\documentclass{kiss} \usepackage{presentation} \usepackage{header} \begin{document} \pagestyle{empty} \hbox{}\vfil \bf \large \hfil A Pfaffian formula\par \smallskip \hfil for monomer-dimer partition functions\par \vfil \hfil Ian Jauslin \rm \normalsize \vfil \small \hfil joint with {\normalsize\bf A.~Giuliani} and {\normalsize\bf E.H.~Lieb}\par \vskip10pt arXiv: {\tt1510.05027}\hfill{\tt http://ian.jauslin.org/} \eject \pagestyle{plain} \setcounter{page}{1} \title{Monomer-dimer system} \bigskip \hfil\includegraphics{Figs/even_example.pdf} \begin{itemize} \item Monomer: occupies a single vertex. \item Dimer: occupies an edge and its end-vertices. \item Monomer-Dimer (MD) covering: every vertex is occupied exactly once. \end{itemize} \eject \addtocounter{page}{-1} \title{Monomer-dimer system} \bigskip \hfil\includegraphics{Figs/MD_example.pdf} \begin{itemize} \item Monomer: occupies a single vertex. \item Dimer: occupies an edge and its end-vertices. \item Monomer-Dimer (MD) covering: every vertex is occupied exactly once. \end{itemize} \eject \title{Partition function} \begin{itemize} \item Weights: edges $d_e$, vertices $\ell_v$ (for simplicity, assume they are $\ge0$). \item Partition function: $$ \Xi(\bm\ell,\mathbf d)=\sum_{\mathrm{MD\ coverings}}\prod_{\mAthop{e:}_{\mAthop{\mathrm{occupied}}_{\mathrm{by\ dimer}}}}d_e\prod_{\mAthop{v:}_{\mAthop{\mathrm{occupied}}_{\mathrm{\ by\ monomer}}}}\ell_v. $$ \end{itemize} \eject \title{Kasteleyn's theorem} \begin{itemize} \item If there are {\bf no monomers} (i.e. $\ell_v=0$ for all $v$), then $\Xi$ counts pairs of neighboring vertices: $$ \Xi(\mathbf0,\mathbf d)=\frac1{n!2^n}\sum_{\pi\in\mathcal S_{2n}}\prod_{i=1}^nd_{(\pi(2i-1),\pi(2i))}. $$ \end{itemize} \hfil\includegraphics[width=3cm]{Figs/even_example_label_nodir.pdf} \eject \title{Kasteleyn's theorem} \begin{itemize} \item If there are {\bf no monomers} (i.e. $\ell_v=0$ for all $v$), then $\Xi$ counts pairs of neighboring vertices: $$ \Xi(\mathbf0,\mathbf d)=\frac1{n!2^n}\sum_{\pi\in\mathcal S_{2n}}\prod_{i=1}^nd_{(\pi(2i-1),\pi(2i))}. $$ \end{itemize} \hfil\includegraphics[width=3cm]{Figs/even_example_label_nodir_dimers.pdf} \eject \title{Kasteleyn's theorem} \begin{itemize} \item Assume, in addition, that the graph is {\bf planar}. \item [Kasteleyn, 1963]: {\color{blue}Direct} the graph in such a way that, for every face, moving along the boundary of the face in the counterclockwise direction, the number of arrows going against the motion is odd. \end{itemize} \hfil\includegraphics{Figs/even_example_directed.pdf} \eject \title{Kasteleyn's theorem} \begin{itemize} \item Recall $$ \Xi(\mathbf0,\mathbf d)=\frac1{n!2^n}\sum_{\pi\in\mathcal S_{2n}}\prod_{i=1}^nd_{(\pi(2i-1),\pi(2i))}. $$ \item Kasteleyn's theorem: if $s_{i,j}:=+1$ if $i\rightarrow j$ and $-1$ if $j\rightarrow i$, then $$ \Xi(\mathbf0,\mathbf d)=\left|\frac1{n!2^n}\sum_{\pi\in\mathcal S_{2n}}(-1)^\pi\prod_{i=1}^nd_{(\pi(2i-1),\pi(2i))}s_{\pi(2i-1),\pi(2i)}\right|. $$ \item In other words, $(-1)^\pi\prod_{i=1}^ns_{\pi(2i-1),\pi(2i)}$ is {\color{blue} independent} of $\pi$. \end{itemize} \eject \title{Kasteleyn's theorem} \begin{itemize} \item $(-1)^\pi\prod_{i=1}^ns_{\pi(2i-1),\pi(2i)}$: \end{itemize} \hfil\includegraphics{Figs/even_example_label_dimers.pdf} \eject \title{Kasteleyn's theorem} \begin{itemize} \item Recall $$ \Xi(\mathbf0,\mathbf d)=\left|\frac1{n!2^n}\sum_{\pi\in\mathcal S_{2n}}(-1)^\pi\prod_{i=1}^nd_{(\pi(2i-1),\pi(2i))}s_{\pi(2i-1),\pi(2i)}\right|. $$ \item Introducing an antisymmetric matrix $a$ with entries $a_{i,j}:=d_{(i,j)}s_{i,j}$ for $i