the GFc: dΛ∞(VX(x), γ̄c) > 1. Since each point on the interior boundary of γ̄ is
contained in VX(y) for some y ∈ Xγ , each such point is strictly closer to σy than to σx. Hence, a
particle outside of γ̄ cannot possibly be a neighbor of x.

Second, we prove that any particle in ξγ \Xγ has the same neighbors in ξγ and L#, where # is the
label that µγ assigns to the hole containing the particle.

Lemma A.2. For each x ∈ ξγ \Xγ , Nξγ (x) = NL#(x), where # is the label that µγ assigns to the hole
containing x.

Proof. We divide into two cases.

1. x lies on the surface of the hole: dΛ∞(VL#(x), γ̄) ≤ 1. Consider any configuration X containing γ
as a GFc. As a particle immediately surrounding γ, x is (#,R2)-correct in X, so, in particular,
the neighbors of x in X coincide with its #-neighbors, which lie either in Xγ or inside a hole of γ
with label #, hence all contained in ξγ . Again, the particles in holes with a different label than #
cannot neighbor x in ξγ .

2. x lies deep inside the hole: dΛ∞(VL#(x), γ̄) > 1. Consider the neighbors of x in ξγ . By the
assumption on x, none is in Xγ , so all have to be from within the hole. However, the latter is filled
with particles in L#.

Third, we prove that all the particles in ξγ \Xγ are R2-correct in ξγ .

Lemma A.3. Every particle x ∈ ξγ \Xγ is R2-correct in ξγ .

Proof. By Lemma A.2, every particle x ∈ ξγ \Xγ is correct in ξγ , so we only need to check that all these
particles have the right R2-neighbors. Let x ∈ ξγ \Xγ be from a hole of γ with label #. We divide into
two cases.

1. x lies on the surface of the hole: dΛ∞(VL#(x), γ̄) ≤ 1. Consider any configuration X containing γ
as a GFc. As a particle immediately surrounding γ, x is (#,R2)-correct in X, so its R2-neighbors
in X coincide with its R2-neighbors in L#, which are located either in Xγ or in the holes of γ with
label #. Notice that all of these particles are in ξγ . Moreover, since they are all #-correct in X, by
Lemmas A.1 and A.2, their Voronoi cells in X coincide with their Voronoi cells in ξγ , so they are
all R2-neighbors of x in ξγ . By the same argument as before, x has no additional R2-neighbors in
ξγ .

2. x lies deep inside the hole: dΛ∞(VL#(x), γ̄) > 1. Consider an R2-neighbor y of x in ξγ . It is located
either in a hole of γ labeled # or in Xγ . In the former case, y has the same Voronoi cell in ξγ
and L# by Lemma A.2. In the latter case, y is an R2-neighbor of a particle in the same hole as x
which surrounds γ. Using Lemma A.1, we see that, again, y has the same Voronoi cell in ξγ and
L#. Therefore, y is an R2-neighbor of x in L#.

Conversely, let z be an R2-neighbor of x in L#. It is located either in a hole of γ labeled # or in
γ̄. In the former case, certainly z ∈ ξγ , and z is an R2-neighbor of x in ξγ by Lemma A.2. In the
latter case, the same consideration as before shows that z ∈ Xγ and has the same Voronoi cell in
ξγ and L#, hence again an R2-neighbor of x in ξγ .
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Fourth, we prove that all the particles in Xγ remain R2-incorrect in ξγ .

Lemma A.4. Every particle x ∈ Xγ is R2-incorrect in ξγ .

Proof. By contradiction, suppose that x ∈ Xγ is (#,R2)-correct in ξγ . Consider a configuration X
containing γ as a GFc. By Lemma A.1, x has the same neighbors in ξγ and X, hence #-correct in
X. We will take one step further and show that x is (#,R2)-correct in X, which will contradict the
assumption that γ is a GFc of X.

First, suppose that y is an R2-neighbor of x in X. There are three cases.

1. y ∈ Xγ . By Lemma A.1, y has the same Voronoi cell in X and ξγ , hence an R2-neighbor of x in ξγ .
Since x is (#,R2)-correct in ξγ , this implies that y is #-correct in ξγ . Again, by Lemma A.1, y is
also #-correct in X. In particular, y has the same Voronoi cell in X and L#, hence an R2-neighbor
of x in L#.

