\documentclass{kiss} \usepackage{presentation} \usepackage{header} \usepackage{toolbox} \usepackage{tikz} \begin{document} \pagestyle{empty} \hbox{}\vfil \bf\Large \hfil Emergence of a nematic phase\par \smallskip \hfil in a system of hard plates\par \vfil \large \hfil Ian Jauslin \normalsize \vfil \hfil\rm with {\bf Margherita Disertori} and {\bf Alessandro Giuliani}\par \vfil \hfil\href{http://ian.jauslin.org}{\tt http://ian.jauslin.org} \eject \setcounter{page}1 \pagestyle{plain} \title{Hard plates} \begin{itemize} \item Parallelepiped $k\times k^\alpha\times 1$, $\alpha\in[0,1]$, $k\gg1$ \end{itemize} \bigskip \includegraphics[width=\textwidth]{figs/plate.pdf} \begin{itemize} \item Center in $\mathbb R^3$ \end{itemize} \eject \title{Hard plates} \begin{itemize} \item 6 orientations \end{itemize} \vfil \hfil\includegraphics[width=220pt]{figs/plates.pdf} \eject \title{Heuristics} \begin{itemize} \item For $\frac12\leqslant\alpha\leqslant1$ \end{itemize} \vfil \includegraphics[width=\textwidth]{figs/phase_largealpha.pdf} \begin{itemize} \itemptchange{$\scriptstyle\blacktriangleright$} \begin{itemize} \item $N_b$: biaxial nematic \item $N_-$: plate-like nematic \item $I$: isotropic \item $?$: ? \end{itemize} \itemptreset \end{itemize} \eject \title{Heuristics} \begin{itemize} \item For $0\leqslant\alpha\leqslant\frac12$ \end{itemize} \vfil \includegraphics[width=\textwidth]{figs/phase_smallalpha.pdf} \begin{itemize} \itemptchange{$\scriptstyle\blacktriangleright$} \begin{itemize} \item $N_b$: biaxial nematic \item $N_+$: rod-like nematic \item $I$: isotropic \item $?$: ? \end{itemize} \itemptreset \end{itemize} \eject \title{Result} \begin{itemize} \item $\frac56<\alpha<1$ (we can also do $\alpha=1$). \end{itemize} \vfil \includegraphics[width=\textwidth]{figs/phase_result.pdf} \eject \title{Previous results} \begin{itemize} \item \href{http://dx.doi.org/10.1007/s00220-013-1767-1}{[Disertori, Giuliani, 2013]}: 2-dimensional hard rods (on a lattice). \item \href{http://dx.doi.org/10.1007/BF00535264}{[Bricmont, Kuroda, Lebowitz, 1984]}: 2-dimensional hard needles. \item \href{http://dx.doi.org/10.1111/j.1749-6632.1949.tb27296.x}{[Onsager, 1949]}: elongated molecules in 3 dimensions: 1st order phase transition! (non-rigorous) \end{itemize} \eject \title{Setup} \begin{itemize} \item {\it Type} of a plate: $q\in\{1,2,3\}$. \item (Grand-canonical) Gibbs average, in a box $\Lambda$, with $q$-boundary conditions: \end{itemize} $$ \left_{\Lambda,q}:=\frac1{Z(\Lambda|q)}\int_{\Omega_{\Lambda,q}}\kern-10pt dP\ z^{|P|}\varphi(P)A(P) $$ \begin{itemize} \itemptchange{$\scriptstyle\blacktriangleright$} \begin{itemize} \item $\Omega_{\Lambda,q}$: plate configurations with $q$-boundary conditions, $|P|$: number of plates in $P$, \item $z$: {\it