\documentclass{ian-presentation} \usepackage[hidelinks]{hyperref} \usepackage{graphicx} \usepackage{amssymb} \usepackage{dsfont} \begin{document} \pagestyle{empty} \hbox{}\vfil \bf\Large \hfil Crystalline ordering\par \smallskip \hfil in hard-core lattice particle systems\par \vfil \large \hfil Ian Jauslin \normalsize \vfil \hfil\rm joint with {\bf Joel L. Lebowitz}\par \vfil arXiv: \vbox{ \hbox{\tt \href{http://arxiv.org/abs/1705.02032}{1705.02032}} \hbox{\tt \href{http://arxiv.org/abs/1708.01912}{1708.01912}} } \hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}} \eject \setcounter{page}1 \pagestyle{plain} \title{Gas-liquid-crystal} \vfill \hfil\includegraphics[width=3.0cm]{gas.png} \hfil\includegraphics[width=3.0cm]{liquid.png} \hfil\includegraphics[width=3.0cm]{crystal.png} \vfill\eject \title{Hard-core lattice particle (HCLP) systems} \vfill \hfil\includegraphics[width=1.2cm]{diamond.pdf} \hfil\includegraphics[width=1.2cm]{cross.pdf} \hfil\includegraphics[width=1.2cm]{hexagon.pdf} \par \vfill \hfil\includegraphics[width=0.9cm]{V_triomino.pdf} \hfil\includegraphics[width=0.9cm]{T_tetromino.pdf} \hfil\includegraphics[width=0.9cm]{L_tetromino.pdf} \hfil\includegraphics[width=0.9cm]{P_pentomino.pdf} \vfill \eject \title{Non-sliding HCLPs} \begin{itemize} \item There exist a {\bf finite} number $\tau$ of tilings $\{\mathcal L_1,\cdots,\mathcal L_\tau\}$ which are \penalty-1000{\bf periodic} and {\bf isometric} to each other. \end{itemize} \hfil\includegraphics[width=4cm]{cross_packing_l.pdf} \hfil\includegraphics[width=4cm]{cross_packing_r.pdf} \vfill \eject \title{Non-sliding HCLPs} \begin{itemize} \item Defects are {\bf localized}: for every connected particle configuration $X$ that is {\it not} the subset of a close packing and every $Y\supset X$, there is empty space in $Y$ neighboring $X$. \end{itemize} \vfill \hfil\includegraphics[width=2.1cm]{cross_sliding_2.pdf} \hfil\includegraphics[width=2.1cm]{cross_sliding_3a.pdf} \hfil\includegraphics[width=2.4cm]{cross_sliding_3b.pdf} \vfill \eject \title{Observables} \begin{itemize} \item Gibbs measure: $$ \left_{\nu} := \lim_{\Lambda\to\Lambda_\infty} \frac1{\Xi_{\Lambda,\nu}(z)} \sum_{X\subset\Lambda}A(X)z^{|X|}\mathfrak B_\nu(X)\prod_{x\neq x'\in X}\varphi(x,x') $$ \vskip-10pt \begin{itemize} \item $\Lambda$: finite subset of lattice $\Lambda_\infty$. \item $z\geqslant 0$: fugacity. \item $\varphi(x,x')$: hard-core interaction. \item $\mathfrak B_\nu$: boundary condition: favors the $\nu$-th tiling. \end{itemize} \vskip-5pt \item Pressure: \vskip-10pt $$ p(z):=\lim_{\Lambda\to\Lambda_\infty}\frac1{|\Lambda|}\log\Xi_{\Lambda,\nu}(z). $$ \end{itemize} \vfill\eject \title{Theorem} \begin{itemize} \item $p(z)-\rho_m\log z$ and $\left<\mathds 1_{x_1}\cdots\mathds 1_{x_n}\right>_\nu$ are {\bf analytic} functions of $1/z$ for large values of $z$. \vfill \item There are $\tau$ distinct Gibbs states: $$ \left<\mathds 1_x\right>_\nu= \left\{\begin{array}{ll} 1+O(y)&\mathrm{\ if\ }x\in\mathcal L_\nu\\[0.3cm] O(y)&\mathrm{\ if\ not} . \end{array}\right. $$ \end{itemize} \vfill \eject \title{Low-fugacity expansion} \begin{itemize} \item Formally, $$ \frac1{|\Lambda|}\log\Xi_\Lambda(z) = \sum_{k=1}^\infty b_k(\Lambda)z^k $$ where, if $Z_\Lambda(k_i)$ denotes the number of configurations with $k_i$ particles, then $$ b_k(\Lambda):=\frac1{|\Lambda|} \sum_{j=1}^k\frac{(-1)^{j+1}}j \sum_{\displaystyle\mathop{\scriptstyle k_1,\cdots,k_j\geqslant 1}_{k_1+\cdots+k_j=k}}Z_\Lambda(k_1)\cdots Z_\Lambda(k_j) $$ \end{itemize} \eject \title{Low-fugacity expansion} \begin{itemize} \item Second term: $$ b_2(\Lambda)=\frac1{|\Lambda|}\left(Z_\Lambda(2)-\frac12Z_\Lambda^2(1)\right) $$ \item $\frac12 Z_\Lambda^2(1)$: counts non-interacting particle configurations. \item $Z_\Lambda(2)$: counts interacting particle configurations. \item The terms of order $|\Lambda|^2$ cancel out! \end{itemize} \eject \title{Low-fugacity