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Abstract

In this paper, we will review the results obtained thus far by Eric A. Carlen, Elliott H. Lieb and me

on a Simplified Approach to the Bose gas. The Simplified Approach yields a family of effective one-

particle equations, which capture some non-trivial physical properties of the Bose gas at both low and high

densities, and even some of the behavior at intermediate densities. In particular, the Simplified Approach

reproduces Bogolyubov’s estimates for the ground state energy and condensate fraction at low density,

as well as the mean-field estimate for the energy at high densities. We will also discuss a phase that

appears at intermediate densities with liquid-like properties. The simplest of the effective equations in the

Simplified Approach can be studied analytically, and we will review several results about it; the others are

so far only amenable to numerical analysis, and we will discuss several numerical results. We will start

by reviewing some results and conjectures on the Bose gas, and then introduce the Simplified Approach

and its derivation from the Bose gas. We will then discuss the predictions of the Simplified Approach and

compare these to results and conjectures about the Bose gas. Finally, we will discuss a few open problems

about the Simplified Approach.
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1. Introduction

The Bose gas is a fundamental model of quantum statistical mechanics. It describes systems
of many Bosons, from non-interacting photons in black body radiation to superfluid Helium IV.
Whereas in the case of photons the model is exactly solvable, helium atoms interact, which makes
such a system both difficult to study, and gives it interesting properties. In this paper, we will
discuss a Simplified Approach, which was introduced by Lieb [Li63], to study the Bose gas in its
ground state in the presence of interactions in a tractable way. We will discuss evidence that the
Simplified Approach captures some of the physics of the interacting Bose gas, both in cases where
the interaction between Bosons matters little, and in cases where it heavily affects the properties
of the system. More specifically, we will compare predictions of the Simplified Approach against
known facts and widely accepted predictions for the Bose gas in the case of three observables:
the ground state energy, the condensate fraction and the two-point correlation function.

The ground state energy of the repulsive Bose gas has been computed exactly in the regimes
of asymptotically small and large densities [LY98, YY09, FS20, Li63], which will allow us to
make precise comparisons. We will discuss analytical and numerical results that show that the
predictions of the Simplified Approach for the energy are asymptotically correct at both low
and high densities (at least in cases where the interaction between Bosons is of positive type,
see below). We will also see numerical evidence that some of the predictions of the Simplified
Approach are extremely accurate at all densities.

While the energy is a valuable physical observable, the condensate fraction is arguably even
more interesting. In the early days of quantum mechanics, it had already been predicted [Bo24,
Ei24] that Bosons would spontaneously form a phase called a Bose-Einstein condensate in which
a positive fraction of particles are all in the same quantum state. This was first demonstrated
experimentally over 70 years after the prediction [AEe95, DMe95] in ultracold gases of rubidium
and sodium. The condensate fraction is the fraction of particles that are in this common quantum
state. From a mathematical point of view, Bose-Einstein condensation can be shown to occur
spontaneously in systems of non-interacting Bosons [LSe05], but there is, so far, no such proof
for interacting Bosons at finite density in the continuum. (Bose-Einstein condensation has been
proved for Bosons on a lattice [KLS88] as well as in the Gross-Pitaevskii scaling regime [LS02,
BBe18] which corresponds to zero-density.) We will see that the Simplified Approach predicts
Bose-Einstein condensation at low and high densities, and reproduces the widely accepted pre-
dictions of Bogolyubov theory.

The two-point correlation function is a measure of correlations between particles, and will be
used to study the Bose gas in a range of densities where interactions play a preponderant role.
We will see that, at intermediate densities, the Simplified Approach predicts a liquid-like phase,
whose existence we confirmed numerically for the Bose gas. Furthermore, we will see that the
two-point correlation function decays at all densities algebraically, as |x|−4, which is compatible
with the predictions of Bogolyubov theory.

In section 2, we will review known results and predictions about the Bose gas. In section-
3, we will introduce the Simplified Approach, and discuss its derivation from the Bose gas. In
section 4, we will review our results on the Simplified Approach, and provide links to the papers
in which these are proved. In section 5, we discuss open problems. In Appendix A1, we discuss
the software package simplesolv that was written to carry out the numerical computations
presented here, and give some details on the algorithms used.
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2. The Bose gas

In this section, we will first introduce the formalism used to model the Bose gas, and review
some theorems and widely accepted predictions about it.

2.1. Definitions

We consider a system of N identical Bosons in a three-dimensional box of volume V . We
will take periodic boundary conditions, that is, the positions of the Bosons are in the three-
dimensional torus of volume V : T3 := R3/(V

1
3Z3). The wavefunction ψ of the system is a

symmetric function of N positions: ψ ∈ HN := L2,symmetric((T3)N ). The Hamiltonian of the
system is the self-adjoint operator on HN defined by

(2.1)HN = −1

2

N∑
i=1

∆i +
∑

1⩽i<j⩽N

v(xi − xj)

where ∆i is the Laplacian with respect to the i-th position variable, and v is the potential, which
is a function in L1(R3) that is invariant under rotations, and satisfies

(2.2)v(xi − xj) ⩾ 0.

The condition (2.2) corresponds to the fact that the interaction v is repulsive. Note that we have
taken the mass of each Boson to be 1, whereas other references set the mass to 1

2 .

We will focus solely on the ground state (that is, the system at zero-temperature), which we
denote by ψN . The ground state energy is EN :

(2.3)HNψN = ENψN .

We take the thermodynamic limit, in which N,V → ∞ in such a way that the density ρ := N
V is

fixed, and define the ground state energy per particle:

(2.4)e0 := lim
N,V→∞

N
V
=ρ

EN

N
.

The condensate fraction is defined as the proportion of particles in the constant state φc :=
V − 1

2 . Let Pi be the projector acting on HN onto the subspace in which the i-th particle is in the
state φc:

(2.5)Pi := 1⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1

⊗ |φc⟩ ⟨φc| ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
N−i−2

.

In the papers in which the results presented below are proved, we have chosen to talk about the
uncondensed fraction η, rather than the condensate fraction, which is equal to 1− η. In order to
avoid confusion, we will use the same convention here. We define the uncondensed fraction:

(2.6)η = 1− lim
N,V→∞

N
V
=ρ

1

N

N∑
i=1

⟨ψN |Pi |ψN ⟩ .

Note that η can also be computed in terms of the ground state energy of a modified Hamiltonian:
let

(2.7)KN (µ) := HN − µ

N∑
i=1

Pi
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and the associated ground state energy FN (N) satisfying KN (µ)ΨN (µ) = FN (µ)ΨN (µ). Since
∂µΨN is orthogonal to ΨN ,

(2.8)1− 1

N

N∑
i=1

⟨ψN |Pi |ψN ⟩ = 1 +
1

N
∂µ ⟨ΨN (µ)|KN (µ) |ΨN (µ)⟩|µ=0 = 1 + ∂µ

FN (µ)

N

∣∣∣∣
µ=0

.

