\documentclass{kiss} \usepackage{presentation} \usepackage{header} \usepackage{toolbox} \begin{document} \pagestyle{empty} \hbox{}\vfil \bf \large \hfil Strong-coupling renormalization group\par \smallskip \hfil in the hierarchical Kondo model\par \vfil \hfil Ian Jauslin \rm \normalsize \vfil \small \hfil joint with {\normalsize\bf G.~Benfatto} and {\normalsize\bf G.~Gallavotti}\par \vskip10pt arXiv: \parbox[b]{1cm}{\tt\href{http://arxiv.org/abs/1506.04381}{1506.04381}\par\href{http://arxiv.org/abs/1507.05678}{1507.05678}}\hfill{\tt \href{http://ian.jauslin.org}{http://ian.jauslin.org/}} \eject \pagestyle{plain} \setcounter{page}{1} \title{Kondo model} \begin{itemize} \item \href{http://dx.doi.org/10.1103/PhysRev.124.41}{[P. Anderson, 1961]}, \href{http://dx.doi.org/10.1143/PTP.32.37}{[J. Kondo, 1964]}: $$ H=H_0+V\quad\mathrm{on\ }\mathcal H=\mathcal F_L\otimes\mathbb C^2 $$ \itemptchange{$\scriptstyle\blacktriangleright$} \begin{itemize} \item $H_0$: kinetic term of the {\it electrons} $$ H_0:=\sum_{x}\sum_{\alpha=\uparrow,\downarrow}c^\dagger_\alpha(x)\,\left(\left(-\frac{\Delta}2-1\right)\,c_\alpha\right)(x)\otimes\mathds1 $$ \item $V$: interaction with the {\it impurity} $$ V=-\lambda_0\sum_{j=1,2,3}\sum_{\alpha_1,\alpha_2}c^\dagger_{\alpha_1}(0)\sigma^j_{\alpha_1,\alpha_2}c_{\alpha_2}(0)\otimes \tau^j $$ \end{itemize} \itemptreset \end{itemize} \hfil\includegraphics[width=0.8\textwidth]{figs/kondo_model.pdf}\par \eject \title{Kondo effect: magnetic susceptibility} \begin{itemize} \item Non-interacting magnetic susceptibility \itemptchange{$\scriptstyle\blacktriangleright$} \begin{itemize} \item Isolated impurity: $\chi^{(0)}(0,\beta)\displaystyle\mathop{\longrightarrow}_{\beta\to\infty}\infty$ \item Chain of electrons: $\displaystyle\lim_{\beta\to\infty}\lim_{L\to\infty}\frac1L\chi_e(0,\beta)<\infty.$ \end{itemize} \itemptreset \item Anti-ferromagnetic interaction: $\lambda_0<0$: $$ \lim_{\beta\to\infty}\chi^{(\lambda_0)}(0,\beta)<\infty. $$ \item {\it Strong-coupling} effect: the qualitative behavior changes as soon as $\lambda_0\neq0$. \end{itemize} \eject \title{Previous results} \begin{itemize} \item \href{http://dx.doi.org/10.1143/PTP.32.37}{[J. Kondo, 1964]}: third order Born approximation. \item \href{http://dx.doi.org/10.1088/0022-3719/3/12/008}{[P. Anderson, 1970]}, \href{http://dx.doi.org/10.1103/RevModPhys.47.773}{[K. Wilson, 1975]}: renormalization group approach \item{\tt Remark}: \href{http://dx.doi.org/10.1103/PhysRevLett.45.379}{[N.~Andrei, 1980]}: the Kondo model (suitably linearized) is exactly solvable via Bethe Ansatz (which breaks down under any perturbation of the model). \end{itemize} \eject \title{Current results} \begin{itemize} \item Hierarchical Kondo model: idealization of the Kondo model that has the same scaling properties. \item It is {\it exactly solvable}: reduces the system to a 2-dimensional discrete dynamical system. \item Kondo effect in the hierarchical model. \end{itemize} \hfil\includegraphics[width=150pt]{figs/sd_susc_0_28.pdf}\par \eject \title{Open problem} \begin{itemize} \item Usual approach to the Renormalization group: perturb around the uncoupled theory. \item Cannot access strongly-coupled effects. \item Idea: perturb around hierarchical models. \item How? Which hierarchical models? \end{itemize} \end{document}