\documentclass{kiss} \usepackage{presentation} \usepackage{header} \usepackage{toolbox} \def\upitem{\itemptchange{$\scriptstyle\blacktriangleright$}} \let\downitem\itemptreset \begin{document} \pagestyle{empty} \hbox{}\vfil \bf \large \hfil The renormalization group\par \smallskip \hfil in the weak- and strong-coupling regimes \vfil \hfil Ian Jauslin \rm \normalsize \vfil \small \hfil advised by {\normalsize\bf A.~Giuliani}\par \vskip20pt \hfil{\tt http://ian.jauslin.org/} \eject \setcounter{page}1 \pagestyle{plain} \title{Outline} \vfill \begin{itemize} \item Weak coupling: {\bf Bilayer graphene} \vskip30pt \item Strong coupling: {\bf Hierarchical Kondo model} \end{itemize} \vfill \eject \pagestyle{empty} \hbox{} \vfill \hfil\vrule height0.5pt width0.75\textwidth\par \vskip20pt \hfil{\bf Bilayer graphene}\par \vskip20pt \hfil\vrule height0.5pt width0.75\textwidth\par \vfill joint with {\bf A.~Giuliani}\hfill arXiv:{\tt 1507.06024} \eject \addtocounter{page}{-1} \pagestyle{plain} \title{Bilayer graphene} \vfill \includegraphics[width=0.8\textwidth]{Figs/bilayer.pdf} \vfill \eject \title{Bilayer graphene} \begin{itemize} \item Hamiltonian $$ H=H_0+UH_I $$ \vskip-10pt \upitem \begin{itemize} \item $H_0$: Kinetic term for the electrons (hoppings between atoms). \item $UH_I$: Short-range screened Coulomb interaction between electrons (of {\it strength} $U$): $$ UH_I=U\sum_{x, y}v(|x-y|)\left(a_x^\dagger a_x-\frac12\right)\left(a_y^\dagger a_y-\frac12\right) $$ \end{itemize} \downitem \item Non-interacting case ($U=0$): {\it integrable}. \item Assume $|U|\ll1$: perturb. \end{itemize} \eject \title{Non-interacting Hamiltonian} \begin{itemize} \item In Fourier space: $$ H_0=\sum_k A_k^\dagger \hat H_0(k) A_k $$ $A_k:=(a_{k,1}, a_{k,2}, a_{k,3}, a_{k,4})$, where 1,2,3,4 is the {\it valley index}, $$ \hat H_0(k)= -\left(\begin{array}{*{4}{c}} 0&\gamma_1&0&\gamma_0\Omega^*(k)\\[0.2cm] \gamma_1&0&\gamma_0\Omega(k)&0\\[0.2cm] 0&\gamma_0\Omega^*(k)&0&\gamma_3\Omega(k)e^{3ik_x}\\[0.2cm] \gamma_0\Omega(k)&0&\gamma_3\Omega^*(k)e^{-3ik_x}&0 \end{array}\right) $$ with $\Omega(k_1,k_2):=1+2e^{\frac32ik_1}\cos({\scriptstyle\frac{\sqrt3}2}k_2)$. \end{itemize} \eject \title{Non-interacting Hamiltonian} \begin{itemize} \item Hopping strengths: $\gamma_0=1$, $\gamma_1=0.1$, $\gamma_3=0.034$ \end{itemize} \hfil\includegraphics[width=\textwidth]{Figs/hoppings4.pdf} \vfil\eject \title{Non-interacting Hamiltonian} \begin{itemize} \item Eigenvalues of $\hat H_0(k)$ ({\it bands}) \end{itemize} \hfil\includegraphics{Figs/bands_global.pdf} \vfil\eject \addtocounter{page}{-1} \title{Non-interacting Hamiltonian} \begin{itemize} \item For $|k|\gg\gamma_1$ ({\it irrelevant, superrenormalizable} regime) \end{itemize} \hfil\includegraphics{Figs/bands_first.pdf} \vfil\eject \addtocounter{page}{-1} \title{Non-interacting Hamiltonian} \begin{itemize} \item For $\gamma_1^2\ll|k|\ll\gamma_1$ ({\it marginal} regime) \end{itemize} \hfil\includegraphics{Figs/bands_second.pdf} \vfil\eject \addtocounter{page}{-1} \title{Non-interacting Hamiltonian} \begin{itemize} \item For $|k|\ll\gamma_1^2$ ({\it irrelevant, superrenormalizable} regime) \end{itemize} \hfil\includegraphics{Figs/bands_third.pdf} \vfil\eject \title{Main result} \vfil \begin{framed} If $|U|$ and $\gamma_1$ and $\gamma_3$ are small enough, then the specific ground state energy $$ e_0:=-\lim_{\beta\to\infty}\lim_{|\Lambda|\to\infty}\frac1{\beta|\Lambda|}\log(\mathrm{Tr}(e^{-\beta H})) $$ and the two-point correlation functions are {\it analytic} functions of $U$. \end{framed} \begin{itemize} \item In other words, if $|U|$ is small enough, then the qualitative behavior of the system is similar to that at $U=0$ ({\it weak coupling}). \end{itemize} \eject \pagestyle{empty} \hbox{} \vfill \hfil\vrule height0.5pt width0.75\textwidth\par \vskip20pt \hfil{\bf Hierarchical Kondo model}\par \vskip20pt \hfil\vrule height0.5pt width0.75\textwidth\par \vfill \hfil joint with {\bf G.~Benfatto} and {\bf G.~Gallavotti}\par \vskip10pt \hfil {\scriptsize doi:{\tt 10.1007/s10955-015-1378-7} and doi:{\tt 10.1007/s10955-015-1370-2}} \eject \addtocounter{page}{-1} \pagestyle{plain} \title{Kondo model} \begin{itemize} \item [P.