The two-point correlation function is defined with respect to the zero-temperature canonical
Gibbs measure:

(2.9)C2(y − y′) := lim
N,V→∞

N
V
=ρ

N∑
i,j=1

⟨ψN | δ(xi − y)δ(xj − y′) |ψN ⟩

where δ is the Dirac-delta function. Similarly to the uncondensed fraction, C2 can be computed by
taking a functional derivative of the ground state energy with respect to the interaction potential.
To make this apparent, it is convenient to first use the translation invariance of the system to
write z ≡ y − y′ and

(2.10)C2(z) = lim
N,V→∞

N
V
=ρ

1

V

∫
dy′

N∑
i,j=1

⟨ψN | δ(xi − z − y′)δ(xj − y′) |ψN ⟩

so, for z ̸= 0,

(2.11)C2(z) = lim
N,V→∞

N
V
=ρ

2

V

∑
1⩽i<j⩽N

⟨ψN | δ(xi − xj − z) |ψN ⟩ = lim
N,V→∞

N
V
=ρ

2

V

δEN

δv(z)
= 2ρ

δe0
δv(z)

.

2.2. Results and predictions

The main difficulty in studying the repulsive Bose gas lies in the fact that Bosons interact.
One can get around this difficulty when the density is sufficiently low, since in that case particles
interact little. At very high densities, the Bose gas enters a mean-field regime [Se11], in which
the interactions can be replaced by an external field, and the problem reduces to a single-particle
one which can readily be studied. Because of this, we have both rigorous results and good
approximation schemes in the low density and in the high density regimes.

To study the Bose gas at low densities, Bogolyubov [Bo47] introduced an approximation
scheme that reduces the Hamiltonian to one that can be diagonalized explicitly [LSe05], and
thus leads to predictions about many observables, including the energy, condensate fraction, and
two-point correlation function. These were derived in a seminal paper by Lee, Huang and Yang-
[LHY57], who found asymptotic expansions for the energy and condensate fraction, as well as the
large distance behavior of the correlation function, among other results that will not be discussed
here. The expansion of the energy (2.12) has been the subject of much investigation, and has
finally been proved under mild assumptions on the potential, which we state in the following
Theorem.

Theorem 2.1
([LY98, YY09, FS20, BCS21])

If v ∈ L3(R3) is non-negative, spherically symmetric, compactly supported, and has a bounded
scattering length, then

(2.12)e0 = 2πρa

(
1 +

128

15
√
π

√
ρa3 + o(

√
ρ)

)
3



where a is the scattering length of the potential [LSe05, Appendix C].

The leading order 2πρa was derived by Lieb and Yngvason [LY98], which lead to a revival in the
study of the Lee-Huang-Yang formula, which had been introduced over forty years prior. There
were many improvements, leading first to an upper bound by Yau and Yin [YY09], and later a
lower bound by Fournais and Solovej [FS20]. The assumptions on the potential in [YY09] were
relaxed by Basti, Cenatiempo and Schlein [BCS21]. The condition that v ∈ L3(R3) comes from
the upper bound of [BCS21]; the lower bound of [FS20] only requires v to be L1. This is a rather
unusual situation, in which the assumptions for the upper bound are stronger than for the lower
bound. This discrepancy is even deeper than that: Fournais and Solovej have recently extended
their lower bound to include hard-core interactions [FS21], whereas the upper bound has not
been proved to hold in that case (though it is expected to).

Bogolyubov theory predicts the following asymptotics for the uncondensed fraction at low
densities.

Conjecture 2.2

([LHY57, (41)])

If v ∈ L1(R3) and v ⩾ 0, then as ρ→ 0,

(2.13)η ∼ 8
√
ρa3

3
√
π

where a is the scattering length of the potential [LSe05, Appendix C].

In particular, this implies that, as ρ → 0, η → 0, which means that there is full condensation at
zero-density. As was mentioned above, there is, as of this writing, no proof that Bose-Einstein
condensation occurs at any finite density, so this conjecture has no proof. Recent progress has
been made in the proof of complete condensation in the Gross-Pitaevskii regime [LS02, BBe18],
in which the interaction scales with the potential: the scattering length decreases with N , which
corresponds to an ultra-dilute limit.

Bogolyubov theory further predicts that the two-point correlation function decays as |x|−4.

Conjecture 2.3

([LHY57, (48)])

If v ∈ L1(R3) and v ⩾ 0, then as
√
ρa|x| → ∞,

(2.14)
1

ρ2
C2(x)− 1 ∼ 16ρa3

π3(
√
ρa|x|)4

where a is the scattering length of the potential [LSe05, Appendix C].

At high densities, the system approaches a mean-field regime, and can readily be studied.
The asymptotics for the energy are significantly simpler than for low density, and were proved
by Lieb in 1963.
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Theorem 2.4

([Li63, Appendix])

If v ∈ L1(R3), v ⩾ 0, and its Fourier transform v̂ is non-negative (v is then said to be of positive
type), then, as ρ→ ∞,

(2.15)e0 ∼
ρ

2

∫
dx v(x).

The assumption that v̂ ⩾ 0 is necessary as one can find counterexamples in which e0 grows slower
than ρ at high densities for potentials that are not of positive type.

At high densities, since the system approaches a mean-field regime, it is expected that it
should be completely condensed.

Conjecture 2.5

If v ∈ L1(R3), then, as ρ→ ∞,

(2.16)η → 1.

As in the low density regime, this conjecture has, as of this writing, not been proved.

3. The Simplified Approach

Let us now turn to the derivation of the Simplified Approach, following [Li63]. This derivation
will involve a significant approximation, which has not been justified rigorously as of this writing.
In this paper, we will not discuss how the approximation can be justified, rather the aim here
is to study the Simplified Approach and use it as a tool to compute physical observables for the
repulsive Bose gas. Justifying this approximation will be the goal of future work.

