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In this paper, we present evidence for a liquid-like phase in systems of many interacting Bosons
at intermediate densities. The interacting Bose gas has been studied extensively in the low and
high density regimes, in which interactions do not play a physically significant role, and the system
behaves similarly to the ideal quantum gas. Instead, we will turn our attention to the intermediate
density regime, and report evidence that the system enters a strongly correlated phase where its
behavior is markedly different from that of the ideal quantum gas. To do so, we use the Simplified
approach to the Bose gas, which was introduced by Lieb in 1963 and recently found to provide
very accurate predictions for many-Boson systems at all densities. Using this tool, we will compute
predictions for the radial distribution function, structure factor, condensate fraction and momentum
distribution, and show that they are consistent with liquid-type behavior.

I. INTRODUCTION

Since the early days of quantum mechanics, the Bose
gas has been the subject of much interest, both from the
theoretical [1–17] and the experimental [10, 13, 14, 18–
25] communities. Despite its relative simplicity, it ex-
hibits a rich phenomenology: it forms a Bose-Einstein
condensate at low temperatures [1, 2, 20, 21], and, with
the advent of cold-atom physics [26–29] and the possibil-
ity of studying Bose gasses in the lab with ever increas-
ing precision, there have been many successes in probing
its phase diagram and understanding its exotic quantum
phase transitions [10, 20, 21, 23, 30].

Whereas much attention has been payed to the be-
havior of Bose gasses at very low and high densities,
where the system behaves similarly to the ideal quan-
tum gas, in this paper, we shall turn our attention to the
intermediate density regime, for which we have found
evidence of behavior that differs significantly from the
ideal quantum gas, and bears resemblance to a liquid-
type phase. Until recently, theoretical tools, such as Bo-
golyubov theory [4, 8, 11, 17, 31, 32] or renormalization
group techniques [33–35], developed to understand the
behavior of the Bose gas have been based on perturb-
ing non-interacting systems. As such, these methods are
ill-suited to understanding the strongly coupled behavior
emerging in the intermediate density regime.

Instead, we will use the “Simplified Approach to the
Bose gas”, which was introduced in a paper by Lieb from
1963 [36–38], and was recently found to yield very accu-
rate predictions at all densities [39–42]. This has allowed
us to probe the behavior of Bose gasses in a range of den-
sities that had, until now, only been accessible to Quan-
tumMonte-Carlo simulations. In doing so, we have found
numerical evidence for a liquid-like phase in a range of
densities that is large enough for the interactions to be-
come important, but not so large as to break into the
mean-field regime. This is, as far as we know, a new pre-
diction, which shows that there is non-trivial behavior
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in interacting Bose gasses at intermediate densities, and
may be investigated experimentally.
More specifically, we have studied predictions for the

radial distribution function (i.e. the spherical average
of the two-point correlation function), the structure fac-
tor (i.e. the Fourier transform of the radial distribution
function), the condensate fraction, and the momentum
distribution (i.e. the average number of particles in the
state eikx). We have found that the radial distribution
function is monotone increasing for small densities, and
that, beyond a first critical density ρ∗, a local maximum
emerges, see Figures 1 and 2. There is thus a length
scale at which it is more likely to find pairs of particles,
which is consistent with liquid behavior. Conversely, the
structure factor is monotone at very high densities, and,
lowering the density, we find that for densities smaller
than a second critical density ρ∗∗ > ρ∗, it develops a
local maximum, see Figures 3 and 4. These critical den-
sities also appear rather close to inflection points of the
condensate fraction as a function of density, see Figure-
5. We have also investigated the momentum distribution,
and found that it increases sharply near ρ∗, see Figure 6.
This is clear evidence for non-trivial behavior in the range
of densities ρ∗ < ρ < ρ∗∗, which shares some similarities
to classical liquids [43].
These results complete the phase diagram of the Bose

gas. At low densities, the interactions between particles
are weak, and the system behaves similarly to the ideal
quantum gas [4–6, 8, 11, 15, 17, 44–54]. At high den-
sities, the particles are so close that the effect of neigh-
boring particles is approximately a uniform background
field: this is a mean-field phase [32, 55–57], and behaves
formally as an ideal quantum gas in a field. The results
in this paper show that, in between these two regimes,
there is evidence for a new kind behavior. It is worth
pointing out that, in the case of a gas with hard-core
repulsion, the mean-field regime does not exist, and the
intermediate density regime considered here corresponds
to the high density phase of the hard-core Bose gas.