~Anderson, 1960], [J.~Kondo, 1964]: $$ H=H_0+V\quad\mathrm{on\ }\mathcal H=\mathcal F_L\otimes\mathbb C^2 $$ \itemptchange{$\scriptstyle\blacktriangleright$} \begin{itemize} \item $H_0$: kinetic term of the {\it electrons} $$ H_0:=\sum_{x}\sum_{\alpha=\uparrow,\downarrow}a^\dagger_\alpha(x)\,\left(-\frac{\Delta}2-1\right)\,a_\alpha(x) $$ \item $V$: interaction with the {\it impurity} $$ V=-\lambda_0\sum_{j=1,2,3}\sum_{\alpha_1,\alpha_2}a^\dagger_{\alpha_1}(0)\sigma^j_{\alpha_1,\alpha_2}a_{\alpha_2}(0)\otimes \tau^j $$ \end{itemize} \itemptreset \end{itemize} \hfil\includegraphics[width=0.8\textwidth]{Figs/kondo_model.pdf}\par \eject \title{Kondo effect: magnetic susceptibility} \begin{itemize} \item Non-interacting magnetic susceptibility \itemptchange{$\scriptstyle\blacktriangleright$} \begin{itemize} \item Isolated impurity: $\chi^{(0)}(0,\beta)\displaystyle\mathop{\longrightarrow}_{\beta\to\infty}\infty$ \item Chain of electrons: $\displaystyle\lim_{\beta\to\infty}\lim_{L\to\infty}\frac1L\chi_e(0,\beta)<\infty.$ \end{itemize} \itemptreset \item Anti-ferromagnetic interaction: $\lambda_0<0$: $$ \lim_{\beta\to\infty}\chi^{(\lambda_0)}(0,\beta)<\infty. $$ \item {\it Strong-coupling} effect: the qualitative behavior changes as soon as $\lambda_0\neq0$. \end{itemize} \eject \title{Previous results} \begin{itemize} \item [J.~Kondo, 1964]: third order Born approximation. \vskip0pt plus3fil \item [P.~Anderson, 1970], [K.~Wilson, 1975]: renormalization group approach \itemptchange{$\scriptstyle\blacktriangleright$ } \begin{itemize} \item Sequence of effective Hamiltonians at varying energy scales. \item For anti-ferromagnetic interactions, the effective Hamiltonians go to a {\it non-trivial fixed point}. \end{itemize} \itemptreset \item{\tt Remark}: [N.~Andrei, 1980]: the Kondo model (suitably linearized) is exactly solvable via Bethe Ansatz. \end{itemize} \eject \title{Current results} \begin{itemize} \item Hierarchical Kondo model: idealization of the Kondo model that shares its scaling properties. \item It is {\it exactly solvable}: the map relating the effective theories at different scales is {\it explicit} (no perturbative expansions). \item For $\lambda_0<0$, the flow tends to a non-trivial fixed point, and $\chi^{(\lambda_0)}<\infty$ in the $\beta\to\infty$ limit (Kondo effect). \end{itemize} \eject \title{Hierarchical model} \begin{itemize} \item Imaginary time: $\psi_\alpha^\pm(t):=e^{t H_0}a_\alpha^\pm(0)e^{-t H_0}$. \item Scale decomposition $$ \psi_\alpha^\pm(t):=\sum_{m\leqslant0}\psi_\alpha^{[m]\pm}(t) $$ \vfil \hfil\includegraphics[width=0.8\textwidth]{Figs/hierarchical_boxtree.pdf}\par \end{itemize} \eject \title{Hierarchical beta function} \begin{itemize} \item Beta function ({\it exact}) $$\begin{array}{r@{\ }l} C^{[m]}=&\displaystyle1+ \frac32(\ell_0^{[m]})^2+9(\ell_1^{[m]})^2\\[0.3cm] \ell_0^{[m-1]}=&\displaystyle\frac1{C^{[m]}}\Big(\ell_0^{[m]} +3 \ell_0^{[m]}\ell_1^{[m]} -(\ell_0^{[m]})^2\Big)\\[0.5cm] \ell_1^{[m-1]}=&\displaystyle\frac1{C^{[m]}}\Big(\frac12\ell_1^{[m]}+\frac18(\ell_0^{[m]})^2\Big) \end{array}$$ \end{itemize} \eject \title{Flow} \vfil \hfil\includegraphics[width=0.8\textwidth]{Figs/sd_phase.pdf}\par Fixed points: 0 (stable), $\bm\ell^*$ (marginal in $\ell_0$ and stable in $\ell_1$) \eject \title{Kondo effect} \begin{itemize} \item Fix $h=0$. \item At $0$, the susceptibility diverges as $\beta$. \item At $\bm\ell^*$, the susceptibility remains finite in the $\beta\to\infty$ limit. \end{itemize} \hfil\includegraphics[width=150pt]{Figs/sd_susc_0_28.pdf}\par \eject \title{Conclusion and perspectives} \begin{itemize} \item Two examples: {\color{blue}bilayer graphene} and the {\color{blue}hierarchical Kondo model}, which can be studied via {\it constructive}, {\it rigorous} implementations of the renormalization group technique. \item Bilayer graphene: weak coupling. \item Hierarchical Kondo model: strong coupling (non-trivial fixed point). \item Extensions: full Kondo model, BCS theory, high-$T_c$ superconductivity... \end{itemize} \end{document}