3.1. Derivation of the Simplified Approach from the Bose gas

We start with the eigenvalue equation (2.3), and integrate both sides of the equation (which
is formally identical to taking a scalar product with the constant function, which has non-trivial
overlap with the condensate wavefunction), and find (using the symmetry under exchange of
particles)

(3.1)
EN

N
=

(N − 1)

2

∫
dx1dx2 v(x1 − x2)

∫
dx3 · · · dxN ψN (x1, · · · , xN )∫
dy1 · · · dyN ψN (y1, · · · , yN )

(note that the kinetic term vanishes, since it is the integral of an exact derivative). The crucial
observation is that, since ψN is the ground state of the Hamiltonian, it is non-negative (this
can be verified by checking that |ψ| has the same energy as ψ, and then using the Perron-
Frobenius theorem to prove the uniqueness of the ground state), and so ψ/

∫
ψ can be interpreted

as a probability distribution. In that language,
∫
dx3 · · · dxNψ/

∫
dy1 · · · dyNψ is the two-point

correlation function of ψ/
∫
ψ. When defining these correlation functions, we actually normalize

the integrals, which will allow us to keep track of volume factors more readily, and define

(3.2)g
(n)
N (x1, · · · , xn) :=

∫ dxn+1

V · · · dxN
V ψN (x1, · · · , xN )∫ dy1

V · · · dyNV ψN (y1, · · · , yN )
≡ V n

∫
dxn+1 · · · dxN ψN (x1, · · · , xN )∫
dy1 · · · dyN ψN (y1, · · · , yN )

in terms of which (3.1) becomes, using the translation invariance of the system to eliminate the
integral over x2,

(3.3)
EN

N
=
N − 1

2V

∫
dx v(x)g

(2)
N (x, 0).
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Taking the thermodynamic limit, we find

(3.4)e0 =
ρ

2

∫
dx v(x)g(2)(x)

where g(2)(x) := limN,V→∞ g
(2)
N (x, 0).

We have thus reduced the question of computing e0 to that of computing g(2)(x). To do so,
we proceed in a similar fashion as before by integrating the eigenvalue equation (2.3), but this
time, we integrate over all variables but the first two, and find

(3.5)

−1

2
(∆x +∆y)g

(2)
N (x, y) +

N − 2

V

∫
dz (v(x− z) + v(y − z))g

(3)
N (x, y, z)+

+v(x− y)g2(x, y) +
(N − 2)(N − 3)

2V 2

∫
dzdt v(z − t)g

(4)
N (x, y, z, t) = ENg

(2)
N (x, y)

where g
(3)
N and g

(4)
N are defined in (3.2). Thus, to compute g(2) in this way, we need to compute

g(3) and g(4). One can iterate this procedure and define a hierarchy of equations to compute all
the g(n), but this set of equations will be very difficult, if not impossible, to solve. Note that, by
their definition (3.2), the g’s are not independent: for all m < n,

(3.6)

∫
dxm+1

V
· · · dxn

V
g
(n)
N (x1, · · · , xn) = g

(m)
N (x1, · · ·xm).

We will proceed by making an approximation to express g(3) and g(4) in terms of g(2), that
preserves some of the equalities in (3.6).

Approximation 3.1
There exist two functions w, h : R3 → R such that

(3.7)g
(3)
N (x, y, z) = (1−w(x−y))(1−w(x−z))(1−w(y−z)), g

(4)
N (x1, x2, x3, x4) =

∏
1⩽i<j⩽4

(1−h(xi−xj))

in which w, h are chosen so that

(3.8)

∫
dz

V
g
(3)
N (x, y, z) = g

(2)
N (x, y),

∫
dzdt

V 2
g
(4)
N (x, y, z, t) = g

(2)
N (x, y)

and
∫
dx |1− w(x)| and

∫
dx |1− h(x)| are bounded uniformly in V .

Unfortunately, (3.8) does not ensure that (3.6) is satisfied, since
∫

dt
V g(4)(x, y, z, t) will not, in

general, be equal to g(3)(x, y, z). One can then prove that (3.8) imposes an explicit expression of

g
(3)
N and g

(4)
N in terms of g

(2)
N .

Lemma 3.2
([Li63, (3.25),(3.28),(3.15)])

Approximation 3.1 implies that, provided
∫
dx |1− g

(2)
N (x, 0)| is bounded independently of V ,

(3.9)w(x− y) = 1− g
(2)
N (x, y) +O(V −1)

and

(3.10)h(x− y) = 1− g
(2)
N (x, y) +

2

V
g
(2)
N (x, y)

∫
dz (1− g

(2)
N (x, z))(1− g

(2)
N (y, z)) +O(V −2).
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Note that it is important to keep the term of order V −1 in (3.10), since g
(4)
N appears in (3.5) in

a term that is of order N . Thus, the approximation becomes

(3.11)g
(3)
N (x, y, z) ≈ g

(2)
N (x, y)g

(2)
N (x, z)g

(2)
N (y, z) +O(V −1)

and

(3.12)g
(4)
N (x1, x2, x3, x4) ≈

∏
1⩽i<j⩽4

g
(2)
N (xi − xj) +O(V −1).

Plugging these (with the V −1 correction in (3.10)) into (3.5) and taking the thermodynamic limit,
we find the “Complete Equation” of the Simplified Approach. Before defining this equation, we
first define

(3.13)u(x) := lim
N,V→∞

N
V
=ρ

(1− g
(2)
N (x, 0))

and recall the definition of the convolution operator

(3.14)f ∗ g(x) :=
∫
dy f(x− y)g(y).

Definition 3.3

(Complete Equation of the Simplified Approach)

(3.15)−∆u(x) = (1− u(x))
(
v(x)− 2ρK(x) + ρ2L(x)

)
(3.16)K := u ∗ S, S(y) := (1− u(y))v(y)

(3.17)L := u ∗ u ∗ S − 2u ∗ (u(u ∗ S)) + 1

2

∫
dydz u(y)u(z − x)u(z)u(y − x)S(z − y).

Proceeding in this way, we have reduced the problem of the computation of the ground state
energy of the Bose gas, by making Approximation 3.1, to solving a non-linear, non-local (because
of the non-local nature of the convolution operator ∗) partial differential equation, that only
involves functions of R3, that is we have reduced the problem to a single particle one. This type
of reduction is done in many other contexts in physics, such as the Boltzmann equation, the
Gross-Pitaevskii equation, the Hartree equation, the Thomas-Fermi equation, etc... However,
one feature that makes the Simplified Approach stand out from these other effective equations
is that, whenever an effective equation can be proved to be exact, it is usually in the limit of a
parameter being very small or very large (for instance the Gross-Pitaevskii equation holds for
very small densities [LS02], the Hartree equation holds for very large densities [Se11]), whereas,
as we will see in the next section, the Simplified Approach is exact in both the low density and
the high density regime.

This can be anticipated from the nature of Approximation 3.1. The factorization in (3.7),

remembering that g
(n)
N is an n-point correlation function of a classical probability, is an inde-

pendence condition (in classical statistical mechanics, this is called clustering). The fact that
particles at low density should be approximately independent is reasonable, since interactions
are few and far between. At high density, the system should approach a mean-field regime, in
which particles are effectively independent. However, making these arguments rigorous is still
an open problem. In addition, as we will see in the next section, this approximation can also
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be quantitatively very good, even at intermediate densities, where the approximation would be
quite difficult to justify.