expansion} \begin{itemize} \item \href{http://dx.doi.org/10.1017/S0305004100011191}{[Ursell, 1927]}, \href{http://dx.doi.org/10.1063/1.1749933}{[Mayer, 1937]}: $b_k(\Lambda)\to b_k$. \item \href{http://dx.doi.org/10.1016/0031-9163(62)90198-1}{[Groeneveld, 1962]}, \href{http://dx.doi.org/10.1016/0003-4916(63)90336-1}{[Ruelle, 1963]}, \href{http://dx.doi.org/10.1063/1.1703906}{[Penrose, 1963]}: $$ p(z)=\sum_{k=1}^\infty b_kz^k $$ which has a positive radius of convergence. \end{itemize} \eject \title{High-fugacity expansion} \begin{itemize} \item Inverse fugacity $y\equiv z^{-1}$: $$ \Xi_\Lambda(z)= z^{N_{\mathrm{max}}} \sum_{X\subset\Lambda} y^{N_{\mathrm{max}}-|X|}\prod_{x\neq x'\in X}\phi(x,x') $$ \end{itemize} \eject \title{High-fugacity expansion} \begin{itemize} \item Formally, $$ \frac1{|\Lambda|}\log\Xi_\Lambda = \rho_m\log z + \sum_{k=1}^\infty c_k(\Lambda)y^k + o(1) $$ where, if $Q_\Lambda(k_i)$ denotes the number of configurations with $N_{\mathrm{max}}-k_i$ particles, then $$ c_k(\Lambda):=\frac1{|\Lambda|} \sum_{j=1}^k\frac{(-1)^{j+1}}{j\tau^j} \sum_{\displaystyle\mathop{\scriptstyle k_1,\cdots,k_j\geqslant 1}_{k_1+\cdots+k_j=k}}Q_\Lambda(k_1)\cdots Q_\Lambda(k_j) $$ \end{itemize} \eject \title{High-fugacity expansion} \vfill \hfil\includegraphics[width=2cm]{gf_diamond1.pdf} \hfil\includegraphics[width=2.33cm]{gf_diamond2.pdf} \par\vfill \hfil\includegraphics[width=2.33cm]{gf_diamond3.pdf} \vfill\eject \title{High-fugacity expansion} \begin{itemize} \item \href{http://dx.doi.org/10.1063/1.1697217}{[Gaunt, Fisher, 1965]}: diamonds: $c_k(\Lambda)\to c_k$ for $k\leqslant 9$. \item \href{http://dx.doi.org/10.1098/rsta.1988.0077}{[Joyce, 1988]}: hexagons (integrable, \href{http://dx.doi.org/10.1088/0305-4470/13/3/007}{[Baxter, 1980]}). \item \href{http://dx.doi.org/10.1209/epl/i2005-10166-3}{[Eisenberg, Baram, 2005]}: crosses: $c_k(\Lambda)\to c_k$ for $k\leqslant 6$. \item Cannot be done {\it systematically}: there exist counter-examples: e.g. hard $2\times2$ squares on $\mathbb Z^2$: $$ c_1(\Lambda)\propto\sqrt{|\Lambda|} $$ \end{itemize} \eject \title{Holes interact} \begin{itemize} \item Total volume of holes: $\in\rho_m^{-1}\mathbb N$. \end{itemize} \vfill \hfil\includegraphics[height=4.5cm]{hole_example_cross.pdf} \hfil\includegraphics[height=4.5cm]{hole_example_square.pdf} \vfill \eject \title{Non-sliding condition} \begin{itemize} \item Distinct defects are decorrelated. \end{itemize} \vfill \hfil\includegraphics[height=5cm]{hole_example_cross_decorrelated.pdf} \vfill \eject \title{Gaunt-Fisher configurations} \begin{itemize} \item Group together empty space and neighboring particles. \end{itemize} \vfill \hfil\includegraphics[width=2.5cm]{gaunt_fisher2.pdf} \hfil\includegraphics[width=4cm]{gaunt_fisher3.pdf} \vfill \eject \title{Defect model} \vskip-5pt \begin{itemize} \item Map particle system to a model of defects: $$ \Xi_{\Lambda,\nu}(z)=z^{\rho_m|\Lambda|}\sum_{\underline\gamma\subset\mathfrak C_\nu(\Lambda)} \left(\prod_{\gamma\neq\gamma'\in\underline\gamma}\Phi(\gamma,\gamma')\right) \prod_{\gamma\in\underline\gamma}\zeta_\nu^{(z)}(\gamma) $$ \begin{itemize} \item $\Phi$: hard-core repulsion of defects. \item $\zeta_\nu^{(z)}(\gamma)$: activity of defect. \end{itemize} \item The activity of a defect is exponentially small: $\exists\epsilon\ll 1$ $$ \zeta_\nu^{(z)}(\gamma)<\epsilon^{|\gamma|} $$ \vskip-5pt \item Low-fugacity expansion for defects. \end{itemize} \eject \title{Crystallization} \vfill \begin{itemize} \item Peierls argument: in order to have a particle at $x$ that is not compatible with the $\nu$-th perfect packing, it must be part of or surrounded by a defect. \vfill \item Note: a naive Peierls argument requires the partition function to be independent from the boundary condition. This is not necessarily the case here, and we need elements from Pirogov-Sinai theory. \end{itemize} \end{document}