From 1f5187ec369f11f102f975ff69ca4e8109eff7cf Mon Sep 17 00:00:00 2001 From: Ian Jauslin Date: Wed, 28 Apr 2021 10:11:13 -0400 Subject: As presented at LMU on 2021-04-28 --- Jauslin_LMU_2021.tex | 398 +++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 398 insertions(+) create mode 100644 Jauslin_LMU_2021.tex (limited to 'Jauslin_LMU_2021.tex') diff --git a/Jauslin_LMU_2021.tex b/Jauslin_LMU_2021.tex new file mode 100644 index 0000000..ab433b8 --- /dev/null +++ b/Jauslin_LMU_2021.tex @@ -0,0 +1,398 @@ +\documentclass{ian-presentation} + +\usepackage[hidelinks]{hyperref} +\usepackage{graphicx} +\usepackage{array} +\usepackage{xcolor} + + +\definecolor{ipurple}{HTML}{4B0082} +\definecolor{iyellow}{HTML}{DAA520} +\definecolor{igreen}{HTML}{32CD32} +\definecolor{iblue}{HTML}{4169E1} +\definecolor{ired}{HTML}{DC143C} + +\definecolor{highlight}{HTML}{328932} +\definecolor{highlight}{HTML}{981414} + +\begin{document} +\pagestyle{empty} +\hbox{}\vfil +\bf\Large +\hfil An effective equation to study Bose gases\par +\smallskip +\hfil at all densities\par +\vfil +\large +\hfil Ian Jauslin +\normalsize +\vfil +\hfil\rm joint with {\bf Eric A. Carlen}, {\bf Markus Holzmann}, {\bf Elliott H. Lieb}\par +\vfil +arXiv:{\tt\ \parbox[b]{3cm}{ + \href{https://arxiv.org/abs/1912.04987}{1912.04987}\par + \href{https://arxiv.org/abs/2010.13882}{2010.13882}\par + \href{https://arxiv.org/abs/2011.10869}{2011.10869} +}} +\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}} +\eject + +\setcounter{page}1 +\pagestyle{plain} + +\title{Bose-Einstein condensation} +\begin{itemize} +\item System of many Bosons, e.g. {\color{highlight}Helium} atoms, {\color{highlight}Rubidium} atoms, etc... +\item {\color{highlight}Bose-Einstein condensate}: most particles are in the same quantum state. +\item Related to the phenomena of {\color{highlight}superfluidity} (flow with zero viscocity) and {\color{highlight}superconductivity} (currents with zero resistance). +\item Predicted theoretically in {\color{highlight}1924-1925}, experimentally observed in {\color{highlight}1995}. +\item Mathematical understanding: still {\color{highlight}no proof} of the existence of a condensate (at finite density, in the presence of interactions and in the continuum). +\end{itemize} +\vfill +\eject + +\title{Repulsive Bose gas} +\begin{itemize} + \item Potential: {\color{highlight}$v(r)\geqslant 0$} and {\color{highlight}$v\in L_1(\mathbb R^3)$}, Hamiltonian: + $$ + H_N:= + -\frac12\sum_{i=1}^N\Delta_i + +\sum_{1\leqslant i + . + $$ +\end{itemize} +\vfill +\eject + +\title{Low density} +\begin{itemize} + \item Bogolyubov theory: {\color{highlight}approximation scheme} that reduces the problem to an effective {\color{highlight}1-particle problem}. + \item Predictions \href{https://doi.org/10.1103/PhysRev.106.1135}{[Lee, Huang, Yang, 1957]}: + \begin{itemize} + \item Energy: + $$ + {\color{highlight}e_0=2\pi\rho a\left(1+\frac{128}{15\sqrt\pi}\sqrt{\rho a^3}+o(\sqrt\rho)\right)} + $$ + \vskip-10pt + \item Condensate fraction: + $$ + {\color{highlight}1-\eta_0\sim\frac{8\sqrt{\rho a^3}}{3\sqrt\pi}} + $$ + \end{itemize} +\end{itemize} +\vfill +\eject + +\title{Low density} +\begin{itemize} + \item Energy asymptotics: {\color{highlight} proved}: + \href{https://doi.org/10.1103/PhysRevLett.80.2504}{[Lieb, Yngvason, 1998]}, + \href{https://doi.org/10.1007/s10955-009-9792-3}{[Yau, Yin, 2009]}, + \href{https://doi.org/10.4007/annals.2020.192.3.5}{[Fournais, Solovej, 2020]}. + + \item Condensate fraction: {\color{highlight}still open} in the theormodynamic limit, but there are proofs of condensation in the Gross-Pitaevskii regime (ultra-dilute): + \href{https://doi.org/10.1103/PhysRevLett.88.170409}{[Lieb, Seiringer, 2002]}, + \href{https://doi.org/10.1007/s00220-017-3016-5}{[Boccato, Brennecke, Cenatiempo, Schlein, 2018]}. + +\end{itemize} +\vfill +\eject + +\title{High density} +\begin{itemize} + \item [Bogolyubov, 1947]: if $\hat v\geqslant 0$. + $$ + {\color{highlight}e_0\sim\frac\rho2\int v} + $$ + {\color{highlight}Hartree} (mean field) energy. + \item {\color{highlight}Proved} in \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]}. + \item Condensate fraction + $$ + \eta\to1 + $$ + {\color{highlight}open}. +\end{itemize} +\vfill +\eject + +\title{Energy as a function of density} +For $v(x)=e^{-|x|}$: + +\hfil\includegraphics[height=5.5cm]{erho_lowhigh.pdf} +\vfill +\eject + +\addtocounter{page}{-1} +\title{Energy as a function of density} +For $v(x)=e^{-|x|}$: + +\hfil\includegraphics[height=5.5cm]{erho_effective.pdf} +\vfill +\eject + +\title{Derivation of the equation} +\begin{itemize} + \item \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]}. + \item Integrate $H_N\psi_0=E_0\psi_0$: + $$ + \int dx_1\cdots dx_N\ + \left( + -\frac12\sum_{i=1}^N\Delta_i\psi_0 + +\sum_{1\leqslant i\displaystyle l} + -\frac12(\Delta_x+\Delta_y) g_2(x,y) + +\frac{N-2}V\int dz\ (v(x-z)+v(y-z))g_3(x,y,z) + \\[0.5cm]\hfill + +v(x-y)g_2(x,y) + +\frac{(N-2)(N-3)}{2V^2}\int dzdt\ v(z-t)g_4(x,y,z,t) + =E_0g_2(x,y) + \end{array} + $$ + \item Factorization {\color{highlight}assumption}: + $$ + g_3(x_1,x_2,x_3)=g_2(x_1,x_2)g_2(x_1,x_3)g_2(x_2,x_3) + $$ + $$ + g_4(x_1,x_2,x_3,x_4)=\prod_{i + =-\frac1N\partial_\mu \left<\psi_0\right|H_N(\mu)\left|\psi_0\right>|_{\mu_0} + \equiv + {\color{highlight}-\partial_\mu e_0(\mu)|_{\mu=0}} + $$ +\end{itemize} +\vfill +\eject + +\title{Condensate fraction} +\begin{itemize} + \item {\bf Theorem 4}: + For the {\color{iblue}simple equation}, as $\rho\to0$ + $$ + 1-\eta\sim\frac{8\sqrt{\rho a^3}}{3\sqrt\pi} + $$ + which coincides with {\color{highlight}Bogolyubov's prediction}. +\end{itemize} +\vfill +\eject + +\title{Condensate fraction} +$v(x)=e^{-|x|}$, Blue: {\color{iblue}simple equation}; purple: {\color{ipurple}big equation}; red: {\color{ired}Monte Carlo} + +\hfil\includegraphics[height=5.5cm]{condensate.pdf} +\vfill +\eject + +\title{Two point correlation function} +$v(x)=16e^{-|x|}$, Blue: {\color{iblue}simple equation}; purple: {\color{ipurple}big equation}; red: {\color{ired}Monte Carlo} + +\hfil\includegraphics[height=5.5cm]{correlation.pdf} +\vfill +\eject + +\title{The uniqueness problem} + $$ + -\Delta u(x)=(1-u(x))v(x)- 4eu(x)+2e\rho\ u\ast u(x) + ,\quad + e=\frac\rho2\int dx\ (1-u(x))v(x) + $$ +\begin{itemize} + \item Change the point of view: {\color{highlight}fix $e>0$}, and compute $\rho$ and $u$. + + \item {\color{highlight}Iteration}: $u_0=0$, + $$ + (-\Delta+4e+v)u_n=v+2e\rho_{n-1}u_{n-1}\ast u_{n-1} + ,\quad + \rho_n:=\frac{2e}{\int dx\ (1-u_n(x))v(x)} + . + $$ +\end{itemize} +\vfill +\eject + +\title{The uniqueness problem} +\begin{itemize} + \item {\bf Lemma}: $u_n(x)$ is an {\color{highlight}increasing} sequence, and is {\color{highlight}bounded} $u_n(x)\leqslant 1$. + It converges to a function $u$, which is the {\color{highlight}unique} integrable solution of the equation {\color{highlight}with $e$ fixed}. + + \item {\bf Lemma}: $e\mapsto\rho(e)$ is {\color{highlight}continuous}, and $\rho(0)=0$ and $\rho(\infty)=\infty$, which allows us to compute solutions for the problem at fixed $\rho$. + + \item We thus have a {\color{highlight}restricted} notion of uniqueness. + The full uniqueness would follow from a proof that $e\mapsto\rho(r)$ is {\color{highlight}monotone increasing} (which must be true for the physics to make sense). +\end{itemize} + +\vfill +\eject + +\title{Limitations of the simple and big equations} +\begin{itemize} + \item Only works at high densities for {\color{highlight}$\hat v\geqslant 0$}. + \item Less accurate for {\color{highlight}large potentials}: for $v(x)=16e^{-|x|}$, + + \hfil\includegraphics[width=5.5cm]{energy16.pdf} + \hfil\includegraphics[width=5.5cm]{condensate16.pdf} +\end{itemize} +\vfill +\eject + +\title{Conclusions and outlook} +\begin{itemize} + \item Two {\color{highlight}effective equations}: the {\color{ipurple}big equation} and the {\color{iblue}simple equation}, which are {\color{highlight}non-linear 1-particle equations}. + \item Reproduce the known results for both {\color{highlight}small and large densities}. + \item Their derivation is {\color{highlight}different from Bogolyubov theory}, so they may give new insights onto studying the Bose gas in these asymptotic regimes. + \item The {\color{ipurple}big equation} is {\color{highlight}quantitatively accurate} at intermediate densities. + \item This opens up the possibility of studying the physics of the {\color{highlight}Bose gas at intermediate densities}. +\end{itemize} +\vfill +\eject + +\title{Open problems} +\begin{itemize} + \item Analysis of the {\color{iblue}simple equation}: {\color{highlight}Monotonicity} of $e(\rho)$, and {\color{highlight}convexity} of $\rho e(\rho)$. (So far, we have proofs for small and large $\rho$.). Similarly, prove that $0\leqslant\eta\leqslant 1$. (We have a proof for small $\rho$.) + + \item Analysis of the {\color{ipurple}big equation}: everything is still open. + + \item Relate these equations back to the {\color{highlight}many-body Bose gas}. + + \item Other setups: {\color{highlight}trapping potential}. +\end{itemize} + +\end{document} -- cgit v1.2.3-70-g09d2