3.2. The Equations of the Simplified Approach

Before discussing the prediction of the Simplified Approach, we must first discuss the various
equations that it consists of. So far, we have seen the Complete Equation in Definition 3.3, but
this equation is rather difficult to deal with, both analytically and numerically. From a numerical
point of view, it is costly to compute nested integrals: the method used to carry out the numerics
is a Gaussian quadrature, in which each integral is replaced by a sum of N terms, and taking
an integral in n variables requires Nn points. In practice, a quintuple integral is near the upper
limit of what is computable quickly on ordinary hardware (as of this writing). Several tricks are
at our disposal to reduce the number of variables: in the case of a convolution, the integral is
three dimensional, but by changing to two-center bipolar coordinates, we can reduce it to a double
integral. In addition, the equation in Definition 3.3 has fewer integrations in Fourier space, in
which convolutions become products and vice versa. These allow us to reduce the computation to
a sextuple integral (for details, see the documentation of the simplesolv software package [ss]),
which is still rather heavy to compute. However, the sextuple integral appears only in the last
term in (3.17), and if this term is dropped, we are left with only double integrals. We thus define
an equation obtained from the Complete Equation in which we drop the last term in (3.17),
which we will call the “Big Equation”.

Definition 3.4
(Big Equation of the Simplified Approach)

(3.18)−∆u(x) = (1− u(x))
(
v(x)− 2ρKbigeq(x) + ρ2Lbigeq(x)

)
(3.19)Kbigeq := u ∗ S, S(y) := (1− u(y))v(y)

(3.20)Lbigeq := u ∗ u ∗ S − 2u ∗ (u(u ∗ S)).

To evaluate the precision of this approximation, we have computed observables for the Complete
Equation (the sextuple integral can be computed in under 24 hours provided the order N is
chosen to be small enough), and found very good agreement.

Whereas the Big Equation is (somewhat) easily computable numerically (see the documen-
tation of the simplesolv software package [ss]), it remains rather difficult to study analytically.
To simplify the equation, we will make two approximations. First, we assume that u(x) ≪ 1,
which is correct in the limit |x| → ∞. This allows us to approximate

(3.21)(1− u)(−2ρK + ρ2L) ≈ −2ρK + ρ2L, L ≈ u ∗ u ∗ S.
Second, we will replace S by a Dirac delta function (while preserving its integral):

(3.22)S(x) ≈ δ(x)

∫
dx S(x) ≡ 2ẽ

ρ
δ(x), ẽ :=

ρ

2

∫
dx S(x) ≡ ρ

2

∫
dx (1− u(x))v(x).

The idea behind this approximation is that, when |x| is large, S can be concentrated at the origin.
Using this second approximation, we get

(3.23)K ≈ 2ẽ

ρ
u, L ≈ 2ẽ

ρ
u ∗ u

which leads us to define the “Simple Equation” as follows.
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Definition 3.5
(Simple Equation of the Simplified Approach)

(3.24)−∆u(x) = (1− u(x))v(x)− 4ẽu(x) + 2ẽρu ∗ u(x)

(3.25)ẽ :=
ρ

2

∫
dx (1− u(x))v(x).

Finally, we define an intermediate equation, which is simpler than the Big Equation to
compute, but has fewer approximations than the Simple Equation. As we will see below, this
“Medium Equation” agrees quantitatively rather well with the Big Equation and the Bose gas.
To define the Medium Equation, we make the approximation in (3.21), but not (3.23).

Definition 3.6
(Medium Equation of the Simplified Approach)

(3.26)−∆u(x) = (1− u(x))v(x)− 2ρu ∗ S(x) + ρ2u ∗ u ∗ S(x)

(3.27)S(x) := (1− u(x))v(x).

4. Predictions of the Simplified Approach

In this section, we state the results and predictions we obtained for the Simplified Approach.
We start with a theorem on the existence of solutions of the Simple Equation, and then move on
to discuss predictions for the energy, condensate fraction, and two-point correlation function.

4.1. Existence and Uniqueness

In order to state any theorem about the solutions of the equations of the Simplified Approach,
we first need to prove that these exist. So far, we only have such a result for the Simple Equation,
which holds in arbitrary dimension d.

Theorem 4.1
([CJL20, Theorems 1.1, 1.3])

If v ∈ L1(Rd) ∩ Lp(Rd) for p > max{d
2 , 1} and v ⩾ 0, then (3.24) has an integrable solution u

satisfying 0 ⩽ u(x) ⩽ 1.

The issue of the uniqueness of the solution is a bit more subtle, and to state it, let us first
discuss the main points of the proof of this theorem. Equation (3.24) contains two non-linear
terms: 2ẽρu ∗ u and −4ẽu, since ẽ depends on u. However, we can simplify this situation by
changing our point of view on this equation. As is, the equation takes ρ as a parameter, and
returns both ẽ(ρ) and u(x). But if we fix ẽ as a parameter, and view (3.24) as an equation that
will return ρ(ẽ) and u(x), then −4ẽu(x) becomes a linear term (and conveniently opens a gap in
the Laplacian operator). Proceeding in this way, we can prove that the solution (ρ, u(x)) exists,
and is unique [CJL20, Theorem 1.3, Section 3]. To prove Theorem 4.1, we are left with proving
that ẽ 7→ ρ(ẽ) can be inverted locally. This is the case because ρ(ẽ) is continuous, and goes from
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0 to ∞ [CJL20, Theorem 1.3]. However, proving that ρ(ẽ) is monotone is still open (though we
expect it to be true), so we do not have a strong uniqueness statement, as it is a priori possible
that a given value of ρ yields several ẽ’s. On the other hand, the theorems stated in the following
subsections hold for any solution of (3.24), so if there were several solutions, they would share
the properties we will state below.

In three dimensions, for small and large enough values of ẽ, we have proved the monotonicity
of ρ(ẽ).

Theorem 4.2

([CJL21, Theorem 1.3])

If (1 + |x|4)v ∈ L1(R3) ∩ L2(R3), v ⩾ 0, and if

(4.1)ẽ <

√
2π3

∥v∥21
or ẽ >

8∥v∥42
π4

then ẽ 7→ ρ(ẽ) is monotone.

The proof of this theorem relies on the study of the operator

(4.2)Kẽ := (−∆+ v + 4ẽ(1− ρu∗))−1

which comes out naturally when differentiating u with respect to ẽ (which is a natural thing
to do to prove monotonicity). In particular, the proof relies on an estimate of ∥Kẽψ∥ 4

3
[CJL21,

Section 1.2] for ψ’s that integrate to zero. The Hardy-Littlewood-Sobolev (HLS) inequality would
allow us to bound ∥Kẽψ∥ 3

2
+ϵ, which is insufficient, but HLS does not make use of the fact that∫

ψ = 0. We proved a variant of the HLS inequality for functions that integrate to zero [CJL21,
Theorem 1.13], which yields a usable bound.