2. y ∈ Xγ′ , where γ
′ is another GFc of X. By construction, γ and γ′ are disconnected. Hence, joining

VX(x) and VX(y) by a path in Λ∞ with minimum length, the path necessarily contains a point that
does not lie in the support of any GFc of X. This point must then be contained in the Voronoi cell of
a (#′,R2)-correct particle z in X, so that dΛ∞(VX(x), VX(z)) ≤ R2 and dΛ∞(VX(y), VX(z)) ≤ R2.
Hence, x and y are both #′-correct in X, which forces #′ = # because x is also #-correct.

3. y ̸∈ Xγ′ for any GFc γ′ of X. Then, y must be R2-correct in X. Since it has the #-correct
R2-neighbor x, y must be (#,R2)-correct.

Conversely, suppose that y is an R2-neighbor of x in L#. Since x is (#,R2)-correct in ξγ , this means
that y ∈ ξγ and is #-correct in ξγ . There are two cases.

1. y ∈ Xγ . Since γ is a GFc of X, y ∈ X. By Lemma A.1, the Voronoi cells of x and of y are the
same in X and ξγ , but by their #-correctness in ξγ , they have the same Voronoi cells in ξγ and L#.
Since x and y are R2-neighbor in L#, so must they be in X.

2. y ∈ ξγ\Xγ . By Lemma A.3, y has the same Voronoi cell in L# and ξγ . If dΛ∞(VL#(y), VL#(x)) ≤ 1,
then y immediately surrounds γ, so necessarily y ∈ X. Else, joining VL#(y) and VL#(x) by a path
in Λ∞ of minimum length (≤ R2), the path contains a point in the exterior boundary of γ̄ (see
Definition 2.2). This point is then contained in the Voronoi cell of an (#,R2)-correct particle
z in X. Moreover, dΛ∞(VL#(z), VL#(y)) ≤ R2, so y is an R2-neighbor of z in L#. Since z is
(#,R2)-correct in X, this implies that y ∈ X.

Having verified the definition of (#,R2)-correctness, we conclude that x is (#,R2)-correct in X.

Proof of Proposition 3.10. The proposition follows immediately from Lemmas A.3 and A.4.

B Analysis of the n-staircase model

In this appendix, we prove the following generalization of Lemma 6.3 to general n.

Lemma B.1. If n is even, then the density of any local configuration X is maximized if and only if{
±(n

2
, n
2
),±(−n, n

2
),±(n

2
,−n)

}
⊆ X, (B.1)

and if n is odd, the density is maximized if and only if{
±(n+1

2
, n−1

2
),±(−n, n+1

2
),±(n−1

2
,−n)

}
⊆ X or

{
±(n−1

2
, n+1

2
),±(−n, n−1

2
),±(n+1

2
,−n)

}
⊆ X.
(B.2)

Our strategy is to study the contribution to the inverse of the local density from three upper triangular
regions surrounding the particle at 0. Specifically, let

UN(a,b) :=
{
(x, y) ∈ Z2 | x ≤ a, y ≤ b, x+ y ≥ a+ b−N + 1

}
. (B.3)

We will study the contribution to the local density (2.9) from

Un−1
(n−1,n−1), U

n−1
(−1,n−1), and U

n−1
(n−1,−1), (B.4)

which are, respectively, the upper triangular regions to the northeast, northwest, and southeast of the
staircase at 0; see Figure 10.
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Figure 10: We study the contribution to the local density at the violet particle from the three upper triangular
regions around it, which are shown in light orange.

Proof of Lemma B.1. We seek to minimize the quantity

ρX(0)−1 =
∑

λ∈VX (σ0)

1

|{z ∈ X | λ ∈ VX(σz)}|
(B.5)

over all configurations X ∈ Ω(Λ∞) with X ∋ 0. As discussed, we focus on the contribution to the RHS of
(B.5) from the three upper triangular regions of (B.4). Notice that each of these regions intersects at most
one n-staircase (which is clear by inspecting Figure 10). Depending on the nature of the intersection,
we further restrict to the contribution to (B.5) from particular upper triangular subregions of empty
sites. The benefit of these subregions is that each contributes at least one-third of its volume to (B.5);
see Lemma B.3 below. Our choice of these subregions is formally described in Table 1 and illustrated in
Figure 11. Informally:

1. Consider first Un−1
(n−1,n−1), the upper triangular region to the northeast of the staircase at 0. Notice

that, if this region intersects another staircase, then the bottom left corner of that staircase must
lie inside this region. If this intersection does occur:

(a) If the bottom left corner of the staircase is right adjacent to the staircase at 0, then the staircase
cuts the upper triangular region Un−1

(n−1,n−1) into two smaller upper triangular regions (one of

which might be empty) consisting entirely of empty sites. We select these two regions; see
Figure 11a.

