\documentclass{ian-presentation} \usepackage[hidelinks]{hyperref} \usepackage{graphicx} \usepackage{array} \usepackage{xcolor} \definecolor{ipurple}{HTML}{4B0082} \definecolor{iyellow}{HTML}{DAA520} \definecolor{igreen}{HTML}{32CD32} \definecolor{iblue}{HTML}{4169E1} \definecolor{ired}{HTML}{DC143C} \definecolor{highlight}{HTML}{328932} \definecolor{highlight}{HTML}{981414} \begin{document} \pagestyle{empty} \hbox{}\vfil \bf\Large \hfil An effective equation to study Bose gasses\par \smallskip \hfil at all densities\par \vfil \large \hfil Ian Jauslin \normalsize \vfil \hfil\rm joint with {\bf Eric A. Carlen}, {\bf Markus Holzmann}, {\bf Elliott H. Lieb}\par \vfil arXiv:{\tt \href{https://arxiv.org/abs/1912.04987}{1912.04987}} \hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}} \eject \setcounter{page}1 \pagestyle{plain} \title{Repulsive Bose gas} \begin{itemize} \item Potential: {\color{highlight}$v(r)\geqslant 0$} and {\color{highlight}$v\in L_1(\mathbb R^3)$}, Hamiltonian: $$ H_N:= -\frac12\sum_{i=1}^N\Delta_i +\sum_{1\leqslant i . $$ \end{itemize} \vfill \eject \title{Effective theories} \begin{itemize} \item {\color{highlight}Bogolubov} theory: {\color{highlight}approximation scheme} that makes $H$ {\color{highlight}integrable}. \item Low density predictions \href{https://doi.org/10.1103/PhysRev.106.1135}{[Lee, Huang, Yang, 1957]}: \begin{itemize} \item Energy: $$ {\color{highlight}e_0=2\pi\rho a\left(1+\frac{128}{15\sqrt\pi}\sqrt{\rho a^3}+o(\sqrt\rho)\right)} $$ \vskip-10pt \item Condensate fraction: $$ {\color{highlight}1-\eta_0\sim\frac{8\sqrt{\rho a^3}}{3\sqrt\pi}} $$ \end{itemize} \item At high density: {\color{highlight}Hartree mean-field theory}. \end{itemize} \vfill \eject \title{Mathematical results} \begin{itemize} \item Energy asymptotics: {\color{highlight} proved}: \href{https://doi.org/10.1103/PhysRevLett.80.2504}{[Lieb, Yngvason, 1998]}, \href{https://doi.org/10.1007/s10955-009-9792-3}{[Yau, Yin, 2009]}, \href{https://arxiv.org/abs/1904.06164}{[Fournais, Solovej, 2019]} \item Condensate fraction: {\color{highlight}still open} in the thermodynamic limit. \item At high density, {\color{highlight}proved} in \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]}. $$ {\color{highlight}e_0\sim\frac\rho2\int v} $$ \end{itemize} \vfill \eject \title{Energy as a function of density} For $v(x)=e^{-|x|}$: \hfil\includegraphics[height=5.5cm]{erho_lowhigh.pdf} \vfill \eject \addtocounter{page}{-1} \title{Energy as a function of density} For $v(x)=e^{-|x|}$: \hfil\includegraphics[height=5.5cm]{erho_effective.pdf} \vfill \eject \title{{\color{ipurple}Big equation}} \begin{itemize} \item Solve for \begin{equation} u(x_2-x_1):=1-\frac{\int \frac{dx_3}V\cdots\frac{dx_N}V\ \psi_0(x_1,\cdots,x_N)}{\int \frac{dx_1}V\cdots\frac{dx_N}V\ \psi_0(x_1,\cdots,x_N)} \end{equation} \item {\color{ipurple}``Big'' equation}: $${\color{ipurple} -\Delta u(x) = (1-u(x))\left(v(x)-2\rho u\ast S(x)+\rho^2 u\ast u\ast S(x)\right) }$$ $$ S(y):=(1-u(y))v(y) $$ \end{itemize} \vfill \eject \title{{\color{iblue}Simple equation}} \vskip-10pt \begin{itemize} \item Further approximate $S(x)\approx\frac{2e}\rho\delta(x)$ and $u\ll 1$. \item {\color{iblue}Simple