4.2. Properties of the solution of the Simple Equation

Let us now review a few interesting properties of the solution u of the Simple Equation. We
start with properties that hold in all dimensions.

Lemma 4.3

Under the assumptions of Theorem 4.1, in any dimension d ⩾ 1, if u is an integrable solution of
the Simple Equation, then

• u(x) ⩽ 1 if and only if u(x) ⩾ 0 [CJL20, Theorems 1.1, 1.2].

•
∫
dx u(x) = 1

ρ [CJL20, (1.7)].

• If u(x) ⩾ 0, then u(x) ⩾ (−∆+ 4ẽ+ v)−1v and ρ
4∥v∥1 ⩽ ẽ ⩽ ρ

2∥v∥1 [CJL20, (1.18),(1.22)].

From now on, and until the end of this paper, we will focus on three dimensions. Let us start
with the more significant result, which concerns the large |x| behavior of u.

Theorem 4.4

([CJL21, Theorem 1.2])

In the case d = 3, if u is a non-negative, integrable solution of the Simple Equation, v ⩾ 0, and
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(1 + |x|4)v ∈ L1(R3) ∩ L2(R3), then

(4.3)ρu(x) =

√
2 + β

2π2
√
ẽ

1

|x|4 +R(x)

where β := ρ
∫
dx |x|2v(x)(1−u(x)) and |x|4R ∈ L2(R3)∩L∞(R3) uniformly in ẽ on all compact

sets. Furthermore, for any ρ0 > 0, if ρ < ρ0

(4.4)u(x) ⩽
C

ρẽ
1
2 |x|4

for some C that only depends on ρ0.

Up to the error term R, this shows that u decays as |x|−4. It is quite natural that u should decay
as a power law, since, at large |x|, u must decay at the same rate as u ∗ u (see (3.24)), which is
the case for power laws (but not for, say, an exponential). One can also see that the power 4 is
to be expected: defining f := 2ẽρ(−∆+ 4ẽ)−1u, one easily checks [CJL20, (2.5)] that

(4.5)f ⩾ f ∗ f,
∫
dx f(x) =

1

2
.

Furthermore, one can prove that [CJe21, Theorem 2] any f satisfying (4.5) must also sat-
isfy

∫
dx |x|f(x) = ∞, which suggests that f decays like |x|−4 (though it does not prove it:∫

dx |x|f(x) = ∞ alone does not mean that f ∼ |x|−4), and consequently that u does as well.
The proof of Theorem 4.4 follows a different line: we work in Fourier space, and study the small
momentum behavior of u [CJL21, Section 2].

Before concluding this subsection, let us state some estimates on u which have been used to
prove some of the theorems mentioned in this paper.

Lemma 4.5

Under the assumptions of Theorem 4.1, in the case d = 3, if u is a non-negative, integrable
solution of the Simple Equation, then

• For 1 ⩽ p < 3,

(4.6)∥u∥p ⩽ Cpẽ
p−3
2p ∥v∥1

where Cp only depends on p [CJL21, Lemma 1.1].

• For large ρ, we can improve the bound [CJL21, Lemma 1.1]

(4.7)∥u∥2 ⩽
1

2ẽ
∥v∥2.

• We have

(4.8)∥∂ẽu∥2 ⩽
C

ρẽ
1
4

for some C independent of ẽ (which may depend on v) [CJL21, Lemma 1.11].
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4.3. Ground state energy

The Simplified Approach provides a natural prediction for the ground state energy per-
particle (see (3.4) and (3.13)):

(4.9)ẽ =
ρ

2

∫
dx (1− u(x))v(x).

We use the tilde in the notation to indicate that this is a prediction of the Simplified Approach,
as it distinguishes it form the exact ground state energy of the Bose gas e0.

As was explained in Section 2, the ground state energy of the Bose gas has been computed at
low and high densities, see Theorems 2.1 and 2.4. We have proved that both of these asymptotic
expansions hold for the prediction of the Simple Equation.

Theorem 4.6
([CJL20, Theorem 1.4])

For the Simple Equation, under the assumptions of Theorem 4.1 for d = 3, as ρ→ 0,

(4.10)ẽ = 2πρa

(
1 +

128

15
√
π

√
ρa3 + o(

√
ρ)

)
where a is the scattering length of the potential [LSe05, Appendix C], and as ρ→ ∞

(4.11)ẽ ∼ρ→∞
ρ

2

∫
dx v(x).

It is rather striking that the Simple Equation agrees with the Bose gas both at high and low
densities. Note, however, that whereas Theorem 2.4 holds only for potentials of positive type
(that is the Fourier transform of the potential v̂ is non-negative), (4.11) holds regardless of the
sign of v̂. The asymptotic agreement at high densities therefore only holds for positive type
potentials.

The proof of Theorem 4.6 proceeds as follows [CJL20, Section 4]. The high density formula-
(4.11) is easy to prove, and follows from the fact that

∫
dx u(x) = 1

ρ . To prove the low density
expansion, we proceed in two steps: we first prove that the solution u is close to the function w
defined by

(4.12)−∆w = (1− u)v

and then we show that w is close to the scattering solution φ, which solves

(4.13)−∆φ = (1− φ)v.

To prove the first of these, we work in Fourier space, where we find that small ρ corresponds
to large momentum, so we can proceed by Taylor expansions. The second follows from direct
computation.

Thus, the Simple Equation predicts the energy of the Bose gas at low and high densities (when
the potential is of positive type). A natural next question is to study the prediction at interme-
diate densities. When ρ is neither large nor small, it becomes much more difficult to evaluate the
energy exactly. Instead, we developed a software package, which we called simplesolv [ss], to
compute the energy, and various other observables, numerically with high accuracy. For a more
detailed discussion of the accuracy of the numerics, see Appendix A1. For the graphs shown
here, we chose the positive type potential v(x) = e−|x|. The result is reported in Figure 4.1. We
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computed the energy for the three equations in the Simplified Approach, and compared it to the
prediction of a Quantum Monte Carlo simulation (QMC) [CHe21]. While the Simple Equation
agrees with the QMC at low and high densities, it only does somewhat well at intermediate
densities (with a maximal relative error of approximately 5%). However, the Medium Equation
fits the QMC data significantly better (with a maximal relative error of around 1%), and the
Big Equation provides a remarkably good fit at all densities (with a maximal relative error of
approximately 0.1%). This indicates that the Simplified Approach, and the Big Equation in
particular, are capturing some of the physics of the Bose gas at all densities, at least in the case
of positive type potentials.
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fig 4.1: [CHe21, Fig 1] The predictions of the energy per particle as a function of the density
for the Simple Equation, Medium Equation, and Big Equation, compared to a
Quantum Monte Carlo (QMC) simulation and the Lee-Huang-Yang (LHY) formula.