(b) Else, we select the largest upper triangular subregion of Un−1
(n−1,n−1) lying to the left of the

intersecting staircase, as well as the largest upper triangular subregion of Un−1
(n−1,n−1) that lies

strictly below the first; see Figure 11b.

Finally, if no staircase intersects Un−1
(n−1,n−1), we select its top left and bottom right corners, as well

as the largest upper triangular region sandwiched between them; see Figure 11c.

2. Consider next Un−1
(−1,n−1), the upper triangular region to the northwest of the staircase at 0. Notice

that, if this region intersects another staircase, then the bottom right corner of that staircase must
lie inside this region. If this intersection does occur:

(a) If the bottom right corner of the staircase is right adjacent to the staircase at 0, then the
staircase cuts the upper triangular region Un−1

(−1,n−1) into two smaller upper triangular regions

(one of which might be empty) consisting entirely of empty sites. We select these two regions;
see Figure 11d.

(b) Else, we select the largest upper triangular subregion of Un−1
(−1,n−1) lying to the right of the

intersecting staircase, as well as the largest upper triangular subregion of Un−1
(−1,n−1) that lies

strictly below the first; see Figure 11e.

Finally, if no staircase intersects Un−1
(−1,n−1), we select its top right and bottom right corners, as well

as the largest upper triangular region sandwiched between them; see Figure 11f.
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3. The choice of the subregions for Un−1
(n−1,−1) is completely analogous by the x↔ y reflection symmetry.

Region Case Subregions

Un−1
(n−1,n−1)

Intersects a particle located at (a, b) with
a+ b = n

Ua−1
(a−1,n−1) and U b−1

(n−1,b−1)

Intersects a particle located at (a, b) with
a+ b ≥ n+ 1

Ua−1
(a−1,n−1) and Un−a

(n−1,n−a)

Does not intersect any particle
{(1, n− 1)}, {(n− 1, 1)}, and

Un−3
(n−2,n−2)

Un−1
(−1,n−1)

Intersects a particle located at (a, b) with
a = −n

Un−b−1
(−1,n−1) and U b−1

(−1,b−1)

Intersects a particle located at (a, b) with
a ≤ −n− 1

U−a−b−1
(−1,n−1) and Ua+b+n

(−1,a+b+n)

Does not intersect any particle
{(−1, 1)}, {(−1, n− 1)}, and

Un−3
(−1,n−2)

Un−1
(n−1,−1) Analogous to Un−1

(−1,n−1) by the x ↔ y reflection symmetry

Table 1: We further restrict our attention to the contribution to the local density from particular upper
triangular subregions around the particle, which consist entirely of empty sites.

Comparing the sums of the volumes of the subregions in the last column of Table 1, we bound the
contribution from each of the original regions (B.4) by{

1
12
n(n− 2) n even

1
12
(n− 1)2 n odd

. (B.6)

Table 2 lists the necessary conditions for (B.6) to be attained.

Region Necessary condition for minimum contribution

Un−1
(n−1,n−1)

n even: (n2 ,
n
2 ) ∈ X

n odd: (n+1
2 , n−1

2 ) ∈ X or (n−1
2 , n+1

2 ) ∈ X

Un−1
(−1,n−1)

n even: (−n, n
2 ) ∈ X

n odd: (−n, n+1
2 ) ∈ X or (−n, n−1

2 ) ∈ X

Un−1
(−1,n−1)

n even: (n2 ,−n) ∈ X
n odd: (n−1

2 ,−n) ∈ X or (n+1
2 ,−n) ∈ X

Table 2: Necessary conditions for optimizing the contribution to the local density from each upper triangular
region around the particle.

Taking into account the volume of the particle σ0 itself, we obtain the following lower bound of (B.5):

1

2
n(n+ 1) +

{
1
4
n(n− 2) n even

1
4
(n− 1)2 n odd

, (B.7)

which is attained only if

1. all the necessary conditions in Table 2 are satisfied, and

2. no site outside of σ0 ⊔ Un−1
(n−1,n−1) ⊔ U

n−1
(−1,n−1) ⊔ U

n−1
(n−1,−1) contributes to (B.5).
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(a) U4
(4,4) intersects a particle lo-

cated at (2, 3).
(b) U4

(4,4) intersects a particle lo-
cated at (3, 4).

(c) U4
(4,4) does not intersect any

particle.

(d) U4
(−1,4) intersects a particle lo-

cated at (−5, 2).
(e) U4

(−1,4) intersects a particle lo-
cated at (−8, 4).

