\documentclass{ian-presentation} \usepackage[hidelinks]{hyperref} \usepackage{graphicx} \usepackage{array} \usepackage{xcolor} \definecolor{ipurple}{HTML}{4B0082} \definecolor{iyellow}{HTML}{DAA520} \definecolor{igreen}{HTML}{32CD32} \definecolor{iblue}{HTML}{4169E1} \definecolor{ired}{HTML}{DC143C} \definecolor{highlight}{HTML}{328932} \definecolor{highlight}{HTML}{981414} \begin{document} \pagestyle{empty} \hbox{}\vfil \bf\Large \hfil Analysis of a non-linear, non-local PDE\par \hfil to study Bose gases at all densities \vfil \large \hfil Ian Jauslin \normalsize \vfil \rm \hfil collaborators: {\bf E.A.\-~Carlen, E.H.\-~Lieb, M.\-~Holzmann, M.P.\-~Loss}\par \vfil arXiv:{\tt\ \parbox[b]{3cm}{ \href{https://arxiv.org/abs/1912.04987}{1912.04987}\par \href{https://arxiv.org/abs/2010.13882}{2010.13882}\par \href{https://arxiv.org/abs/2011.10869}{2011.10869} }} \hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}} \eject \setcounter{page}1 \pagestyle{plain} \title{{\color{iblue}Simple equation}} \begin{itemize} \item {\color{iblue}Simple equation} $$ -\Delta u(x)=(1-u(x))v(x)- 4eu(x)+2e\rho\ u\ast u(x) $$ $$ e=\frac\rho2\int dx\ (1-u(x))v(x) $$ \item $\rho>0$, $v(x)\geqslant 0$, $v\in L_1(\mathbb R^3)$. \item {\color{highlight}Non-linear} and {\color{highlight}non-local} partial differential equation. \item {\color{highlight}Effective equation} for the ground state of a Bose gas. \end{itemize} \vfill \eject \title{Bose-Einstein condensation} \begin{itemize} \item System of many Bosons, e.g. {\color{highlight}Helium} atoms, {\color{highlight}Rubidium} atoms, etc... \item {\color{highlight}Bose-Einstein condensate}: most particles are in the same quantum state. \item Related to the phenomena of {\color{highlight}superfluidity} (flow with zero viscocity) and {\color{highlight}superconductivity} (currents with zero resistance). \item Predicted theoretically in {\color{highlight}1924-1925}, experimentally observed in {\color{highlight}1995}. \item Mathematical understanding: still {\color{highlight}no proof} of the existence of a condensate (at finite density, in the presence of interactions and in the continuum). \end{itemize} \vfill \eject \title{Repulsive Bose gas} \begin{itemize} \item {\color{highlight}$N$-particle} quantum state in a volume $V$: $$ \psi_N(x_1,\cdots,x_N)\in L^2_{\mathrm{symmetric}}((V\mathbb T^3)^N) $$ \item $|\psi|^2$: probability distribution on the positions of the $N$ particles. \item Hamiltonian operator acting on $\psi$: $$ H_N\psi:= -\frac12\sum_{i=1}^N\Delta_i\psi +\sum_{1\leqslant i . $$ \end{itemize} \vfill \eject \title{Low density conjectures} \begin{itemize} \item Bogolyubov theory: {\color{highlight}approximation scheme} [Bogolyubov, 1947]. \item Predictions \href{https://doi.org/10.1103/PhysRev.106.1135}{[Lee, Huang, Yang, 1957]}: \begin{itemize} \item Energy: $$ {\color{highlight}e_0=2\pi\rho a\left(1+\frac{128}{15\sqrt\pi}\sqrt{\rho a^3}+o(\sqrt\rho)\right)} $$ \vskip-10pt \item Condensate fraction: $$ {\color{highlight}1-\eta_0\sim\frac{8\sqrt{\rho a^3}}{3\sqrt\pi}} $$ \end{itemize} \end{itemize} \vfill \eject \title{Low density conjectures} \begin{itemize} \item Energy asymptotics: {\color{highlight} proved}: \href{https://doi.org/10.1103/PhysRevLett.80.2504}{[Lieb, Yngvason, 1998]}, \href{https://doi.org/10.1007/s10955-009-9792-3}{[Yau, Yin, 2009]}, \href{https://doi.org/10.4007/annals.2020.192.3.5}{[Fournais, Solovej, 2020]}. \item Condensate fraction: {\color{highlight}still open} in the thermodynamic limit. (No proof of Bose-Einstein condensation.) \item There are proofs of condensation in the ultra-dilute (Gross-Pitaevskii) regime: \href{https://doi.org/10.1103/PhysRevLett.88.170409}{[Lieb, Seiringer, 2002]}, \href{https://doi.org/10.1007/s00220-017-3016-5}{[Boccato, Brennecke, Cenatiempo, Schlein, 2018]}. \item There is also a proof of condensation for a {\color{highlight}lattice} Bose gas \href{https://doi.org/10.1007/BF01023854}{[Kennedy, Lieb, Shastry, 1988]}. \end{itemize} \vfill \eject \title{High density conjectures} \begin{itemize} \item [Bogolyubov, 1947]: $$ {\color{highlight}e_0\sim\frac\rho2\int v} $$ \item {\color{highlight}Proved} in \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]}. \item Condensate fraction: mean field