\documentclass{ian-presentation} \usepackage[hidelinks]{hyperref} \usepackage{graphicx} \usepackage{array} \usepackage{xcolor} \usepackage{ulem} \definecolor{ipurple}{HTML}{4B0082} \definecolor{iyellow}{HTML}{DAA520} \definecolor{igreen}{HTML}{32CD32} \definecolor{iblue}{HTML}{4169E1} \definecolor{ired}{HTML}{DC143C} \definecolor{highlight}{HTML}{328932} \definecolor{highlight}{HTML}{981414} \begin{document} \pagestyle{empty} \hbox{}\vfil \bf\Large \hfil An effective equation to study Bose gases\par \smallskip \hfil at all densities\par \vfil \large \hfil Ian Jauslin \normalsize \vfil \hfil\rm joint with {\bf Eric A. Carlen}, {\bf Markus Holzmann}, {\bf Elliott H. Lieb}\par \vfil \hfill{\color{highlight}\bf \textit{Grazie, Giovanni!}}\par \hfill{\color{highlight} \href{https://sententiaeantiquae.com/2014/11/29/how-to-say-happy-birthday-in-ancient-greek/}{$\gamma\epsilon\nu\acute\epsilon\theta\lambda\iota o\nu\ \tilde{\dot\eta}\mu\alpha\rho\ \epsilon\dot\upsilon\tau\upsilon\chi\grave\epsilon\varsigma$}}\par \vfil arXiv:{\tt\ \parbox[b]{3cm}{ \href{https://arxiv.org/abs/1912.04987}{1912.04987}\par \href{https://arxiv.org/abs/2010.13882}{2010.13882}\par \href{https://arxiv.org/abs/2011.10869}{2011.10869}\par \href{https://arxiv.org/abs/2202.07637}{2202.07637} }} \hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}} \eject \hbox{}\vfil \bf\Large \hfil An effective equation to study Bose gases\par \smallskip \hfil at all densities\par \vfil \large \hfil Ian Jauslin \normalsize \vfil \hfil\rm joint with {\bf Eric A. Carlen}, {\bf Markus Holzmann}, {\bf Elliott H. Lieb}\par \vfil \hfill{\color{highlight}\bf \textit{Grazie, Giovanni!}}\par \hfill{\color{highlight}\sout{\href{https://sententiaeantiquae.com/2014/11/29/how-to-say-happy-birthday-in-ancient-greek/}{$\gamma\epsilon\nu\acute\epsilon\theta\lambda\iota o\nu\ \tilde{\dot\eta}\mu\alpha\rho\ \epsilon\dot\upsilon\tau\upsilon\chi\grave\epsilon\varsigma$}}}\par \vfil arXiv:{\tt\ \parbox[b]{3cm}{ \href{https://arxiv.org/abs/1912.04987}{1912.04987}\par \href{https://arxiv.org/abs/2010.13882}{2010.13882}\par \href{https://arxiv.org/abs/2011.10869}{2011.10869}\par \href{https://arxiv.org/abs/2202.07637}{2202.07637} }} \hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}} \eject \setcounter{page}1 \pagestyle{plain} \title{Bose-Einstein condensation} \begin{itemize} \item System of many Bosons, e.g. {\color{highlight}Helium} atoms, {\color{highlight}Rubidium} atoms, etc... \item {\color{highlight}Bose-Einstein condensate}: most particles are in the same quantum state. \item Predicted theoretically in {\color{highlight}1924-1925}, experimentally observed in {\color{highlight}1995}. \item Mathematical understanding: still {\color{highlight}no proof} of the existence of a condensate (at finite density, in the presence of interactions and in the continuum). \end{itemize} \vfill \eject \title{Repulsive Bose gas} \begin{itemize} \item Potential: {\color{highlight}$v(r)\geqslant 0$} and {\color{highlight}$v\in L_1(\mathbb R^3)$}, Hamiltonian on a torus of volume $V$: $$ H_N:= -\frac12\sum_{i=1}^N\Delta_i +\sum_{1\leqslant i . $$ \end{itemize} \vfill \eject \title{Low density} \begin{itemize} \item Bogolyubov theory: {\color{highlight}approximation scheme} that reduces the problem to an effective {\color{highlight}1-particle problem}. \item Predictions \href{https://doi.org/10.1103/PhysRev.106.1135}{[Lee, Huang, Yang, 1957]}: \begin{itemize} \item Energy: $$ {\color{highlight}e_0=2\pi\rho a\left(1+\frac{128}{15\sqrt\pi}\sqrt{\rho a^3}+o(\sqrt\rho)\right)} $$ \vskip-10pt \item Condensate fraction: $$ {\color{highlight}1-\eta_0\sim\frac{8\sqrt{\rho a^3}}{3\sqrt\pi}} $$ \end{itemize} \end{itemize} \vfill \eject \title{Low density} \begin{itemize} \item Energy asymptotics: {\color{highlight} proved}: \href{https://doi.org/10.1103/PhysRevLett.80.2504}{[Lieb, Yngvason, 1998]}, \href{https://doi.org/10.1007/s10955-009-9792-3}{[Yau, Yin, 2009]}, \href{https://doi.org/10.4007/annals.2020.192.3.5}{[Fournais, Solovej, 2020]}, \href{https://arxiv.org/abs/2101.06222}{[Basti, Cenatiempo, Schlein, 2021]}. \item Condensate fraction: {\color{highlight}still open} in the theormodynamic limit (there are proofs of condensation in the Gross-Pitaevskii regime (ultra-dilute): \href{https://doi.org/10.1103/PhysRevLett.88.170409}{[Lieb, Seiringer, 2002]}, \href{https://doi.org/10.1007/s00220-017-3016-5}{[Boccato, Brennecke, Cenatiempo, Schlein, 2018]}). \end{itemize} \vfill \eject \title{High density} \begin{itemize} \item [Bogolyubov, 1947]: if $\hat v\geqslant 0$. $$ {\color{highlight}e_0\sim\frac\rho2\int v} $$ {\color{highlight}Hartree} (mean field) energy. \item {\color{highlight}Proved} in \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]}. \item Condensate fraction ({\color{highlight}open problem}): $$ \eta\to1 $$ \end{itemize} \vfill \eject \title{Energy as a function of density} For $v(x)=e^{-|x|}$: \hfil\includegraphics[height=5.5cm]{erho_lowhigh.pdf} \vfill \eject \addtocounter{page}{-1} \title{Energy as a function of density} For $v(x)=e^{-|x|}$: \hfil\includegraphics[height=5.5cm]{erho_effective.pdf} \vfill \eject \title{Derivation of the equation} \begin{itemize} \item \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]}. \item Integrate $H_N\psi_0=E_0\psi_0$: $$ \int dx_1\cdots dx_N\ \left( -\frac12\sum_{i=1}^N\Delta_i\psi_0 +\sum_{1\leqslant i\displaystyle l} -\frac12(\Delta_x+\Delta_y) g_2(x,y) +\frac{N-2}V\int dz\ (v(x-z)+v(y-z))g_3(x,y,z) \\[0.5cm]\hfill +v(x-y)g_2(x,y) +\frac{(N-2)(N-3)}{2V^2}\int dzdt\ v(z-t)g_4(x,y,z,t) =E_0g_2(x,y) \end{array} $$ \item Factorization {\color{highlight}assumption}: $$ g_3(x_1,x_2,x_3)=g_2(x_1,x_2)g_2(x_1,x_3)g_2(x_2,x_3) $$ $$ g_4(x_1,x_2,x_3,x_4)=\prod_{i0$}, and compute $\rho$ and $u$. \item {\color{highlight}Iteration}: $u_0=0$, $$ (-\Delta+4e+v)u_n=v+2e\rho_{n-1}u_{n-1}\ast u_{n-1} ,\quad \rho_n:=\frac{2e}{\int dx\ (1-u_n(x))v(x)} . $$ \end{itemize} \vfill \eject \title{The uniqueness problem} \begin{itemize} \item {\bf Lemma}: $u_n(x)$ is an {\color{highlight}increasing} sequence, and is {\color{highlight}bounded} $u_n(x)\leqslant 1$. It converges to a function $u$, which is the {\color{highlight}unique} integrable solution of the equation {\color{highlight}with $e$ fixed}. \item {\bf Lemma}: $e\mapsto\rho(e)$ is {\color{highlight}continuous}, and $\rho(0)=0$ and $\rho(\infty)=\infty$, which allows us to compute solutions for the problem at fixed $\rho$. \item We thus have a {\color{highlight}restricted} notion of uniqueness. The full uniqueness would follow from a proof that $e\mapsto\rho(r)$ is {\color{highlight}monotone increasing} (which must be true for the physics to make sense). \end{itemize} \vfill \eject \title{Existence for the {\color{ipurple}Big Equation}} \begin{itemize} \item Numerical method: {\color{highlight}Newton algorithm}. \item For the existence of a solution, it would suffice to prove that the Newton algorithm has a {\color{highlight}Basin of attraction}. (Kantorovich-like theorem?) \item Such a result, applied to the {\color{iblue}Simple Equation}, would imply the {\color{highlight}uniqueness} of a solution (provided we have convergence in an appropriate norm). \end{itemize} \end{document}