4.4. Condensate fraction

Whereas the Simplified Approach gives a natural prediction for the ground state energy, the
condensate fraction must be computed in a more indirect way. Indeed, the Simplified Approach
computes u, see (3.13) and (3.2), which is linear in ψ, whereas the condensate fraction is quadratic
in ψ, see (2.6). However, as was shown in (2.8), the condensate fraction can also be computed as
the derivative of the ground state energy of a modified Hamiltonian. The procedure to compute
the condensate fraction in the Simplified Approach is to re-derive the equations of the Simplified
Approach for the modified Hamiltonian, and then differentiate the prediction of the energy f̃(µ)
that ensues:

(4.14)η̃ = 1 + ∂µf̃(µ)|µ=0.

We find that the effect of modifying the Hamiltonian on the Simplified Approach equations is to
formally add 2µ to −∆ in (3.15) [CHe21, (35)]:

(4.15)−∆u(x) + 2µu(x) = (1− u(x))
(
v(x)− 2ρK(x) + ρ2L(x)

)
and consequently, for the Simple Equation,

(4.16)−∆u(x) + 2µu(x) = (1− u(x))v(x)− 4ẽu(x) + 2ẽρu ∗ u(x).

Whereas the condensate fraction has not been evaluated exactly for the Bose gas, even at low
densities, Bogolyubov theory predicts an asymptotic formula which we stated in Conjecture 2.2.
For the Simple Equation, this formula can be shown to hold.
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Theorem 4.7
([CJL21, Theorem 1.6])

For the Simple Equation, if (1 + |x|4)v(x) ∈ L1(R3) ∩ L2(R3) and v ⩾ 0, as ρ→ 0,

(4.17)η̃ ∼ 8
√
ρa3

3
√
π

where a is the scattering length of the potential [LSe05, Appendix C].

To prove this theorem, we compute ∂µu by differentiating (4.16) with respect to µ, and find-
[CJL21, Theorem 1.6, Section 5]

(4.18)η̃ =
ρ
∫
dx v(x)Kẽu(x)

1− ρ
∫
dx v(x)Kẽ(2u− ρu ∗ u)(x)

where Kẽ is defined in (4.2). We then switch to Fourier space, where, as for the energy, small ρ
corresponds to large momentum, and compute these integrals.

The Simple Equation yields the same prediction as Bogolyubov theory at low density. As
we did for the ground state energy, we will now turn our attention to intermediate densities,
though, here again, we will have to limit ourselves to a numerical analysis using simplesolv [ss].
(Note that, in simplesolv, the derivative with respect to µ is carried out formally, and not
numerically as a finite difference, and the condensate fraction is expected to be computed just
as accurately as the energy.) For this graph, we take a slightly smaller potential: v(x) = 1

2e
−|x|

(as the potential gets larger, the agreement between the Simplified Approach and the Bose gas
gets worse and worse, so we chose a smaller potential to highlight the difference in the accuracies
of the various equations in the Simplified Approach). The result is reported in Figure 4.2. We
find that for all of the equations of the Simplified Approach, the predictions for the condensate
fraction agree with Bogolyubov theory at low density, and return to full condensation (η̃ = 0,
recall that η is the uncondensed fraction) at high density. At intermediate density, the Simple
Equation does not do very well, but the Medium and Big Equations are rather accurate, though
not nearly as accurate as for the energy. We note that the uncondensed fraction goes through a
maximum, which is reproduced fairly accurately by the Medium and Big Equations. The physical
significance of this maximum is yet to be investigated. As we will see in the next subsection,
looking at the two-point correlation function near the maximal density reveals some non-trivial
physical behavior in certain cases.
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fig 4.2: [CHe21, Fig 3] The predictions of the condensate fraction as a function of the density
for the Simple Equation, Medium Equation, and Big Equation, compared to a
Quantum Monte Carlo (QMC) simulation and the Bogolyubov prediction (Bog).
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4.5. Two-point correlation function

Similarly to the condensate fraction, the two-point correlation function cannot be evaluated
directly from u, but instead is computed by differentiating the energy: following the procedure
in (2.11), it is natural to define the prediction of the Simplified Approach for the two-point
correlation function as

(4.19)C̃2(z) = 2ρ
δẽ

δv(z)
.

As was the case for the condensate fraction, there are no exact estimates for the two-point
correlation function of the Bose gas, but the large distance behavior has been predicted to be
|x|−4 (see Conjecture 2.3). We can prove that this is the case for the prediction of the Simple
Equation.

Theorem 4.8
Under the assumptions of Theorem 4.1, and if (1 + |x|)6v(x) ∈ L1(R3),

(4.20)lim
|x|→∞

|x|4
∣∣∣∣∣ C̃2

ρ2
− 1− r(x)

∣∣∣∣∣ <∞

where |x|4r ∈ L2(R3) ∩ L∞(R3).

This result has not been published until now, but its proof can be found in Appendix A2. It is
based on a formula for C̃2 from [CHe21, (45)]:

(4.21)C̃2(x) := ρ2(1− u(x)) + ρ2
Kẽv(x)(1− u(x))− 2ρu ∗ Kẽv(x) + ρ2u ∗ u ∗ Kẽv(x)

1− ρ
∫
dx v(x)Kẽ(2u(x)− ρu ∗ u(x))

where Kẽ is defined in (4.2), which one obtains by taking the functional derivative with respect
to v in (3.24).

Using (4.19), it is rather easy (and quick) to compute the prediction of the two-point correla-
tion function for the equations in the Simplified Approach numerically. In doing so, we found an
intriguing physical phenomenon at intermediate densities. The phenomenon was observed for the
potential v(x) = 16e−|x| (and seems to be absent for e−|x|). The result is shown in Figure 4.3. We
find that for the Medium and Big Equations, there is a higher probability of finding two particles
separated by a certain length than any other. This indicates a phase resembling a liquid, in
which there is no long range order, but particles are likely to find themselves separated by similar
distances. We have verified that this phenomenon also occurs for the Monte Carlo simulation
of the Bose gas. It is notably absent from the prediction of the Simple Equation though, which
provides further evidence that the Big and Medium Equations reproduce the physics of the Bose
gas more accurately than the Simple Equation. The phenomenon also disappears for smaller as
well as larger densities, which is consistent with the presence of a phase transition. While our
analysis of this phase is still in its early stages, this phenomenon is is rather intriguing, and shows
how interesting the intermediate density regime might be.
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fig 4.3: [CHe21, Figure 5] The predictions of the two-point correlation function as a function of x
at ρ = 0.02 for v(x) = 16e−|x| for the Simple Equation, Medium Equation, and Big
Equation, compared to a Quantum Monte Carlo (QMC) simulation.

