\documentclass{ian-presentation} \usepackage[hidelinks]{hyperref} \usepackage{graphicx} \usepackage{array} \begin{document} \pagestyle{empty} \hbox{}\vfil \bf\Large \hfil Exact solution of the time dependent Schrödinger\par \hfil equation for photoemission from a metal surface \vfil \large \hfil Ian Jauslin \normalsize \vfil \hfil\rm joint with {\bf Ovidiu Costin}, {\bf Rodica Costin}, and {\bf Joel L. Lebowitz}\par \vfil \hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}} \eject \setcounter{page}1 \pagestyle{plain} \title{Electron emission} $$ V(x)=U\Theta(x) ,\quad E_{\mathrm F}=k_{\mathrm F}^2U $$ \hfil\includegraphics[height=5cm]{potential_square_thermal.pdf} \vfill \eject \title{Field emission} $$ V(x)=\Theta(x)(U-Ex) $$ \hfil\includegraphics[height=5cm]{potential.pdf} \vfill \eject \title{Photoemission} $$ V_t(x)=\Theta(x)(U-E_tx) ,\quad E_t=2\epsilon\omega\cos(\omega t) $$ \hfil\includegraphics[height=5cm]{potential_square_photonic.pdf} \vfill \eject \title{Photoemission} \begin{itemize} \item Photoelectric effect: early observations: \href{https://doi.org/10.1002/andp.18872670827}{[Hertz, 1887]}, \href{https://doi.org/10.1002/andp.18882690206}{[Hallwachs, 1888]}, \href{https://doi.org/10.1002/andp.19003070611}{[Lenard, 1900]}. \item When a metal is irradiated with ultra-violet light, electrons are ionized, with kinetic energies at integer multiples of $\hbar\omega$. \item \href{https://doi.org/10.1002/andp.19053220607}{[Einstein, 1905]}: interpretation: quanta of light ({\it photons}) of energy $\hbar\omega$ are absorbed by the electrons, whose kinetic energy is raised by $n\hbar\omega$, and can escape the metal. \end{itemize} \vfill \eject \title{Photoemission} \vskip-10pt \begin{itemize} \item Time dependent potential: $$ V_t(x)=\Theta(x)(U-2\epsilon\omega\cos(\omega t)x) $$ \vskip-10pt \item Schr\"odinger equation $$ i\partial_t\psi(x,t)=-\Delta\psi(x,t)+V_t(x)\psi(x,t) $$ \vskip-10pt \item Magnetic gauge: $$ \Psi(x,t) :=\psi(x,t)e^{-ix\Theta(x)A(t)} ,\quad A(t):=\int_0^t ds\ 2\epsilon\omega\cos(\omega s) = 2\epsilon\sin(\omega t) $$ satisfies $$ i\partial_t\Psi(x,t)=\left((-i\nabla+\Theta(x)A(t))^2+\Theta(x)U\right)\Psi(x,t) $$ \end{itemize} \vfill \eject \title{Periodic solution} \vskip-10pt \begin{itemize} \item \href{https://doi.org/10.1103/PhysRevA.72.023412}{[Faisal, Kami\'nski, Saczuk, 2005]} $$ \Psi_{\mathrm{FKS}}(x,t)=\left\{\begin{array}{ll} e^{ikx}\exp\left(-ik^2t\right)+\Psi_R(x,t)&\mathrm{\ if\ }x<0\\ \Psi_T(x,t)&\mathrm{\ if\ }x>0 \end{array}\right. $$ $$ \Psi_R(x,t)=\sum_{M\in\mathbb Z}R_Me^{-iq_Mx}\exp\left(-iq_M^2t\right) ,\quad q_M=\sqrt{k^2+M\omega} $$ $$ \Psi_T(x,t)=\sum_{M\in\mathbb Z}T_Me^{ip_Mx}\exp\left(-iUt-i\int_0^td\tau\ (p_M-A(\tau))^2\right) $$ $$ p_M=\sqrt{k^2-U+M\omega-2\epsilon^2} $$ \item $\Psi(x,t)$, $(-i\nabla+\Theta(x)A(t))\Psi(x,t)$ are continuous. \end{itemize} \vfill \eject \title{Initial value problem} \begin{itemize} \item Initial condition: $$ \Psi(x,0)= \left\{ \begin{array}{l@{\ }l} e^{ikx}+R_0e^{-ikx} & x<0\\ T_0 e^{-\sqrt{U-k^2}x} & x>0 \end{array}\right. $$ $R_0$ and $T_0$ ensure that $\Psi$ and $\partial\Psi$ are continuous. \item In progress: $\Psi(x,t)$ behaves asymptotically like $\Psi_{\mathrm{FKS}}$: $$ \psi(x,t) =\psi_{\mathrm{FKS}}(x,t)+\left(\frac{t}{\tau_{\mathrm{FKS}}(x)}\right)^{-\frac32}+O(t^{-\frac52}) . $$ \end{itemize} \end{document}