The model we will consider throughout this paper is
a systems of many Bosons interacting via a spherically
symmetric, repulsive, pair potential, whose Hamiltonian
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is

H = −1

2

N∑
i=1

∆i +
∑

1⩽i<j⩽N

v(|xi − xj |) (1)

which we will consider in the thermodynamic limit
N,V → ∞ with N/V = ρ fixed (V is the volume). The
Simplified approach consists in reducing the computation
of thermodynamic observables of this system to solving
a non-linear, non-local effective equation (2) on R3, by
making an (as of yet uncontrolled) approximation, see-
[39–42] for more details. Doing so comes at a cost, and
there are several important limitations to the method.
In particular, the Simplified approach seems only to be
useful to compute the ground state of Bose gasses, which
means that we can probe the extremely low-temperature
regime of the phase diagram, but not higher tempera-
tures. In addition, the high-density predictions of the
Simplified approach have been shown [39–41] to be accu-
rate only in the case of purely repulsive interactions of
positive type, that is, to potentials v that are ⩾ 0 and
whose Fourier transform is also ⩾ 0. Such potentials are
not rare: given any non-negative function f , the potential
v(x) = f ∗ f(x) ≡

∫
dy f(x− y)f(y) satisfies the two re-

quirements. Finally, we will assume that the interaction
is spherically symmetric, as that greatly simplifies the
numerical solution of the effective equation. Under these
restrictions, the Simplified approach has been found to
be extremely accurate [41] when compared to analytical
predictions and to Quantum Monte Carlo simulations.

The Simplified approach actually provides a family of
equations with varying levels of approximation. In most
of this paper we will use the “Big equation” [41], which
provides the best compromise between computational ef-
ficiency and accuracy. It is defined as

−∆u(x) = (1− u(x))
(
v(x)− 2ρu ∗ S(x)+

+ρ2u ∗ u ∗ S(x)− 2u ∗ (u(u ∗ S))(x)
) (2)

in which ∗ is the convolution operator, ρ is the density,
v is the potential, and

S(x) := (1− u(x))v(x). (3)

The unknown u is related to the two-point of correlation
function of the ground-state wavefunction ψ0, viewed as
a probability distribution:

u(x1−x2) = 1− lim
N,V→∞

V 2
∫
dx3 · · · dxN ψ0(x1, · · · ,xN )∫

dy1 · · · dyN ψ0(y1, · · · ,yN )
(4)

in terms of which we can compute the ground state en-
ergy per particle:

e =
ρ

2

∫
dx (1− u(x))v(x). (5)

The computation of the momentum distribution will
actually be done in a different approximation, as the

Big equation leads to significant numerical difficulties
for that observable. Instead, we will consider another of
the equations of the Simplified approach: the “Medium
equation” [41], which is less accurate, but much easier to
solve numerically. It is obtained from the Big equation
by neglecting the 2u ∗ (u(u ∗ S)) term, and dropping the
u(x) in the (1− u(x)) prefactor except in front of v:

−∆u(x) = (1−u(x))v(x)−2ρu∗S(x)+ρ2u∗u∗S(x). (6)

We will also use the less accurate Medium equation as
a check on the predictions of the Big equation: qual-
itative phenomena that are visible in both approaches
have a good chance of holding for the exact, unapprox-
imated many-body Bose gas as well. Conversely, when
the quantitative predictions disagree, we will take that
as an indication that the quantitative predictions are not
to be taken too seriously.
Throughout this paper, we will use the interaction po-

tential

v(x) = 8e−|x| (7)

which is of positive type (its Fourier transform is non-
negative). There is no particular reason why this poten-
tial is used rather than another spherically symmetric,
positive type function, and it is chosen in this way merely
for the sake of definiteness.

The rest of the paper is structured as follows. In
Section II, we present the main results, and discuss the
prediction of the Simplified approach for the radial dis-
tribution function, structure factor, condensate fraction
and momentum distribution, and find that these con-
sistently show non-trivial behavior for intermediate den-
sities, which is consistent with a liquid-type phase. In
Appendix A, we present the corresponding predictions
for the Medium equation. In Appendix B, we discuss
the numerical computation of the solution of the Big
and Medium equations, which were carried out using the
simplesolv [58] tool developed for this purpose, and re-
leased under a free software license.

