\documentclass{kiss} \usepackage{presentation} \usepackage{header} \begin{document} \pagestyle{empty} \hbox{}\vfil \bf \large \hfil Non-perturbative renormalization group\par \smallskip \hfil in a hierarchical Kondo model\par \vfil \hfil Ian Jauslin \rm \normalsize \vfil \small \hfil joint with {\normalsize\bf G.~Benfatto} and {\normalsize\bf G.~Gallavotti}\par \vskip10pt arXiv: {\tt1506.04381}\hfill{\tt http://ian.jauslin.org/} \eject \pagestyle{plain} \setcounter{page}{1} \title{Kondo model} \begin{itemize} \item [N.~Andrei, 1980]: $$ H=H_0+V $$ \itemptchange{$\scriptstyle\blacktriangleright$} \begin{itemize} \item $H_0$: kinetic term of the {\it electrons} $$ H_0:=\sum_{x}\sum_{\alpha=\uparrow,\downarrow}c^\dagger_\alpha(x)\,\left(-\frac{\Delta}2-1\right)\,c_\alpha(x) $$ \item $V$: interaction with the {\it impurity} $$ V=-\lambda_0\sum_{j=1,2,3}\sum_{\alpha_1,\alpha_2,\alpha_3,\alpha_4}c^\dagger_{\alpha_1}(0)\sigma^j_{\alpha_1,\alpha_2}c_{\alpha_2}(0)\, d^\dagger_{\alpha_3}\sigma^j_{\alpha_3,\alpha_4}d_{\alpha_4} $$ \end{itemize} \itemptreset \end{itemize} \hfil\includegraphics[width=0.8\textwidth]{Figs/kondo_model.pdf}\par \eject \title{Kondo effect: magnetic susceptibility} \begin{itemize} \item Non-interacting magnetic susceptibility \itemptchange{$\scriptstyle\blacktriangleright$} \begin{itemize} \item Isolated impurity: $\chi^{(0)}(0,\beta)\displaystyle\mathop{\longrightarrow}_{\beta\to\infty}\infty$ \item Chain of electrons: $\displaystyle\lim_{\beta\to\infty}\lim_{L\to\infty}\frac1L\chi_e(0,\beta)<\infty.$ \end{itemize} \itemptreset \item Anti-ferromagnetic interaction: $\lambda_0<0$: $$ \lim_{\beta\to\infty}\chi^{(\lambda_0)}(0,\beta)<\infty. $$ \item {\it Non-perturbative} effect: the qualitative behavior changes as soon as $\lambda_0\neq0$. \end{itemize} \eject \title{Previous results} \begin{itemize} \item [J.~Kondo, 1964]: third order Born approximation. \vskip0pt plus3fil \item [P.~Anderson, 1970], [K.~Wilson, 1975]: renormalization group approach \itemptchange{$\scriptstyle\blacktriangleright$ } \begin{itemize} \item Sequence of effective Hamiltonians at varying energy scales. \item For anti-ferromagnetic interactions, the effective Hamiltonians go to a {\it non-trivial fixed point}. \end{itemize} \itemptreset \item{\tt Remark}: [N.~Andrei, 1980]: the Kondo model (suitably linearized) is exactly solvable via Bethe Ansatz. \end{itemize} \eject \title{Current results} \begin{itemize} \item Hierarchical Kondo model: idealization of the Kondo model that shares its scaling properties. \item It is {\it exactly solvable}: the map relating the effective theories at different scales is {\it explicit} (no perturbative expansions). \item For $\lambda_0<0$, the flow tends to a non-trivial fixed point, and $\chi^{(\lambda_0)}<\infty$ in the $\beta\to\infty$ limit (Kondo effect). \end{itemize} \eject \title{Hierarchical beta function} \begin{itemize} \item Beta function ({\it exact}) $$\begin{array}{r@{\ }l} C^{[m]}=&\displaystyle1+ 3(\ell_0^{[m]})^2+9(\ell_1^{[m]})^2+9(\ell_2^{[m]})^2+324(\ell_3^{[m]})^2\\[0.3cm] \ell_0^{[m-1]}=&\displaystyle\frac1{C^{[m]}}\Big(\ell_0^{[m]} +18\ell_0^{[m]}\ell_3^{[m]}+3 \ell_0^{[m]}\ell_2^{[m]}+3 \ell_0^{[m]}\ell_1^{[m]} -2(\ell_0^{[m]})^2\Big)\\[0.5cm] \ell_1^{[m-1]}=&\displaystyle\frac1{C^{[m]}}\Big( \frac12\ell_1^{[m]}+9\ell_2^{[m]}\ell_3^{[m]} +\frac14(\ell_0^{[m]})^2\Big)\\[0.5cm] \ell_2^{[m-1]}=&\displaystyle\frac1{C^{[m]}}\Big(2\ell_2^{[m]}+36\ell_1^{[m]}\ell_3^{[m]}+ (\ell_0^{[m]})^2\Big)\\[0.5cm] \ell_3^{[m-1]}=&\displaystyle\frac1{C^{[m]}}\Big(\frac12\ell_3^{[m]}+\frac14\ell_1^{[m]}\ell_2^{[m]}+\frac1{24} (\ell_0^{[m]})^2\Big). \end{array}$$ \end{itemize} \eject \title{Flow} \vfil \hfil\includegraphics[width=0.8\textwidth]{Figs/beta_phase_half.pdf}\par Fixed points: $\bm\ell^{(0)}$, $\bm\ell^{(+)}$, $\bm\ell^*$. \eject \title{Kondo effect} \begin{itemize} \item Fix $h=0$. \item At $\bm\ell^{(+)}$, the susceptibility diverges as $\beta$. \item At $\bm\ell^*$, the susceptibility remains finite in the $\beta\to\infty$ limit. \end{itemize} \hfil\includegraphics[width=150pt]{Figs/susc_plot_temp.pdf}\par \end{document}