From 6086bbc8826d558bedab6933913c6793850470fb Mon Sep 17 00:00:00 2001 From: Ian Jauslin Date: Thu, 9 Mar 2023 11:48:20 -0500 Subject: As presented at Rutgers on 2023-03-09 --- Jauslin_Rutgers_2023.tex | 457 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 457 insertions(+) create mode 100644 Jauslin_Rutgers_2023.tex (limited to 'Jauslin_Rutgers_2023.tex') diff --git a/Jauslin_Rutgers_2023.tex b/Jauslin_Rutgers_2023.tex new file mode 100644 index 0000000..508a8b7 --- /dev/null +++ b/Jauslin_Rutgers_2023.tex @@ -0,0 +1,457 @@ +\documentclass{ian-presentation} + +\usepackage[hidelinks]{hyperref} +\usepackage{graphicx} +\usepackage{array} +\usepackage{xcolor} + + +\definecolor{ipurple}{HTML}{4B0082} +\definecolor{iyellow}{HTML}{DAA520} +\definecolor{igreen}{HTML}{32CD32} +\definecolor{iblue}{HTML}{4169E1} +\definecolor{ired}{HTML}{DC143C} + +\definecolor{highlight}{HTML}{981414} + +\begin{document} +\pagestyle{empty} +\hbox{}\vfil +\bf\Large +\hfil Interacting Bosons at intermediate densities\par +\vfil +\large +\hfil Ian Jauslin +\normalsize +\vfil +\hfil\rm joint with {\bf Eric A. Carlen}, {\bf Elliott H. Lieb}\par +\vfil +arXiv:{\tt\ \parbox[b]{6cm}{ + \href{https://arxiv.org/abs/1912.04987}{1912.04987}\ + \href{https://arxiv.org/abs/2010.13882}{2010.13882}\par + \href{https://arxiv.org/abs/2011.10869}{2011.10869}\ + \href{https://arxiv.org/abs/2202.07637}{2202.07637}\par + \href{https://arxiv.org/abs/2302.13446}{2302.13446}\ + \href{https://arxiv.org/abs/2302.13449}{2302.13449} +}} +\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}} +\eject + +\setcounter{page}1 +\pagestyle{plain} + +\title{Bosons} +\begin{itemize} +\item Quantum particles are either {\color{highlight}Fermions} or {\color{highlight}Bosons} (in 3D). + +\item Fermions: electrons, protons, neutrinos, etc... + +\item Bosons: photons, Helium atoms, Higgs particle, etc... + +\item At low temperatures: inherently {\color{highlight}quantum} behavior: e.g. {\color{highlight}Bose-Einstein condensation}, superfluidity, quantized vortices, etc... + +\item Difficult to handle mathematically: usual approach {\color{highlight}effective theories}. + +\item The connection between the original model and the effective theory is, in most cases, poorly understood. +\end{itemize} +\vfill +\eject + +\title{Repulsive Bose gas} +\begin{itemize} + \item Potential: {\color{highlight}$v(r)\geqslant 0$}, {\color{highlight}$\hat v\geqslant 0$} and {\color{highlight}$v\in L_1(\mathbb R^3)$}, on a torus of volume $V$: + $$ + H_N:= + -\frac12\sum_{i=1}^N\Delta_i + +\sum_{1\leqslant i\displaystyle l} + -\frac12(\Delta_x+\Delta_y) g_2(x,y) + +\frac{N-2}V\int dz\ (v(x-z)+v(y-z))g_3(x,y,z) + \\[0.5cm]\hfill + +v(x-y)g_2(x,y) + +\frac{(N-2)(N-3)}{2V^2}\int dzdt\ v(z-t)g_4(x,y,z,t) + =E_0g_2(x,y) + \end{array} + $$ + + \item {\color{highlight}Infinite hierarchy} of equations. +\end{itemize} +\vfill +\eject + +\title{Factorization assumption} +\begin{itemize} + \item Factorization {\color{highlight}assumption} (clustering property): for $n=3,4$, + $$ + g_n(x_1,\cdots,x_n)=\prod_{1\leqslant i + . + $$ + \item + {\color{highlight}Radial distribution}: spherical average and normalization: + $$ + G(r):=\frac1{\rho^2}\int\frac{dy}{4\pi r^2}\ \delta(|y|-r)C_2(y) + . + $$ + + \item + Compute $C_2$ using + $$ + C_2(x)=2\rho\frac{\delta e_0}{\delta v(x)} + . + $$ +\end{itemize} +\vfill +\eject + +\title{Radial distribution function} +$v(x)=16e^{-|x|}$, $\rho=0.02$ {\color{ipurple}Big equation}, {\color{ired}Monte Carlo} + +\hfil\includegraphics[height=5.5cm]{2pt.pdf} +\vfill +\eject + +\title{Radial distribution function} +$v(x)=8e^{-|x|}$, $\rho=10^{-5}$-$10^{-1}$ + +\hfil\includegraphics[height=5.5cm]{2pt_rho.pdf} +\vfill +\eject + +\title{Radial distribution