\documentclass{ian-presentation} \usepackage[hidelinks]{hyperref} \usepackage{graphicx} \usepackage{color} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{array} \usepackage{dsfont} \begin{document} \pagestyle{empty} \hbox{}\vfil \bf\Large \hfil Ground state construction\par \smallskip \hfil of Bilayer Graphene\par \vfil \large \hfil Ian Jauslin \normalsize \vfil \hfil\rm joint with {\bf Alessandro Giuliani}\par \vfil arXiv:{\tt \href{http://arxiv.org/abs/1507.06024}{1507.06024}}\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org}} \eject \setcounter{page}1 \pagestyle{plain} \title{Monolayer graphene} \begin{itemize} \item 2D crystal of carbon atoms on a honeycomb lattice. \end{itemize} \vfill \hfil\includegraphics[height=140pt]{monolayer.pdf}\par \eject \title{Bilayer graphene} \begin{itemize} \item 2 graphene layers in {\it AB} stacking. \end{itemize} \vfill \hfil\includegraphics[height=140pt]{bilayer.pdf}\par \eject \title{Hamiltonian} \begin{itemize} \item Model for the electrons. \item Hamiltonian: $$ \mathcal H=\mathcal H_0+U\mathcal V $$ \item $\mathcal H_0$: kinetic term: hoppings (tight-binding approximation). \item $U\mathcal V$: interaction: weak, short-range (screened Coulomb). \end{itemize} \eject \title{Lattice structure} \begin{itemize} \item Rhombic lattice $\Lambda\equiv\mathbb Z^2$, 4 atoms per site. \end{itemize} \vfill \hfil\includegraphics[height=140pt]{bilayer_cell.pdf}\par \eject \title{Hoppings} \vfill \hfil\includegraphics[height=140pt]{bilayer.pdf} \vfill \eject \addtocounter{page}{-1} \title{Hoppings} \vfill \hfil\includegraphics[height=140pt]{hoppings_0.pdf} \vfill \eject \addtocounter{page}{-1} \title{Hoppings} \vfill \hfil\includegraphics[height=140pt]{hoppings_1.pdf} \vfill \eject \addtocounter{page}{-1} \title{Hoppings} \vfill \hfil\includegraphics[height=140pt]{hoppings_3.pdf} \vfill \eject \addtocounter{page}{-1} \title{Hoppings} \vfill \hfil\includegraphics[height=140pt]{hoppings.pdf} \vfill \eject \title{Non-interacting Hamiltonian} $$ \begin{array}{r@{\ }>{\displaystyle}l} \mathcal H_0:=& -\gamma_0\sum_{\displaystyle\mathop{\scriptstyle x\in\Lambda}_{j=1,2,3}}\left( {\color{red}a_x^\dagger b_{x+\delta_j}} + {\color{red}b_{x+\delta_j}^\dagger a_x} + {\color{red}\tilde b_x^\dagger \tilde a_{x-\delta_j}} + {\color{red}\tilde a_{x-\delta_j}^\dagger\tilde b_x} \right) \\[1cm] &-\gamma_1\sum_{ x\in\Lambda}\left( {\color{green}a_x^\dagger \tilde b_x} + {\color{green}\tilde b_x^\dagger a_x} \right) \\[0.75cm] &-\gamma_3\sum_{\displaystyle\mathop{\scriptstyle x\in\Lambda}_{j=1,2,3}}\left( {\color{blue}\tilde a_{x-\delta_1}^\dagger b_{x-\delta_1-\delta_j}} + {\color{blue}b_{x-\delta_1-\delta_j}^\dagger\tilde a_{x-\delta_1}} \right) \end{array} $$ \vfill \eject \title{Non-interacting Hamiltonian} \vfill \begin{itemize} \item Hopping strengths: $$ \gamma_0=1,\quad \gamma_1=\epsilon,\quad \gamma_3=0.33\times\epsilon $$ \item Experimental value $\epsilon\approx0.1$, here, $\epsilon\ll1$. \end{itemize} \vfill \eject \title{Interaction} $$ \mathcal V=\sum_{x,y}v(|x-y|)\left(n_x-\frac12\right)\left(n_y-\frac12\right) $$ \begin{itemize} \item $\displaystyle\sum_{x,y}$: sum over pairs of atoms \item $n_x\equiv\alpha_x^\dagger\alpha_x$ \item $v(|x-y|)\leqslant e^{-c|x-y|}$, $c>0$ \item $-\frac12$: {\it half-filling}. \end{itemize} \eject \title{Theorem} $\exists U_0,\epsilon_0>0$, independent, such that, for $\epsilon<\epsilon_0$, $|U|_0 $$ \item ``Imaginary time'': $$ \mathcal V(t):=e^{t\mathcal H_0}\mathcal Ve^{-t\mathcal H_0} $$ \vskip-2pt \item ``Non-interacting Gibbs measure'': $$ \left_0:=\frac{\mathrm{Tr}(e^{-\beta\mathcal H_0}A)}{\mathrm{Tr}(e^{-\beta\mathcal H_0})} $$ \end{itemize} \vfill \eject \title{Perturbation theory} \begin{itemize} \item Matsubara frequency: for $\alpha\in\{a,b,\tilde a,\tilde b\}$, $$ \hat\alpha_{k_0,k}:=\int dt\ e^{ik_0t}e^{t\mathcal H_0}\hat\alpha_ke^{-t\mathcal H_0}. $$ \item Non-interacting Gibbs measure: ``Gaussian'', and singular: for $\alpha,\alpha'\in\{a,b,\tilde a,\tilde b\}$, $$ \hat s^{(0)}_{\alpha',\alpha}(k_0,k):=\left<\hat\alpha'_{k_0,k}\hat\alpha_{k_0,k}^\dagger\right>_0=(-ik_0\mathds 1+\hat H_0(k))^{-1}_{\alpha',\alpha} $$ \end{itemize} \vfill \eject \title{Scaling} \begin{itemize} \item Eigenvalues of $\hat H_0(k)$: \end{itemize} \vfill \hfil\includegraphics[width=\textwidth]{bands.pdf}\par \vfill \eject \addtocounter{page}{-1} \title{Scaling} \begin{itemize} \item First regime: $|k|\gg\epsilon$: \end{itemize} \vfill \hfil\includegraphics[width=240pt]{bands_first.pdf}\par $$ \hat s^{(0)}(k_0,k)\sim(|k_0|+|k|)^{-1} $$ \vfill \eject \addtocounter{page}{-1} \title{Scaling} \begin{itemize} \item Second regime: $\epsilon^2\ll|k|\ll\epsilon$: \end{itemize} \vfill \hfil\includegraphics[width=240pt]{bands_second.pdf}\par $$ \hat s^{(0)}(k_0,k)\sim\left(|k_0|+\frac{|k|^2}\epsilon\right)^{-1} $$ \vfill \eject \addtocounter{page}{-1} \title{Scaling} \begin{itemize} \item Third regime: $|k|\ll\epsilon^2$: \end{itemize} \vfill \hfil\includegraphics[height=100pt]{bands_third.pdf}\par $$ \hat s^{(0)}(k_0,k)\sim(|k_0|+\epsilon|k|)^{-1} $$ \vfill \eject \title{Renormalization group} \begin{itemize} \item Scale decomposition: scale $h\leqslant 0$: $$ \hat s^{(0)}(k_0,k)\sim 2^{-h} $$ \item Scale by scale integration: $$ \left_0=\left<\cdots\left<\left_{0,0}\right>_{0,-1}\cdots\right>_{0,h}\cdots $$ \item Effective potential: $\mathcal V_h(t)$: $$ \kern-10pt \left<\mathbb T\exp\left(-U\int dt\ \mathcal V_h(t)\right)\right>_{0,h} ``="\ \mathbb T\exp\left(-U\int dt\ \mathcal V_{h-1}(t)\right) $$ \end{itemize} \vfill \eject \title{Renormalization group flow} \vfill \includegraphics[width=250pt]{flow.pdf} \end{document}