II. NUMERICAL ANALYSIS OF THE
INTERMEDIATE DENSITY PHASE

A. Radial distribution

We define the radial distribution function as the spher-
ical average of the normalized two-point correlation func-
tion:

g(r) :=
1

ρ24πr2

∫
dy δ(|y| − r)

N∑
i,j=1

⟨δ(y − xi)δ(xj)⟩ .

(8)
Normalized in this way, g → 1 as r → ∞. To compute g,
we use the fact that, denoting the energy of the system
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FIG. 1. The prediction of the Big equation for the radial
distribution function as a function of rρ1/3, for various values
of ρ. Note that ρ−1/3 is the length scale of the average inter-
particle distance. As ρ increases the radial distribution func-
tion develops a peak above 1 that is not present for smaller
densities. As the density is increased further, the height of
the peak goes down. A similar plot for the Medium equation
is in Figure 7.

by E0,

1

2

N∑
i,j=1

⟨δ(y − xi)δ(xj)⟩ =
δE0

δv(y)
(9)

and use the prediction of the Big equation for the energy
of the Bose gas to compute E0.

The prediction for the radial distribution function for
the Big equation is shown in Figure 1. At low densi-
ties, the maximum of g is 1, that is, it is attained as
r → ∞. As the density is increased, there is a transition
to a regime in which the maximum is greater than 1, and
is attained at a finite value r∗. In such cases, the length
scale r∗ is a preferred inter-particle spacing, which shows
that there is short-range order in the system. This maxi-
mum quickly dissipates as r increases, thus showing that
there is no long-range order, which is consistent with the
behavior of a liquid phase.

The transition is even clearer in Figure 2, which shows
the prediction of the maximum of the radial distribution
function as a function of the density. We see a clear tran-
sition from a low density regime in which the maximum
g(r∗) of g is 1 to a high-density regime in which g(r∗) > 1.
This occurs at a density ρ∗ ≈ 0.9×10−3, though the pre-
cise value of ρ∗ should not be taken too seriously. Indeed,
as is seen in Figure 8 in Appendix A, the qualitative be-
havior of the Medium equation is similar to that of the
Big equation, but the value of ρ∗ is off by a factor of
≈ 2. Since the Big and Medium equation are two differ-
ent levels of approximation of the many-body Bose gas,
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FIG. 2. The prediction of the Big and Medium equations for
the maximum of the radial distribution function as a function
of ρ. There is a clear transition from a low density regime in
which the maximum is 1 to a high density regime in which the
maximum is > 1. The critical density at which the transition
occurs is approximately ρ∗ = 0.9× 10−3.

this is evidence that the Bose gas has a transition from
g(r∗) = 1 to g(r∗) > 1, through the precise value of ρ∗
may differ from that of the Big equation.

B. Structure factor

The structure factor is defined in terms of the Fourier
transform of the radial distribution function g [43]:

S(|k|) := 1 + ρ

∫
dx eikx(g(|x|)− 1). (10)

The structure factor is of interest as it is directly observ-
able in scattering experiments [43].

The prediction for the structure factor for the Big
equation is shown in Figure 3. We find that, as the
density increases, the maximum of the structure factor
increases, and its standard deviation becomes smaller.
This bump is far from being a Bragg peak, as there is
no long range order, nevertheless, the sharpening of the
maximum indicates increased correlations [59], which is
consistent with liquid-type behavior. As the density is
increased further, this bump disappears, as the system
transitions to a high-density mean-field regime.