(f) U4
(−1,4) does not intersect any

particle.

Figure 11: Illustrations of the cases described in Table 1. The particle at 0 is in violet. The particle that
intersects one of the upper triangular regions around the particle at 0 is in orange. Light orange represents
an empty site within the upper triangular region which we neglect. The subregions that we select are in
light violet.

It is easy to see that the local configurations in the statement of Lemma B.1 are the only local configu-
rations in which both of the above conditions are satisfied. Moreover, in these local configurations, the
bound (B.7) is indeed attained.

It remains to prove that each upper triangular subregion we selected in Table 1 contributes at least
one-third of its volume to (B.5). To this end, we will exploit the following triangular symmetry. Very
soon, we will partition each upper triangular subregion into orbits under the symmetry, from which the
factor of 1/3 will appear naturally.

Lemma B.2 (triangular symmetry). Let (a, b) ∈ Z2 and N ∈ N. Restricted to x ∈ UN(a,b), the functions

∆1(x, y) := a+ 1− x, ∆2(x, y) := b+ 1− y, and ∆3(x, y) := (x+ y)− (a+ b−N), (B.8)

give the (graph) distance from x to the sets of points on ∂exUN(a,b),

P1(U
N
(a,b)) :=

{
(a+ 1, y) ∈ Z2 | b−N + 1 ≤ y ≤ b

}
,

P2(U
N
(a,b)) :=

{
(x, b+ 1) ∈ Z2 | a−N + 1 ≤ x ≤ a

}
,

P3(U
N
(a,b)) :=

{
(x, a+ b−N − x) ∈ Z2 | a−N ≤ x ≤ a

}
,

(B.9)

respectively; see Figure 12. There exists a unique order-3 automorphism T of Z2 that fixes UN(a,b) and
permutes the functions ∆i by ∆i ◦ T = ∆i+1, where the subscripts are understood modulo 3.

Proof. Solving the system of equations ∆i ◦ T = ∆i+1, i = 1, 2, 3, yields the affine transformation

T (x, y) := (y + a− b,−x− y + a+ 2b−N + 1), (B.10)

which satisfies the remaining properties by direct computation.

We are now ready to prove that each subregion we selected in Table 1 contributes at least 1/3 of its
volume to the local density.
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Figure 12: The upper triangular region U4
(0,0) is drawn in green. The point sets P1(U

4
(0,0)), P2(U

4
(0,0)), and

P3(U
4
(0,0)) are respectively to the east (light green), north (blue), and southwest (light blue) of U4

(0,0).

Lemma B.3 (contribution from a subregion). Consider an upper triangular region UN(a,b). Let (i, j, k)
be any permutation of (1, 2, 3). If a configuration X ∈ Ω(Λ∞) with X ∋ 0 is such that

1. UN(a,b) consists only of empty sites,

2. Pi(U
N
(a,b)) is fully covered by the n-staircase located at 0, and

3. Pj(U
N
(a,b)), Pk(U

N
(a,b)) each intersects no more than one n-staircase,

then ∑
e∈UN

(a,b)
∩VX (σ0)

1

|{z ∈ X | e ∈ VX(σz)}|
≥ 1

3

∣∣∣UN(a,b)∣∣∣ . (B.11)

Notice that, by inspecting Figure 11, each subregion we selected in Table 1 satisfies these conditions.

Proof. Let T be the automorphism associated to UN(a,b) by Lemma B.2. Let O ∈ UN(a,b)/ ⟨T ⟩ be an orbit
and x ∈ O. Consider the multiset

M := {∆1(x),∆2(x),∆3(x)} =
{
∆i(x),∆i(Tx),∆i(T

2x)
}
, (B.12)

which is independent of the choice of x. If O is a singleton, then (B.12) implies that x is equidistant to
Pℓ(U

N
(a,b)), ℓ = 1, 2, 3, so x contributes at least 1/3 to the LHS of (B.11). Otherwise, |O| = 3, and there

are three cases:

1. M contains three equal numbers. Then, each point in O contributes at least 1/3 to the LHS of
(B.11).

2. M has a unique minimum ∆i(T
ℓx). Then, T ℓx contributes 1 to the LHS of (B.11).

3. M has exactly two minima: ∆i(T
ℓx) and ∆i(T

ℓ+1x). Then, T ℓx and T ℓ+1x each contribute at
least 1/2 to the LHS of (B.11).

C Summary of key estimates

Here, we recapitulate the important constants and estimates in our analysis of the high-density behavior
of hard-core lattice particle models satisfying Assumption 1.

