From 77643c22a7233f586c1b82bb76d144b4eb091b96 Mon Sep 17 00:00:00 2001 From: Ian Jauslin Date: Wed, 8 Jan 2020 19:38:03 -0800 Subject: As presented at UBC on 2020-01-09 --- Jauslin_UBC_2020.tex | 281 +++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 281 insertions(+) create mode 100644 Jauslin_UBC_2020.tex (limited to 'Jauslin_UBC_2020.tex') diff --git a/Jauslin_UBC_2020.tex b/Jauslin_UBC_2020.tex new file mode 100644 index 0000000..4464c76 --- /dev/null +++ b/Jauslin_UBC_2020.tex @@ -0,0 +1,281 @@ +\documentclass{ian-presentation} + +\usepackage[hidelinks]{hyperref} +\usepackage{graphicx} +\usepackage{array} + +\begin{document} +\pagestyle{empty} +\hbox{}\vfil +\bf\Large +\hfil A simplified approach to interacting Bose gases\par +\vfil +\large +\hfil Ian Jauslin +\normalsize +\vfil +\hfil\rm joint with {\bf Eric Carlen}, {\bf Elliott H. Lieb}\par +\vfil +arXiv:{\tt \href{https://arxiv.org/abs/1912.04987}{1912.04987}} +\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}} +\eject + +\setcounter{page}1 +\pagestyle{plain} + +\title{Bose gas} +\hfil\includegraphics[height=6cm]{BEC.png} +\vfill +\eject + +\title{Interacting Bose gas} +\begin{itemize} + \item State: symmetric wave functions in a finite box of volume $V$ with periodic boundary conditions: + $$ + \psi(x_1,\cdots,x_N) + ,\quad + x_i\in \Lambda_d:=V^{\frac1d}\mathbb T^d + $$ + \item $N$-particle Hamiltonian: + $$ + H_N:= + -\frac12\sum_{i=1}^N\Delta_i + +\sum_{1\leqslant i\displaystyle l} + -\frac12(\Delta_x+\Delta_y) g_2(x,y) + +\frac{N-2}V\int dz\ (v(x-z)+v(y-z))g_3(x,y,z) + \\[0.5cm]\hfill + +v(x-y)g_2(x,y) + +\frac{(N-2)(N-3)}{2V^2}\int dzdt\ v(z-t)g_4(x,y,z,t) + =E_0g_2(x,y) + \end{array} + $$ + \item Factorization assumption: + $$ + g_3(x_1,x_2,x_3)=g_2(x_1,x_2)g_2(x_1,x_3)g_2(x_2,x_3) + $$ + $$ + g_4(x_1,x_2,x_3,x_4)=\prod_{i0$, and compute $\rho$ and $u$. + + \item Iteration: $u_0=0$, + $$ + (-\Delta+4e_0+v)u_n=v+2e_0\rho_{n-1}u_{n-1}\ast u_{n-1} + ,\quad + \rho_n:=\frac{2e_0}{\int dx\ (1-u_n(x))v(x)} + . + $$ + + \item Prove by induction that $u_n(x)$ is an increasing sequence, and is bounded $u_n(x)\leqslant 1$. It therefore converges to a function $u$, which is the unique integrable non-negative solution of the equation with $e_0$ fixed. + + \item In addition, we prove that $e_0\mapsto\rho(e_0)$ is continuous, and $\rho(0)=0$ and $\rho(\infty)=\infty$, which allows us to compute solutions for the problem at fixed $\rho$. This does not imply the uniqueness of the solution. +\end{itemize} +\vfill +\eject + +\title{Asymptotics (sketch)} +\vskip-10pt +\begin{itemize} + \item When $\rho$ is small, $e_0$ is small as well, so the solution $u$ is {\it not too far from} the solution of the scattering equation + $$ + (-\Delta+v)\varphi=v + . + $$ + + \item The energy of $\varphi$ is + $$ + \frac\rho 2\int dx\ (1-\varphi(x))v(x)=2\pi\rho a + $$ + which yields the first term in the expansion. + + \item The second term comes from approximating + $$ + (1-u(x))v(x)\approx\frac{2e_0}\rho\delta(x) + $$ + and solving the equation in Fourier space. +\end{itemize} +\vfill +\eject + +\title{Decay (sketch)} +$$ + (-\Delta+4e_0+v)u=v+2e_0\rho u\ast u + ,\quad + e_0=\frac\rho2\int dx\ (1-u(x))v(x) +$$ +\begin{itemize} + \item $u$ and $u\ast u$ have to decay at the same rate. This is a property of algebraically decaying functions. + + \item (Remark: $u_n(x)$ decays exponentially). + + \item Proof is based on the Fourier transform and complex analysis. + + \item Remark: The truncated two-point correlation function of the Bose gas is also conjectured to decay like $|x|^{-4}$. +\end{itemize} +\vfill +\eject + +\title{Conclusion} +\vfill +\begin{itemize} + \item Simple equation: correct asymptotics for the ground state energy at both high and low densities. + + \item Good approximation for intermediate densities (relative error of 5\%). + + \item Intriguing non-linear PDE. + + \item Proved existence, asymptotics, and decay rate. +\end{itemize} +\vfill +\eject + +\title{Open problems and conjectures} +\begin{itemize} + \item Monotonicity of $e_0\mapsto\rho(e_0)$, and concavity of $e_0\mapsto\frac1{\rho(e_0)}$ (would imply uniqueness). + + \item Existence of solutions that are not non-negative? (seems unlikely) + + \item Other observables? Condensate fraction? (in progress) + + \item Crystallization? + + \item {\it Lieb's simple equation} is actually a simplified version of a more complicated one: {\it Lieb's full equation}. Can it improve on the simple one? (in progress) +\end{itemize} + +\end{document} -- cgit v1.2.3-70-g09d2