In Figure 4, we plot the maximum of S as a function
of ρ, where we see that the maximum increases smoothly
until it reaches a maximum, and then decreases anew.
Beyond a second critical density, ρ∗∗ ≈ 0.2, the local
maximum disappears, and the maximum of S is pushed
off to ∞. Again, the value of this critical density should
not be taken too seriously, as is indicated by a comparison
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FIG. 3. The prediction of the Big equation for the structure
factor as a function of κ ≡ |k|, for a wide range of values of ρ.
At small densities, the structure factor has a maximum that
is just slightly above one (not visible in the figure), and as
the density increases, this maximum becomes more and more
pronounced, and then decreases. Above a certain density, the
maximum disappears entirely. A similar plot for the Medium
equation is in Figure 9.
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FIG. 4. The prediction of the Big equation for the maximum
of the structure factor as a function of ρ. As the density
increases, the maximum of S first increases, then reaches a
maximum, and decreases anew. Beyond a density ρ∗∗ ≈ 0.2,
the maximum of S is equal to 1.

with the prediction of the Medium equation, see Figure-
10.
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FIG. 5. The prediction of the Big equation for the condensate
fraction as a function of ρ. As the density increases, the
condensate fraction first decreases, then reaches a minimum,
and increases anew. The dotted vertical lines correspond to
the critical densities ρ∗ = 0.9×10−3 and ρ∗∗ = 0.2. The curve
has inflection points that are somewhat near ρ∗ and ρ∗∗.

C. Condensate fraction

The condensate fraction is the proportion of particles
in the Bose-Einstein condensate:

η =
1

N

N∑
i=1

〈
P

(i)
0

〉
(11)

where P
(i)
0 is the projector onto the subspace in which the

i-th particle is in the constant state 1√
V
. To compute it,

we use the Feynman-Hellman theorem and express η as
a derivative of the ground state energy of an effective
Hamiltonian, which we compute using the Big equation-
[40, 41].

We plot the condensate fraction as a function of the
density in Figure 5. As ρ → 0, η → 1, that is, there
is complete Bose-Einstein condensation at zero density.
As the density is increased, η decreases, then reaches a
minimum, and then increases back towards 1. There are
two inflection points, which occur somewhat close to the
critical densities ρ∗ ≈ 0.9× 10−3 and ρ∗∗ ≈ 0.2.

D. Momentum distribution

The condensate fraction is defined using the projector
onto the constant state, which is the ground state of the
non-interacting system (the Laplacian). The momentum
distribution is determined from the occupation number of
the excited states of the Laplacian, namely eikx (note that
this is different from studying the excitation spectrum of
the Bose gas; our computation is restricted to the ground
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state). Specifically, we define the number of particles
with momentum |k| ≡ κ as

Nκ :=

∫
dk δ(|k| − κ)

N∑
i=1

〈
P

(i)
k

〉
(12)

where P
(i)
k is the projector onto the subspace in which the

i-th particle is in the state 1√
V
eikx. Thus, Nκ is the inte-

gral over the sphere of radius κ of the number of particles
in the state eikx. In particular, η = N0/N . (The momen-
tum distribution is then defined asM(κ) := Nκ/(4πκ

2ρ),
but, in the following, we shall show results for Nκ in-
stead.) Computing Nκ using the Simplified approach

poses one difficulty: the projector P
(i)
k breaks the trans-

lation invariance of the system, which was, until recently,
necessary for the derivation of the Simplified approach.
This problem has been resolved in [60], in which the Sim-
plified approach is constructed in non-translation invari-
ant settings.

As is explained in more detail in Appendix B, the nu-
merical solution of the Big equation is less accurate than
that of the Medium equation, and the computation of
the momentum distribution for the Big equation leads
to large numerical artifacts. We will therefore focus on
the Medium equation. We will compare the prediction of
the Medium equation to that of Bogolyubov theory [32,
Appendix A]:

N (Bog)
κ =

1

2

(
κ2 + 8πρa

κ2(κ2 + 16πρa)
− 1

)
(13)

where a is the scattering length of the potential.
We plot the difference between the prediction for Nκ

of the Medium equation and of Bogolyubov theory in
Figure 6. We find that this difference increases sharply
near the critical density ρ̄∗ (for the Medium equation,
the transition density is ρ̄∗ ≈ 1.9 × 10−3). In addition,
we find that Bogolyubov theory underestimates Nκ for
small κ and overestimates it for larger κ.