activity}: $z=e^{\beta\mu}$, \item $\varphi(P)$: hard-core potential, \item $Z(\Lambda|q)$: partition function (normalization), \item $A$: {\it local} observable. \end{itemize} \itemptreset \end{itemize} \eject \title{Setup} \begin{itemize} \item Boundary condition: any plate, centered at $x\in\Lambda$, that satisfies $$ d_\infty(x,\ \mathbb R^3\setminus\Lambda)\leqslant\left(\frac4{1-\alpha}+3\right)\frac k2 $$ is of type $q$. \item Local observable: $$ A(P)=\sum_{p\in P}a(p) $$ and $a$ is {\it compactly supported}. \end{itemize} \eject \title{Theorem} \begin{itemize} \item If $zk^{3-\alpha}\ll1\ll zk^{5\alpha-2}$ \itemptchange{$\scriptstyle\blacktriangleright$} \begin{itemize} \item $\mathds1_x(P)$: indicator that $\exists p\in P$: $d_\infty(x,p)\leqslant\frac12$: $$ \left<\mathds1_x(P)\right>_{\Lambda,q}\equiv\rho=z(1+o(1)) $$ \vskip5pt \item $\mathcal N_{x,q}(P)$: number of plates $p\in P$ of type $q$ with $d_\infty(p,x)\leqslant\frac k4$: for $m\neq q$, $$ \left<\mathcal N_{x,q}(P)\right>_{\Lambda,q}\geqslant C zk^3\gg1,\quad \left<\mathcal N_{x,m}(P)\right>_{\Lambda,q}=o(1) $$ \item There exists $\eta_k\to0$ as $k\to\infty$ such that $$ \left<\mathds1_x(P);\mathds1_y(P)\right>_{\Lambda,q}^T\leqslant C\rho^2 \eta_k^{\frac{|x-y|}k} $$ \end{itemize} \itemptreset \end{itemize} \eject \title{Cluster expansion} \begin{itemize} \item For $\mathbf A\equiv(A_1,\cdots,A_n)$, $\mathbf s\equiv(s_1,\cdots,s_n)\in\mathbb R^n$ $$ F_{\Lambda,q}(\mathbf s\cdot\mathbf A):=\log\int_{\Omega_{\Lambda,q}}\kern-10pt dP\ z^{|P|}\varphi(P)e^{\sum_{i=1}^ns_iA_i(P)} $$ \item Generating function: $$ \left_{\Lambda,q}^T=\left.\partial_{s_1}\cdots\partial_{s_n}F_{\Lambda,q}(\mathbf s\cdot\mathbf A)\right|_{\mathbf s=0} $$ \end{itemize} \eject \title{Cluster expansion} $$ F_{\Lambda,q}(\mathbf s\cdot\mathbf A)=F^{(0)}_{\Lambda,q}(\mathbf s\cdot\mathbf A)+\sum_{\mathcal X\in\Xi(\Lambda)}\phi^T(\mathcal X)\prod_{X\in\mathcal X} K_{\Lambda,q}^{(\mathbf s\cdot\mathbf A)}(X) $$ \begin{itemize} \itemptchange{$\scriptstyle\blacktriangleright$} \begin{itemize} \item $F_{\Lambda,q}^{(0)}(\mathbf s\cdot\mathbf A)$: {\it all} plates are of type $q$, \item $\Xi(\Lambda)$: collections of {\it polymers}: connected unions of $\frac k2\times\frac k2\times\frac k2$ cubes, \item $\phi^T$: {\it Mayer coefficient}, \item $K_{\Lambda,q}^{(\mathbf s\cdot\mathbf A)}(X)$: {\it activity} of $X$. \end{itemize} \itemptreset \end{itemize} \eject \title{Cluster expansion} \begin{itemize} \item Absolutely convergent expansion: $\exists\epsilon_k\to0$ such that, for $m\geqslant0$, $$ \sum_{\mAthop{\mathcal X\in\Xi(\Lambda)}_{|\mathcal X|\ge m}}\left|\phi^T(\mathcal X)\prod_{X\in\mathcal X}K_{\Lambda,q}^{(\mathbf s\cdot\mathbf A)}(X)\right|\le \epsilon_k^m $$ \end{itemize} \end{document}