function} +$v(x)=8e^{-|x|}$, maximal value as a function of $\rho$: + +\hfil\includegraphics[height=5.5cm]{2pt_max.pdf} +\vfill +\eject + +\title{Liquid behavior} +\begin{itemize} + \item Maximum above $1$: there is a length scale at which it is {\color{highlight} more probable} to find pairs of particles. + \item {\color{highlight}No} long range order. + \item {\color{highlight}Short-range order}: {\color{highlight}Liquid}-like behavior. +\end{itemize} +\vfill +\eject + +\title{Structure factor} +\begin{itemize} + \item + {\color{highlight}Structure factor}: Fourier transform of $G$: + $$ + S(|k|):=1+\rho\int dx\ e^{ikx}(G(|x|)-1) + . + $$ + + \item + Directly observable in X-ray scattering experiments. + + \item + Sharp peaks: order. + + \item + Large deviation from $1$: uniformity. +\end{itemize} +\vfill +\eject + +\title{Structure factor} +$v(x)=8e^{-|x|}$, $\rho=10^{-5}$-$0.3$ + +\hfil\includegraphics[height=5.5cm]{2pt_fourier_full.pdf} +\vfill +\eject + +\title{Structure factor} +$v(x)=8e^{-|x|}$, $\rho=10^{-5}$-$0.3$ + +\hfil\includegraphics[height=5.5cm]{2pt_fourier_peak.pdf} +\vfill +\eject + +\title{Structure factor} +$v(x)=8e^{-|x|}$, maximal value as a function of $\rho$: + +\hfil\includegraphics[height=5.5cm]{2pt_fourier_max.pdf} +\vfill +\eject + +\title{Liquid behavior} +\begin{itemize} + \item Sharpening of the peak: more order. + \item Not Bragg peaks: {\color{highlight}No} long range order. + \item Larger deviation from 1: more uniform (not even close to hyperuniform). + \item {\color{highlight}Short-range order}: {\color{highlight}Liquid}-like behavior. +\end{itemize} +\vfill +\eject + +\title{Critical densities} +\begin{itemize} + \item + We have found two critical densities: $\rho_*\approx 0.9\times10^{-3}$ and $\rho_{**}\approx0.2$. + + \item The radial distribution function has a maximum only for $\rho>\rho_*$. + + \item The structure factor has a maximum only for $\rho<\rho_{**}$. +\end{itemize} +\vfill +\eject + +\title{Condensate fraction} +\begin{itemize} + \item + Proportion of particles in the condensate state: + $$ + \eta:=\frac1N\sum_i\left<\psi_0\right|P_i\left|\psi_0\right> + $$ + where $P_i$ is the projector onto the constant state $V^{-\frac12}$. + + \item + $\eta>0$ in thermodynamic limit: {\color{highlight}Bose-Einstein condensation} (still not proved to occur). +\end{itemize} +\vfill +\eject + +\title{Condensate fraction} +$v(x)=8e^{-|x|}$: + +\hfil\includegraphics[height=5.5cm]{condensate.pdf} +\vfill +\eject + +\title{Summary and outlook} +\begin{itemize} + \item Using the {\color{highlight}Simplified approach}, we were able to probe the repulsive Bose gas {\color{highlight}beyond the dilute regime}. + + \item Evidence for {\color{highlight}non-trivial behavior} at intermediate densities $\rho_*<\rho<\rho_{**}$: {\color{highlight}short-range order}. + + \item Is there a phase transition? + + \item The intermediate density regime has not been studied much, due to the lack of tools to do so. + As we have seen, there is non-trivial behavior there. + This warrants further investigation, both theoretical and experimental. +\end{itemize} +\vfill +\eject + +\title{Open problems on the Simplified approach} +\begin{itemize} + \item + Connect the Simplified approach to the many-Boson system: numerics suggests the prediction of the Simplified approach is an {\color{highlight}upper bound}, for all densities. + + \item + Understand the factorization assumption. + It certainly does not hold exactly. + Does it hold approximately, in some sense? + + \item + There are still many questions about the Bose gas with hard core interactions. + The Simplified approach is easily defined in the hard core case. + Can it shed some light? +\end{itemize} + +\end{document} -- cgit v1.2.3-54-g00ecf