III. CONCLUSION

We have shown evidence for the existence of a non-
trivial phase in interacting Bose gasses in a range of den-
sities that are neither very small nor very large. More
specifically, we have shown that there exist two critical
densities, ρ∗ < ρ∗∗ such that, for ρ∗ < ρ < ρ∗∗, both
the radial distribution function and the structure factor
have a maximum, see Figures 1-4. Outside this range
of densities, either the radial distribution function or the
structure factor does not have a maximum. This suggests
a behavior that is similar to that of a classical liquid [43]
for ρ∗ < ρ < ρ∗∗. In addition, these critical densities
are near inflection points of the condensate fraction, see
Figure 5. Even though the evidence is insufficient to
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FIG. 6. The difference between the predictions of the
Medium equation and Bogolyubov theory for the spherical
integral of the occupation number in the state eikx as a
function of κ ≡ |k| for densities near the critical density
ρ̄∗ = 1.9 × 10−3. The solid line corresponds to ρ = ρ̄∗. As
the density approaches ρ̄∗, the difference in the predictions
grows quickly. We also find that Bogolyubov underestimates
the occupation number for small κ and overestimates it for
large κ.

confidently claim that the system is in a liquid phase,
it seems clear that there is non-trivial behavior in this
intermediate range of densities.

To study this range of densities, we have used the Sim-
plified approach, which is a method to study the ground
state of repulsive Bose gasses with positive-type pair po-
tentials. It would be interesting to check these predic-
tions using Quantum Monte-Carlo simulations (as was
done for the radial distribution function in [41]), and
perhaps even in experiments. This paper shows clear
evidence that the behavior in the intermediate density
regime may be worth investigating further, both theoret-
ically and experimentally.
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Appendix A: Predictions of the Medium equation

In this appendix, we show plots of the predictions of
the Medium equation for the results discussed above for
the Big equation, see Figures 7-11.
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tion of ρ. The Medium equation is qualitatively similar to the
Big equation, but the location of the transition as well as the
height of the maximum differ significantly. The critical den-
sity at which the transition occurs for the Medium equation
is ρ̄∗ ≈ 1.9× 10−3.

Appendix B: simplesolv: a tool to solve the
equations of the Simplified approach

To compute the numerical solution to the equations of
the Simplified approach (such as the Big and Medium
equations) we developed a tool called simplesolv [58],
written using the Julia programming language [61], and
released under the Apache 2.0 license, a free software
license that allows free use, distribution, and modifica-
tions. It is designed to compute the solution of any of

0.9999

0.99992

0.99994

0.99996

0.99998

1

1.00002

0 1 2 3 4 5 6 7 8

S(κ)

κ

ρ = 10−5

ρ = 10−4

ρ = 10−3

ρ = 10−2

ρ = 10−1

FIG. 9. The prediction of the Medium equation for the
structure factor as a function of κ ≡ |k|, for a wide range of
values of ρ. The Medium equation reproduces the qualitative
behavior of the Big equation in Figure 3.
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FIG. 10. The prediction of the Big and Medium equations for
the maximum of the structure factor as a function of ρ. The
Medium equation is qualitatively similar to the Big equation,
but the location of the transition as well as the height of the
maximum differ significantly. The critical density at which
the transition occurs for the Medium equation is ρ̄∗∗ ≈ 0.05.

the equations of the Simplified approach as well as a
variety of observables, such as the energy, the conden-
sate fraction, the two-point correlation function and its
Fourier transform, the momentum distribution, and the
compressibility.

In this appendix, we sketch the algorithm used to
carry out the computation. A more detailed explana-
tion is available in the documentation bundled with the
simplesolv package [58].

The only observable that is directly accessible from the
solution of the Big or Medium equations is the ground
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the condensate fraction as a function of ρ. The dotted vertical
lines correspond to the critical densities ρ∗ = 0.9× 10−3 and
ρ∗∗ = 0.2 for the Big equation and ρ̄∗ = 1.9 × 10−3 and
ρ̄∗∗ = 0.05 for the Medium equation. For the Big equation,
the curve has inflection points at ρ∗ and ρ∗∗. For the Medium
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state energy per particle (5). To compute all other ob-
servables, we use the Feynman-Hellman theorem to re-
duce the computation to that of the energy of an auxiliary
Hamiltonian, which leads to auxiliary Big and Medium
equations. We can thus reduce the computation of many
observables to that of the energy.

