\documentclass{ian-presentation} \usepackage[hidelinks]{hyperref} \usepackage{graphicx} \usepackage{dsfont} \begin{document} \pagestyle{empty} \hbox{}\vfil \bf\Large \hfil Nematic liquid crystal phase\par \smallskip \hfil in a system of interacting dimers\par \vfil \large \hfil Ian Jauslin \normalsize \vfil \hfil\rm joint with {\bf Elliott H. Lieb}\par \vfil arXiv: {\tt \href{http://arxiv.org/abs/1709.05297}{1709.05297}} \hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}} \eject \setcounter{page}1 \pagestyle{plain} \title{Gas-liquid-crystal} \vfill \hfil \includegraphics[width=3cm]{gas.png} \includegraphics[width=3cm]{liquid.png} \includegraphics[width=3cm]{crystal.png} \vfill \eject \title{Liquid crystals} \begin{itemize} \item Orientational order and positional disorder. \end{itemize} \hfil\includegraphics[width=4.5cm]{nematic.png} \hfil\includegraphics[width=4.5cm]{chiral.png} \vfill \eject \title{History} \begin{itemize} \item \href{http://dx.doi.org/10.1111/j.1749-6632.1949.tb27296.x}{[Onsager, 1949]}: mean field model for hard needles in $\mathbb R^3$. \item \href{http://dx.doi.org/10.1007/BF01009518}{[Heilmann, Lieb, 1979]}: interacting dimers. \vphantom{ \item \href{http://dx.doi.org/10.1007/BF00535264}{[Bricmont, Kuroda, Lebowitz, 1984]}: hard needles in $\mathbb R^2$ with a {\it finite} number of orientations. \item \href{http://dx.doi.org/10.1007/s10955-005-8085-8}{[Ioffe, Velenik, Zahradn\'\i k, 2006]}: hard rods in $\mathbb Z^2$ (variable length). \item \href{http://dx.doi.org/10.1007/s00220-013-1767-1}{[Disertori, Giuliani, 2013]}: hard rods in $\mathbb Z^2$. } \end{itemize} \vfill \eject \title{Heilmann-Lieb model} \hfil\href{http://dx.doi.org/10.1007/BF01009518}{[Heilmann, Lieb, 1979]} \vfil \hfil\includegraphics[width=5cm]{grid.pdf} \vfil\eject \addtocounter{page}{-1} \title{Heilmann-Lieb model} \hfil\href{http://dx.doi.org/10.1007/BF01009518}{[Heilmann, Lieb, 1979]} \vfil \hfil\includegraphics[width=5cm]{dimers.pdf} \vfil\eject \addtocounter{page}{-1} \title{Heilmann-Lieb model} \hfil\href{http://dx.doi.org/10.1007/BF01009518}{[Heilmann, Lieb, 1979]} \vfil \hfil\includegraphics[width=5cm]{interaction.pdf} \vfil\eject \title{Heilmann-Lieb conjecture} \begin{itemize} \item \href{http://dx.doi.org/10.1007/BF01009518}{[Heilmann, Lieb, 1979]}: proved orientational order using reflection positivity. \item HL Conjecture: absence of positional order. \vphantom{ \item \href{http://dx.doi.org/10.1007/s10955-015-1421-8}{[Alberici, 2016]}: different fugacities for horizontal and vertical dimers. \item \href{http://dx.doi.org/10.1103/PhysRevB.89.035128}{[Papanikolaou, Charrier, Fradkin, 2014]}: numerics. } \end{itemize} \vfill \eject \title{History} \begin{itemize} \item \href{http://dx.doi.org/10.1111/j.1749-6632.1949.tb27296.x}{[Onsager, 1949]}: mean field model for hard needles in $\mathbb R^3$. \item \href{http://dx.doi.org/10.1007/BF01009518}{[Heilmann, Lieb, 1979]}: interacting dimers. \item \href{http://dx.doi.org/10.1007/BF00535264}{[Bricmont, Kuroda, Lebowitz, 1984]}: hard needles in $\mathbb R^2$ with a {\it finite} number of orientations. \item \href{http://dx.doi.org/10.1007/s10955-005-8085-8}{[Ioffe, Velenik, Zahradn\'\i k, 2006]}: hard rods in $\mathbb Z^2$ (variable length). \item \href{http://dx.doi.org/10.1007/s00220-013-1767-1}{[Disertori, Giuliani, 2013]}: hard rods in $\mathbb Z^2$. \end{itemize} \vfill \eject \title{Heilmann-Lieb conjecture} \begin{itemize} \item \href{http://dx.doi.org/10.1007/BF01009518}{[Heilmann, Lieb, 1979]}: proved orientational order using reflection positivity. \item HL Conjecture: absence of positional order. \item \href{http://dx.doi.org/10.1007/s10955-015-1421-8}{[Alberici, 2016]}: different fugacities for horizontal and vertical dimers. \item \href{http://dx.doi.org/10.1103/PhysRevB.89.035128}{[Papanikolaou, Charrier, Fradkin, 2014]}: numerics. \end{itemize} \vfill \eject \title{Heilmann-Lieb model} \begin{itemize} \item Grand-canonical Gibbs measure: $$ \left_{\mathrm v} := \lim_{\Lambda\to\mathbb Z^2} \frac1{\Xi_{\Lambda,\mathrm v}(z)} \sum_{\underline\delta\in\Omega_{\mathrm v}(\Lambda)}A(\underline\delta)z^{|\underline\delta|}\prod_{\delta\neq \delta'\in \underline\delta}e^{\frac12J\mathds 1_{\delta\sim\delta'}} $$ \vskip-15pt \begin{itemize} \item $\Lambda$: finite box. \item $\Omega_{\mathrm v}(\Lambda)$: non-overlapping dimer configurations satisfying the boundary condition. \item $z\geqslant 0$: fugacity. \item $J\geqslant 0$: interaction strength. \item $\mathds 1_{\delta\sim\delta'}$ indicator that dimers are adjacent and aligned. \end{itemize} \end{itemize} \vfill \eject \title{Boundary condition} \begin{itemize} \item Fix length $\ell_0:=e^{\frac32J}\sqrt z$, \end{itemize} \hfil\includegraphics[width=5cm]{boundary.pdf} \title{Theorem} For $1\ll z\ll J$, $\|(x,y)\|_{\mathrm{HL}}:=J|x|+e^{-\frac32J}z^{-\frac12}|y|$, \begin{itemize} \item Given two vertical edges $e_{\mathrm v},f_{\mathrm v}$, $\left<\mathds 1_{e_{\mathrm v}}\right>_{\mathrm v}$ is {\it independent} of $e_{\mathrm v}$ and $$ \begin{array}{c} \left<\mathds 1_{e_{\mathrm v}}\right>_{\mathrm v}=\frac12(1+O(e^{-\frac12J}z^{-\frac12})) \\[0.3cm] \left<\mathds 1_{e_{\mathrm v}}\mathds 1_{f_{\mathrm v}}\right>_{\mathrm v} -\left<\mathds 1_{e_{\mathrm v}}\right>_{\mathrm v} \left<\mathds 1_{f_{\mathrm v}}\right>_{\mathrm v} =O(e^{-c\ \mathrm{dist}_{\mathrm{HL}}(e_{\mathrm v},f_{\mathrm v})}) \end{array} $$ \vskip-5pt \item Given two horizontal edges $e_{\mathrm h},f_{\mathrm h}$, $\left<\mathds 1_{e_{\mathrm h}}\right>_{\mathrm v}$ is {\it independent} of $e_{\mathrm h}$ and $$ \begin{array}{c} \left<\mathds 1_{e_{\mathrm h}}\right>_{\mathrm v}=O(e^{-3J}) \\[0.3cm] \left<\mathds 1_{e_{\mathrm h}}\mathds 1_{f_{\mathrm h}}\right>_{\mathrm v} -\left<\mathds 1_{e_{\mathrm h}}\right>_{\mathrm v} \left<\mathds 1_{f_{\mathrm h}}\right>_{\mathrm v} =O(e^{-6J-c\ \mathrm{dist}_{\mathrm{HL}}(e_{\mathrm h},f_{\mathrm h})}) \end{array} $$ \end{itemize} \vfill \eject \title{1D system} \begin{itemize} \item {\it Only} vertical dimers: integrable. \item Given two vertical edges $e_{\mathrm v},f_{\mathrm v}$, $\left<\mathds 1_{e_{\mathrm v}}\right>_{\mathrm v}$ is {\it independent} of $e_{\mathrm v}$ and $$ \begin{array}{c} \left<\mathds 1_{e_{\mathrm v}}\right>_{\mathrm v}=\frac12(1+O(e^{-\frac12J}z^{-\frac12})) \\[0.3cm] \left<\mathds 1_{e_{\mathrm v}}\mathds 1_{f_{\mathrm v}}\right>_{\mathrm v} -\left<\mathds 1_{e_{\mathrm v}}\right>_{\mathrm v} \left<\mathds 1_{f_{\mathrm v}}\right>_{\mathrm v} =O(e^{-c\ \mathrm{dist}_{\mathrm{1D}}(e_{\mathrm v},f_{\mathrm v})}) \end{array} $$ with $\|(x,y)\|_{\mathrm{1D}}:=e^{-\frac32J}z^{-\frac12}|y|$. \end{itemize} \vfill \eject \title{Loop model} \vfill \hfil\includegraphics[width=5cm]{dimer_contour.pdf} \begin{itemize} \item Weight of a loop of length $|l|$: $e^{-\frac12J|l|}$. \end{itemize} \vfill \eject \title{Difficulty: loops interact} \vskip-10pt \begin{itemize} \item Correlated dimers induce an interaction between loops, which decays exponentially with a rate $e^{-\frac32J}z^{-\frac12}$. \end{itemize} \hfil\includegraphics[width=3.5cm]{segments.pdf} \begin{itemize} \item Vertical-to-horizontal boundaries and horizontal-to-vertical ones have different geometries. \end{itemize} \end{document}