5. Conclusion and open problems

5.1. Summary

The Bose gas is a system that is simple to define, and yet is an accurate model for some
real-world physical systems. It has a rich phenomenology, and has proven to be quite difficult to
study, at least in the presence of interactions. We have discussed a family of effective equations
for the Bose gas which are much simpler to study, both analytically (for the Simple Equation)
and numerically, and reproduce some of the intriguing features of the Bose gas. What is unique
about these effective equations is that they are accurate both at low and at high densities, and
have even given us insight on the behavior of the system at intermediate densities.

Among these equations, the only one we can study analytically is the Simple Equation.
This equation yields a prediction for the ground state energy of the Bose gas which reproduces
all the known results about the ground state energy of the Bose gas, both at low and high
densities (for potentials of positive type). Furthermore, we have proved that it reproduces the
Bogolyubov prediction for the condensate fraction, as well as the rate of decay of two-point
correlation functions. On the other hand, the approach used to derive the Simple Equation is
quite different from Bogolyubov theory, so there is hope that it will give us a new approach to
proving properties for the Bose gas, such as Bose-Einstein condensation.

Deriving the Simple Equation goes through several uncontrolled approximations, and we have
introduced two other equations which are still simple enough to be solved numerically efficiently,
but require fewer approximations, and so reproduce the physics of the Bose gas more accurately.
We have found that they both (to varying degrees) give good qualitative and quantitative agree-
ment for potentials of positive type, in the entire range of densities. In particular, the Medium
and Big Equations provide us with useful tools to study the Bose gas at intermediate densities,
in a regime that has not been studied in the past. We have found promising preliminary results
about the physics of the Bose gas at intermediate densities, which suggests the presence of a
liquid-type phase.

The assumptions on the potential required for the Simplified Approach to provide accurate
results are that v(x) ⩾ 0, v ∈ L1(R3) ∩ L 3

2
+ϵ(R

3) (some results also require stronger decay
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properties, see above), and that the potential be of positive type (its Fourier transform should
be non-negative). The latter assumption is rather restrictive, and excludes a number of physical
systems such as Helium IV gases. On the other hand, from a mathematical point of view, it is
easy to construct such potentials. As stated here, our results require the potential not to have a
hard core, however, most of the results in the present paper can be extended easily to the hard
core case.

5.2. Open problems

There are still a number of interesting unanswered questions about the Simplified Approach
to the Bose gas. One is the uniqueness of the solution of the Simple Equation. As was explained
in Section 4.1, we currently only have a weak notion of uniqueness, in which a density ρ could
yield several different values of the energy. To prove the uniqueness, it would suffice to prove that
the energy is a monotone increasing function of the density, which is true for the repulsive Bose
gas. We have proved the monotonicity of the energy only for small and large densities [CJL21,
Theorem 1.3]. A related question is to prove that ρe(ρ) is a convex function of ρ. Physically, this
is equivalent to the compressibility of the gas being positive (which is certainly the case). We
have proved this convexity only for small density [CJL21, Theorem 1.5].

All the analytical results we have managed to prove so far concern the Simple Equation, but
as we saw, the Medium and Big Equations reproduce the physics of the Bose gas much more
accurately. An interesting open problem is to prove the existence of solutions for these equations.
Numerically, we construct the solutions using the Newton algorithm. It would suffice to prove
that this algorithm converges, and we have found in practice that it does so for a wide variety of
initializations.

Another direction to investigate is whether the Simplified Approach can yield results for
the Bose gas. For instance, we have observed numerically that the Simple Equation predicts an
energy which is larger than the energy of the Bose gas. If such a statement could be proved,
it would provide us with an upper bound on the energy that would hold at all densities. It
would also give us the Lee-Huang-Yang formula (2.12) as an upper bound at low densities, and
since the Simple Equation can be studied for hard core potentials, it would fill in a gap in our
current knowledge on the ground state energy at low densities. The difficulty here is that the
Simplified Approach does not provide an Ansatz for the ground state wavefunction. Such an
Ansatz could be obtained from the solution u using a Bijl-Dingle-Jastrow function [Bi40, Di49,
Ja55] (sometimes referred to simply as a Jastrow function), but evaluating the energy of such a
wavefunction is not an easy task.

An important open problem is to estimate the error made by the approximations leading
to the Simplified Approach. This would allows us to estimate how far the predictions of the
Simplified Approach are from the Bose gas. Another intriguing open question is whether the
Simplified Approach can be extended to excited states, or to a thermal state. However, the
derivation of the Simplified Approach only specializes to the ground state through the fact that the
wavefunction is non-negative, which allows for the probabilistic interpretation of the correlation

functions g
(n)
N to hold. At the moment, it is not clear how to adapt this to excited states.
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Appendices

A1. Some comments on numerical computations

To carry out the numerical computations, we wrote a software package called simplesolv [ss],
which is available for download from

http://ian.jauslin.org/software/simplesolv

and is released under the Apache 2.0 open source license. It is written in the julia programming
language, and requires the julia interpreter to run. The documentation that is bundled with
the software contains information on how to use the software, as well as detailed descriptions of
the computations involved.

simplesolv can compute the solution to any of the equations in the Simplified Approach
(as well as any interpolation between the Complete Equation and the Simple Equation. It can
compute various observables: the ground state energy per particle, the condensate fraction, the
two-point correlation function, and the momentum distribution, as well as the solution u(x)
and its Fourier transform û(k). Seven different potentials are built in, and it is rather simple
to program custom potentials. In addition, simplesolv can compute solutions of the Simple
Equation with a hard core potential.

The computations are carried out in Fourier space, where there are fewer convolutions. Mo-
mentum space is compactified using the transformation |k| 7→ 1−|k|

1+|k| . Integrals are computed using
Gauss quadratures, which consist in a replacing integrals by sums, in which the integrands are
evaluated at carefully chosen points |ki|. The error of Gauss quadratures decays exponentially
with the number of sample points (provided the integrand is analytic). In the case of the Simple
and Medium Equations, we represent the solution û as a vector whose components are û(ki),
where the ki are the points defined by the Gauss quadrature algorithm. Due to the fact that
these equations do not involve convolutions in Fourier space, the solution û only ever needs to be
evaluated at ki, and so representing û by this finite-dimensional vector works well. In the case of
the Big Equation, which involves convolutions in Fourier space, we need an interpolation scheme
to evaluate û away from ki. We chose the Chebyshev polynomial approximation, whose error in
L∞ norm decays exponentially with the order of the polynomials (in the case of analytic func-
tions). In order to avoid boundary effects propagating to all momenta, we split momentum space
into intervals (called “splines”), and expand into Chebyshev polynomials inside each interval.
The Complete Equation is treated similarly, although computation times increase dramatically.