In the proof of Proposition 5.6, we show that the weights of the GFc’s that we construct in Section
3.2 satisfy the Peierls condition ∣∣∣w#

z (γ)
∣∣∣ ≤ e−τ |γ̄|, (5.25)

where the Peierls constant τ satisfies

∞∑
n=1

e−(τ−χ)n (2χ2 |G|χ
)n ≤ 1 (5.13)
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to ensure the convergence of the cluster expansion on the GFc model, and

∞∑
s=1

e−(τ−χ−1)s (2χ2 |G|χ
)s ≤ η

3Idd!
(5.48)

which ultimately gives us control on the one-point correlation functions as required by Theorem 2.16. In
(5.13) and (5.48), the maximal coordination number χ of the underlying graph Λ∞ and the number of
ground states |G| arise out of the need to control the entropy of the GFc’s. The constant Id appears in
the d-dimensional isoperimetric inequality

|Int γ| ≤ Id |γ̄|d . (5.45)

Finally, η, which controls the following derivatives of the partition functions:∣∣∣∣ ∂

∂ log z(xi)
log

Ξ#
z (Λ)

z#(Λ)

∣∣∣∣ ≤ η1xi∈Λ, (5.26)

satisfies simply that
η ≤ 1. (5.43)

The proof of the Peierls bound for the weights of the GFc’s requires control of the ratio of two
partition functions with possibly different boundary conditions. In the end, we prove that, up to certain
powers of the fugacity z, such ratios are essentially boundary terms:∣∣∣∣∣Ξ#′

z (Λ)

Ξ#
z (Λ)

∣∣∣∣∣ ≤ |z|
∣∣∣Λ∩L#′ ∣∣∣

|z||Λ∩L#| e
ς|∂inΛ|, (5.27)

where the coefficient ς satisfies
ς ≥ 2c (5.31)

and
ς ≥ 3n(e

c
n + 1) + 2 + 2µ−1. (5.61)

Finally, the constants n and c appear out of the need to compute correlation functions by differentiating
the partition functions. Recall from the statement of Proposition 5.6 that we assume that the site-wise
fugacity z(x) is equal to z for all but n sites, on which it is allowed to deviate only slightly from z:
e−

c
n |z| ≤ |z| ≤ e

c
n |z|. Note that c can be taken to be arbitrarily small but must remain positive.

All the above computations take place at high fugacities:

µ(ρmax − ρ0) log z − 2c− ςχ ≥ τ, (5.36)

where µ, defined in Lemma 3.6, denotes the minimum fractional weight assigned to a point in the reference
Voronoi cells of a ground state, and ρmax, ρ0 are the only places where the formulation of the Peierls
condition in terms of the effective volume enters; see Lemma 4.4.

We note that, as made evident by (5.61) and (5.36), our analysis requires progressively higher fugaci-
ties to control higher-order correlation functions. Theorem 2.16, however, requires only that we consider
the case n = 1.

In summary, we prove analyticity in the domain (see (5.36))

|z| > z0 := exp

(
τ + ςχ

µ(ρmax − ρ0)

)
(C.1)

where ρmax is the maximum density (2.3); and (see (4.13), (4.14), (4.2))

ρ0 :=
1

ρ−1
max + ϵ

N
, N := max

X∈Ω(Λ∞)
|{x ∈ X | dΛ∞(x, 0) ≤ S0}| , S0 := S1 +R2 + 4reff , (C.2)

in which ϵ, R1 and S1 appear in Item 6 of Assumption 1, R2 satisfies (3.13), (3.14), and (4.1):

R2 ≥ max {R0,R1} , R2 > max {dΛ∞(x, y) | x, y ∈ Λ, ωx ∩ ωy ̸= ∅} , (C.3)

and reff appears in Lemma 3.3; µ is defined in Lemma 3.6: (see also (3.2) and (3.3))

µ = min
λ∈VL# (σx)

1∣∣∣{z ∈ L# | λ ∈ σ#
z

}∣∣∣ ; (C.4)
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χ is the maximal coordination number of Λ∞ (the number of neighbors of each site); τ satisfies (5.13)
and (5.48):

τ = χ+ 1 + log

(
2χ2 |G|χ

(
1 +

1

3Idd!

))
(C.5)

where we used (5.43), |G| is the number of ground states, and (see (5.45))

Id := sup
Λ⋐Λ∞, connected

|Λ|
|∂exΛ|d

(C.6)

where ∂exΛ is the exterior boundary of Λ (see Definition 2.2); and (see (5.61))

ς = 8 + 2µ−1. (C.7)
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