regime: $\eta_0\to 1$. (No proof of Bose-Einstein condensation at any density.) \end{itemize} \vfill \eject \title{Energy as a function of density for the {\color{iblue}Simple equation}} For $v(x)=e^{-|x|}$: \hfil\includegraphics[height=5.5cm]{erho_lowhigh.pdf} \vfill \eject \addtocounter{page}{-1} \title{Energy as a function of density for the {\color{iblue}Simple equation}} For $v(x)=e^{-|x|}$: \hfil\includegraphics[height=5.5cm]{erho_effective.pdf} \vfill \eject \title{Effective equations} \begin{itemize} \item {\color{highlight}Boltzmann equation}: $N$ classical hard particles with an infinitely small radius (dilute limit) [Lanford, 1976]. \item {\color{highlight}Thomas-Fermi theory}: $Z$ electrons orbiting a nucleus in the $Z\to\infty$ limit \href{https://doi.org/10.1103/PhysRevLett.31.681}{[Lieb, Simon, 1973]}. \item{\color{highlight}Hartree-Fock equation}: dynamics of many Fermions in the weakly-interacting limit \href{https://doi.org/10.1142/9789814618144_0011}{[Benedikter, Porta, Schlein, 2015]}. \item{\color{highlight}Hartree-Fock-Bogolyubov equation}: dynamics of many Bosons in the weakly-interacting limit \href{https://arxiv.org/abs/1602.05171}{[Bach, Breteaux, Chen, Fr\"ohlich, Sigal, 2016]}. \end{itemize} \vfill \eject \title{Derivation of the equation} \begin{itemize} \item \href{https://doi.org/10.1103/PhysRev.130.2518}{[Lieb, 1963]}. \item Integrate $H_N\psi_0=E_0\psi_0$: $$ \int dx_1\cdots dx_N\ \left( -\frac12\sum_{i=1}^N\Delta_i\psi_0 +\sum_{1\leqslant i\displaystyle l} -\frac12(\Delta_x+\Delta_y) g_2(x,y) +\frac{N-2}V\int dz\ (v(x-z)+v(y-z))g_3(x,y,z) \\[0.5cm]\hfill +v(x-y)g_2(x,y) +\frac{(N-2)(N-3)}{2V^2}\int dzdt\ v(z-t)g_4(x,y,z,t) =E_0g_2(x,y) \end{array} $$ \item Factorization {\color{highlight}assumption}: $$ g_3(x_1,x_2,x_3)=g_2(x_1,x_2)g_2(x_1,x_3)g_2(x_2,x_3) $$ $$ g_4(x_1,x_2,x_3,x_4)=\prod_{i =-\frac1N\partial_\mu \left<\psi_0\right|H_N(\mu)\left|\psi_0\right>|_{\mu_0} \equiv {\color{highlight}-\partial_\mu e_0(\mu)|_{\mu=0}} $$ \end{itemize} \vfill \eject \title{Condensate fraction} \begin{itemize} \item {\bf Theorem 4}: For the {\color{iblue}simple equation}, as $\rho\to0$ $$ 1-\eta\sim\frac{8\sqrt{\rho a^3}}{3\sqrt\pi} $$ which coincides with {\color{highlight}Bogolyubov's prediction}. \item In particular {\color{highlight}there is Bose-Einstein condensation} for the simple equation. \end{itemize} \vfill \eject \title{Condensate fraction} $v(x)=e^{-|x|}$, Blue: {\color{iblue}simple equation}; purple: {\color{ipurple}big equation}; red: {\color{ired}Monte Carlo} \hfil\includegraphics[height=5.5cm]{condensate.pdf} \vfill \eject \title{Conclusions and outlook} \begin{itemize} \item Two {\color{highlight}effective equations}: the {\color{ipurple}big equation} and the {\color{iblue}simple equation}, which are {\color{highlight}non-linear 1-particle equations}. \item Reproduce the known results for both {\color{highlight}small and large densities}. \item Their derivation is {\color{highlight}different from Bogolyubov theory}, so they may give new insights onto studying the Bose gas in these asymptotic regimes. \item The {\color{ipurple}big equation} is {\color{highlight}quantitatively accurate} at intermediate densities. \item This opens up the possibility of studying the physics of the {\color{highlight}Bose gas at intermediate densities}. \end{itemize} \vfill \eject \title{Open problems and next steps} \vskip-10pt \begin{itemize} \item Analysis of the {\color{ipurple}big equation}: everything is still open. \vskip-10pt \begin{itemize} \item Main tool: {\color{highlight}Newton algorithm}, which works numerically. \item There is a family of {\color{highlight}intermediate equations} that extrapolate between the {\color{iblue} simple} and {\color{ipurple}big} equations. \end{itemize} \item Relate these equations back to the {\color{highlight}many-body Bose gas}. \vskip-10pt \begin{itemize} \item {\color{highlight}Upper bound} for the ground state energy, using a {\color{highlight}Bijl function} as a test function. \item {\color{highlight}Lee-Huang Yang formula} by studying the low-density properties of the {\color{highlight}Bijl function}. \item Extend the proof to the {\color{highlight}condensate fraction}. \end{itemize} \end{itemize} \end{document}