Having specified the solution û by a finite-dimensional vector, we solve the equations using
the Newton algorithm, which has a super-exponential rate of convergence. The algorithm is run
until the Newton step becomes smaller than a specified tolerance. For the Simple and Medium
Equations, the Newton algorithm is initialized with the scattering solution, whereas for all other
equations, it is initialized with the solution of the Medium Equation.

There is a significant difference in the run-time for the different equations. The Simple and
Medium Equations are significantly faster than the Big Equation, which itself is significantly
faster than the Complete Equation. As we saw in the discussion above, the Medium Equation is
rather accurate, and it is one of the quickest and easiest to solve numerically.

For readers interested in reproducing the numerical results presented here and in [CHe21],
the values of all parameters are available, bundled with the preprints, at the following websites:
for [CHe21]:

http://ian.jauslin.org/publications/20chjl

and for the present paper:
http://ian.jauslin.org/publications/22j
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In each case, the relevant information can be found in the file ./figs/*.fig/Makefile where
the commands that were run to obtain graphs are written out.

A2. Decay of the two-point correlation function

In this appendix, we prove Theorem 4.8.

Let

(A2.1)σ :=
1

1− ρ
∫
dx v(x)Kẽ(2u(x)− ρu ∗ u(x))

in terms of which

(A2.2)
C̃2

ρ2
− 1 = −u(x)− σu(x)Kẽv(x) + σΦ(x)

with

(A2.3)Φ(x) := Kẽv(x)− 2ρu ∗ Kẽv(x) + ρ2u ∗ u ∗ Kẽv(x) = Kẽv ∗ (δ − ρu) ∗ (δ − ρu)(x)

where δ(x) is the Dirac delta function. Note that |x|4u ∈ L∞(R3) (see Theorem 4.4). Further-
more, Kẽv ∈ L2(R3) ∩ L∞(R3) (see [CJL21, Lemma 1.10]), so

(A2.4)|x|4
(
C̃2(x)

ρ2
− (1− u(x))− σΦ(x)

)
= −|x|4σKẽv(x) =: |x|4r(x) ∈ L2(R3) ∩ L∞(R3).

We now turn to the asymptotics of Φ.

1 - First note that, by the resolvant identity,

(A2.5)Kẽv = Yẽ(v(1− Kẽv)), Yẽ := (−∆+ 4ẽ(1− ρu∗))−1.

Let

(A2.6)w := v(1− Kẽv)

which, by [CJL21, Lemma 1.10], satisfies 0 ⩽ w ⩽ 1 and w ∈ L1(R3). In terms of w,

(A2.7)Φ(x) = Yẽw ∗ (δ − ρu) ∗ (δ − ρu)(x) = w ∗ (δ − ρu) ∗Yẽ(δ − ρu)(x).

We will now compute the decay of

(A2.8)Ψ(x) := Yẽ(δ − ρu)

and show that

(A2.9)|Ψ(x)| ⩽ (const.)

|x|6 .

In Fourier space,

(A2.10)4ẽΨ̂ =
1− ρû

κ2 + (1− ρû)
=

1

1 + κ2

1−ρû

, κ :=
|k|
2
√
ẽ
.

We bound

(A2.11)||x|6Ψ| ⩽ ∥∆3
kΨ̂∥1 =

2π√
ẽ

∫
dκ κ2

∣∣∣∣∂6κΨ̂ +
6

κ
∂5κΨ̂

∣∣∣∣ .
2 - We bound ∂nκ Ψ̂.
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2-1 - We first compute ∂nκ Ψ̂ for κ≪ 1. We have [CJL20, (4.25)]

(A2.12)ρû = κ2 + 1−
√

(κ2 + 1)2 − ρ

2ẽ
Ŝ, S(x) := (1− u(x))v(x)

and since (1 + |x|)6v ∈ L1(R3),

(A2.13)
ρ

2ẽ
Ŝ(κ) = 1− β2κ

2 + β4κ
4 + β6κ

6 +O(κ8)

with β2 > 0. By a direct computation, we find that

(A2.14)4ẽΨ̂(0) = 1, 4ẽ∂6κΨ̂|κ=0 = 0, 4ẽ∂5κΨ̂|κ=0 =
3β24 − 6β4 + 3 + (4β2 + 8)β6

8(2 + β2)
5
2

so, for 5 ⩽ n ⩽ 6
(A2.15)∂nκ Ψ̂ = O(1)

(from here on out, all constants may depend on ẽ).

2-2 - We now turn to κ≫ 1. First note that, since (1 + |x|)6v ∈ L1(R3), for 0 ⩽ n ⩽ 4,

(A2.16)
ρ

2ẽ
|∂nκS| = O(1).

By a direct evaluation we find that

(A2.17)4ẽΨ̂ =
1

κ2
+O(κ−4), 4ẽ∂5κΨ̂ = −

ρ
2ẽ∂

5
κŜ

2κ4
+O(κ−5), 4ẽ∂6κΨ̂ = −

ρ
2ẽ∂

6
κŜ

2κ4
+O(κ−5)

so

(A2.18)

∣∣∣∣∂6κΨ̂ +
6

κ
∂5κΨ̂

∣∣∣∣ = O(κ−4).

2-3 - Thus |x|6Ψ ∈ L∞(R3), and so

(A2.19)Ψ ⩽
(const.)

|x|6 .

3 - Furthermore, if (1 + |x|)6v ∈ L1(R3), then

(A2.20)|w(x)| ⩽ (const.)

|x|6 .

Now, given two functions f, g such that f ∼ α|x|−n and g ∼ β|x|−m with m > n, f ∗ g ∼
α|x|−n

∫
dx g(x), so

(A2.21)Φ ≡ w ∗ (δ − ρu) ∗Ψ ∼|x|→∞ −ρu
∫
dx w ∗Ψ(x).

Furthermore, if v ∈ L 3
2
+ϵ(R

3), then w ∈ L 3
2
+ϵ(R

3), and by (A2.14) and (A2.17), Ψ̂ ∈ L 3+2ϵ
1+2ϵ

(R3),
so

(A2.22)

∥∥∥∥∫ dx w ∗Ψ(x)

∥∥∥∥ ⩽ ∥w∥ 3
2
+ϵ∥Ψ∥ 3+2ϵ

1+2ϵ
.

Thus,
(A2.23)Φ ∼ (const.)u.

We conclude the proof using (A2.4) and Theorem 4.4. □
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