equation}: $$ {\color{iblue}-\Delta u(x)=(1-u(x))v(x)- 4eu(x)+2e\rho\ u\ast u(x)} $$ $$ e=\frac\rho2\int dx\ (1-u(x))v(x) $$ \item {\bf Theorem 1}: If $v(x)\geqslant 0$ and $v\in L_1\cap L_2(\mathbb R^3)$, then the {\color{iblue}simple equation} has an {\color{highlight}integrable solution} (proved constructively), with $0\leqslant u\leqslant 1$. \end{itemize} \vfill \eject \title{Energy for the {\color{iblue}simple equation}} \vskip-10pt \begin{itemize} \item {\bf Theorem 2}: $$ \frac{e}{\rho}\mathop{\longrightarrow}_{\rho\to\infty}\frac12\int dx\ v(x) $$ (note that there is no condition that $\hat v\geqslant 0$). This coincides with the {\color{highlight}Hartree energy}. \item {\bf Theorem 3}: $$ e=2\pi\rho a\left(1+\frac{128}{15\sqrt\pi}\sqrt{\rho a^3}+o(\sqrt\rho)\right) $$ This coincides with the {\color{highlight}Lee-Huang-Yang prediction}. \end{itemize} \vfill \eject \title{Energy} $v(x)=e^{-|x|}$, Blue: {\color{iblue}simple equation}; purple: {\color{ipurple}big equation}; red: {\color{ired}Monte Carlo} \hfil\includegraphics[height=5.5cm]{erho_fulleq.pdf} \vfill \eject \title{Condensate fraction} \begin{itemize} \item {\bf Theorem 4}: For the {\color{iblue}simple equation}, as $\rho\to0$ $$ 1-\eta\sim\frac{8\sqrt{\rho a^3}}{3\sqrt\pi} $$ which coincides with {\color{highlight}Bogolubov's prediction}. \end{itemize} \vfill \eject \title{Condensate fraction} $v(x)=e^{-|x|}$, Blue: {\color{iblue}simple equation}; purple: {\color{ipurple}big equation}; red: {\color{ired}Monte Carlo} \hfil\includegraphics[height=5.5cm]{condensate.pdf} \vfill \eject \title{Limitations of the simple and big equations} \begin{itemize} \item Only works at high densities for {\color{highlight}$\hat v\geqslant 0$}. \item Less accurate for {\color{highlight}large potentials}: for $v(x)=16e^{-|x|}$, \hfil\includegraphics[width=5.5cm]{energy16.pdf} \hfil\includegraphics[width=5.5cm]{condensate16.pdf} \end{itemize} \vfill \eject \title{Conclusions and outlooks} \begin{itemize} \item Two {\color{highlight}effective equations}: the {\color{ipurple}big equation} and the {\color{iblue}simple equation}, which are {\color{highlight}non-linear 1-particle equations}. \item Reproduce the known results for both {\color{highlight}small and large densities}. \item Their derivation is {\color{highlight}different from Bogolubov theory}, so they may give new insights onto studying the Bose gas in these asymptotic regimes. \item The {\color{ipurple}big equation} is {\color{highlight}quantitatively accurate} at intermediate densities. \item This opens up the possibility of studying the physics of the {\color{highlight}Bose gas at intermediate densities}. \end{itemize} \vfill \eject \title{Open problems} \begin{itemize} \item Analysis of the {\color{iblue}simple equation}: {\color{highlight}Monotonicity} of $e(\rho)$, and {\color{highlight}convexity} of $\rho e(\rho)$. (So far, we have proofs for small and large $\rho$.). Similarly, prove that $0\leqslant\eta\leqslant 1$. (We have a proof for small $\rho$.) \item Analysis of the {\color{ipurple}big equation}: everything is still open. \item Relate these equations back to the {\color{highlight}many-body Bose gas}. \end{itemize} \end{document}