We begin by describing the algorithm for the Medium
equation, as it is simpler. The Medium equation (6) can
be rewritten as

−∆u = S − 2ρu ∗ S + ρ2u ∗ u ∗ S. (B1)

In this form, it involves convolutions, but no products,
so it has a simple expression in Fourier space:

k2û = Ŝ−2ρŜû+ρ2Ŝû2, û(k) :=

∫
dx eikxu(x) (B2)

with

Ŝ(k) :=

∫
dx eikxS(x) = v̂(k) +

1

8π3
v̂ ∗ û(k). (B3)

This equation thus only involves a single in Ŝ. To com-
pute it numerically, we use a Gauss quadrature. First
of all, we assume radial symmetry and work in spherical
coordinates, so the integral can be expressed in terms of
an integral over [0,∞):

v̂ ∗ û(|k|) = 2π

|k|

∫ ∞

0

dt tû(t)

∫ |k|+t

||k|−t|
ds sv̂(s). (B4)

Next, we compactify the interval using the map κ 7→
1/(κ+ 1), which maps [0,∞) to (0, 1], and use a Gauss-
Legendre quadrature in that interval. The reason we

compactify the interval, rather than use a quadrature
defined directly on [0,∞), is that û decays algebraically
(as |k|−2 [39]), which rules out using Gauss-Hermite and
Gauss-Laguerre quadratures. Proceeding in this way, we
approximate

v̂ ∗ û(κi) ≈
1

4π3

N∑
j=1

wj
(1− rj)û(κj)H(κi, κj)

(1 + rj)3
(B5)

where N is the order of the approximation, (wj , rj) are
the weights and abscissa of the Gauss-Legendre quadra-
ture (which are universal and can be found in tables or
standard software packages), and

κi :=
1− ri
1 + ri

, H(κ, t) :=
2π

κ

∫ κ+t

|κ−t|
ds sv̂(s). (B6)

Having made this approximation, the Medium equa-
tion reduces to a system of equations for û(κi) for i ∈
{1, · · · , N}, which we solve using the Newton algorithm.
Gauss quadratures can be proved to converge exponen-

tially in N for analytic functions [62] so the algorithm
converges exponentially in N as long as û is analytic (al-
gebraically if it is only Cp).
For the plots in this paper, we have used N = 100 or

N = 200.

The Big equation poses a more significant challenge.
Indeed, in Fourier space, (2) becomes

−k2û = Ŝ − 2ρŜû+ ρ2Ŝû2 − 1

4π3
û(û ∗ (Ŝû))−

− 1

8π3
û ∗

(
−2ρŜû+ ρ2Ŝû2 − 1

4π3
û(û ∗ (Ŝû))

)
.

(B7)
This involves many more convolutions in Fourier space
than the Medium equation. Whereas, for the Medium
equation, using Gauss quadratures reduces the equation
to a discrete system of equations, this is not the case
for the Big equation. Instead, we need an interpolation
scheme to approximate the value of û in between the
points κi. To do so, we will use a Chebyshev polynomial
expansion, but we must be careful in doing so alongside
the compactification. Indeed, we must take care to en-
sure that the polynomial goes to 0 at the edge of the
compactified interval that corresponds to ∞, and that
it does so at the appropriate rate. To do so, instead of
expanding û, we expand (1 + |k|)2û, which does not de-
cay at infinity. In addition, because û is not necessarily
approximated well by a polynomial uniformly over the
entire range [0,∞), we split it up into intervals called
splines, and perform the polynomial expansion in each
spline independently. (In addition to improving the pre-
cision, this gives us a simple check of the accuracy of
the computation: neighboring splines must continue one
another continuously, which allows us to spot numerical
inaccuracies when this is not the case.) Having approx-
imated û by a polynomial, we compute integrals using
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Gauss-Legendre quadratures as before. We denote the
number of splines by J , the order of the Chebyshev poly-
nomial expansion in each spline by P , and the order of
the Gauss quadratures by N .

The Chebyshev polynomial expansion can be proved
to converge exponentially in P for analytic functions [62],
so the algorithm converges exponentially in N and in P
as long as u is analytic. However, it is computation-
ally much heavier than the algorithm for the Medium

equation, which restricts the values of P,N and J we
can use in practice (all computations were run on a lap-
top computer). Therefore, the numerical solution of the
Big equation is more time-consuming, and, for some ob-
servables, less accurate than the solution of the Medium
equation.

For the plots in this paper, we have used J = 10, P = 8
and N = 12 or J = 15, P = 12 and N = 18.
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