From 2171672c2e5dab9b4e512a8120f917f2a5fdb473 Mon Sep 17 00:00:00 2001 From: Ian Jauslin Date: Tue, 12 Jan 2016 22:22:07 +0000 Subject: As presented at Copenhagen University on 2016-01-13 --- Jauslin_Copenhagen_2016.tex | 247 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 247 insertions(+) create mode 100644 Jauslin_Copenhagen_2016.tex (limited to 'Jauslin_Copenhagen_2016.tex') diff --git a/Jauslin_Copenhagen_2016.tex b/Jauslin_Copenhagen_2016.tex new file mode 100644 index 0000000..d44e609 --- /dev/null +++ b/Jauslin_Copenhagen_2016.tex @@ -0,0 +1,247 @@ +\documentclass{kiss} +\usepackage{presentation} +\usepackage{header} + +\begin{document} +\pagestyle{empty} +\hbox{}\vfil +\bf +\large +\hfil A Pfaffian formula\par +\smallskip +\hfil for monomer-dimer partition functions\par +\vfil +\hfil Ian Jauslin +\rm +\normalsize + +\vfil +\small +\hfil joint with {\normalsize\bf A.~Giuliani} and {\normalsize\bf E.H.~Lieb}\par +\vskip10pt +arXiv: {\tt1510.05027}\hfill{\tt http://ian.jauslin.org/} +\eject + +\pagestyle{plain} +\setcounter{page}{1} + +\title{Monomer-dimer system} +\bigskip +\hfil\includegraphics{Figs/even_example.pdf} +\begin{itemize} +\item Monomer: occupies a single vertex. +\item Dimer: occupies an edge and its end-vertices. +\item Monomer-Dimer (MD) covering: every vertex is occupied exactly once. +\end{itemize} +\eject + +\addtocounter{page}{-1} +\title{Monomer-dimer system} +\bigskip +\hfil\includegraphics{Figs/MD_example.pdf} +\begin{itemize} +\item Monomer: occupies a single vertex. +\item Dimer: occupies an edge and its end-vertices. +\item Monomer-Dimer (MD) covering: every vertex is occupied exactly once. +\end{itemize} +\eject + +\title{Partition function} +\begin{itemize} +\item Weights: edges $d_e$, vertices $\ell_v$ (for simplicity, assume they are $\ge0$). +\item Partition function: +$$ +\Xi(\bm\ell,\mathbf d)=\sum_{\mathrm{MD\ coverings}}\prod_{\mAthop{e:}_{\mAthop{\mathrm{occupied}}_{\mathrm{by\ dimer}}}}d_e\prod_{\mAthop{v:}_{\mAthop{\mathrm{occupied}}_{\mathrm{\ by\ monomer}}}}\ell_v. +$$ +\end{itemize} +\eject + +\title{Kasteleyn's theorem} +\begin{itemize} +\item If there are {\bf no monomers} (i.e. $\ell_v=0$ for all $v$), then $\Xi$ counts pairs of neighboring vertices: +$$ +\Xi(\mathbf0,\mathbf d)=\frac1{n!2^n}\sum_{\pi\in\mathcal S_{2n}}\prod_{i=1}^nd_{(\pi(2i-1),\pi(2i))}. +$$ +\end{itemize} +\hfil\includegraphics[width=3cm]{Figs/even_example_label_nodir.pdf} +\eject + +\title{Kasteleyn's theorem} +\begin{itemize} +\item If there are {\bf no monomers} (i.e. $\ell_v=0$ for all $v$), then $\Xi$ counts pairs of neighboring vertices: +$$ +\Xi(\mathbf0,\mathbf d)=\frac1{n!2^n}\sum_{\pi\in\mathcal S_{2n}}\prod_{i=1}^nd_{(\pi(2i-1),\pi(2i))}. +$$ +\end{itemize} +\hfil\includegraphics[width=3cm]{Figs/even_example_label_nodir_dimers.pdf} +\eject + +\title{Kasteleyn's theorem} +\begin{itemize} +\item Assume, in addition, that the graph is {\bf planar}. +\item [Kasteleyn, 1963]: {\color{blue}Direct} the graph in such a way that, for every face, moving along the boundary of the face in the counterclockwise direction, the number of arrows going against the motion is odd. +\end{itemize} +\hfil\includegraphics{Figs/even_example_directed.pdf} +\eject + +\title{Kasteleyn's theorem} +\begin{itemize} +\item Recall +$$ +\Xi(\mathbf0,\mathbf d)=\frac1{n!2^n}\sum_{\pi\in\mathcal S_{2n}}\prod_{i=1}^nd_{(\pi(2i-1),\pi(2i))}. +$$ +\item Kasteleyn's theorem: if $s_{i,j}:=+1$ if $i\rightarrow j$ and $-1$ if $j\rightarrow i$, then +$$ +\Xi(\mathbf0,\mathbf d)=\left|\frac1{n!2^n}\sum_{\pi\in\mathcal S_{2n}}(-1)^\pi\prod_{i=1}^nd_{(\pi(2i-1),\pi(2i))}s_{\pi(2i-1),\pi(2i)}\right|. +$$ +\item In other words, $(-1)^\pi\prod_{i=1}^ns_{\pi(2i-1),\pi(2i)}$ is {\color{blue} independent} of $\pi$. +\end{itemize} +\eject + +\title{Kasteleyn's theorem} +\begin{itemize} +\item $(-1)^\pi\prod_{i=1}^ns_{\pi(2i-1),\pi(2i)}$: +\end{itemize} +\hfil\includegraphics{Figs/even_example_label_dimers.pdf} +\eject + +\title{Kasteleyn's theorem} +\begin{itemize} +\item Recall +$$ +\Xi(\mathbf0,\mathbf d)=\left|\frac1{n!2^n}\sum_{\pi\in\mathcal S_{2n}}(-1)^\pi\prod_{i=1}^nd_{(\pi(2i-1),\pi(2i))}s_{\pi(2i-1),\pi(2i)}\right|. +$$ +\item Introducing an antisymmetric matrix $a$ with entries $a_{i,j}:=d_{(i,j)}s_{i,j}$ for $i