From 2157a78b72b0de503cda8ce915df57dfc2e74b53 Mon Sep 17 00:00:00 2001 From: Ian Jauslin Date: Fri, 31 Jul 2015 05:39:00 +0000 Subject: As presented at ICMP 2015 on 2015-07-30 --- Jauslin_ICMP_2015.tex | 115 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 115 insertions(+) create mode 100644 Jauslin_ICMP_2015.tex (limited to 'Jauslin_ICMP_2015.tex') diff --git a/Jauslin_ICMP_2015.tex b/Jauslin_ICMP_2015.tex new file mode 100644 index 0000000..0e87c7d --- /dev/null +++ b/Jauslin_ICMP_2015.tex @@ -0,0 +1,115 @@ +\documentclass{kiss} +\usepackage{presentation} +\usepackage{header} + +\begin{document} +\pagestyle{empty} +\hbox{}\vfil +\bf +\large +\hfil Non-perturbative renormalization group\par +\smallskip +\hfil in a hierarchical Kondo model\par +\vfil +\hfil Ian Jauslin +\rm +\normalsize + +\vfil +\small +\hfil joint with {\normalsize\bf G.~Benfatto} and {\normalsize\bf G.~Gallavotti}\par +\vskip10pt +arXiv: {\tt1506.04381}\hfill{\tt http://ian.jauslin.org/} +\eject + +\pagestyle{plain} +\setcounter{page}{1} + +\title{Kondo model} +\begin{itemize} +\item [N.~Andrei, 1980]: +$$ +H=H_0+V +$$ +\itemptchange{$\scriptstyle\blacktriangleright$} +\begin{itemize} +\item $H_0$: kinetic term of the {\it electrons} +$$ +H_0:=\sum_{x}\sum_{\alpha=\uparrow,\downarrow}c^\dagger_\alpha(x)\,\left(-\frac{\Delta}2-1\right)\,c_\alpha(x) +$$ +\item $V$: interaction with the {\it impurity} +$$ +V=-\lambda_0\sum_{j=1,2,3}\sum_{\alpha_1,\alpha_2,\alpha_3,\alpha_4}c^\dagger_{\alpha_1}(0)\sigma^j_{\alpha_1,\alpha_2}c_{\alpha_2}(0)\, d^\dagger_{\alpha_3}\sigma^j_{\alpha_3,\alpha_4}d_{\alpha_4} +$$ +\end{itemize} +\itemptreset +\end{itemize} +\hfil\includegraphics[width=0.8\textwidth]{Figs/kondo_model.pdf}\par +\eject + +\title{Kondo effect: magnetic susceptibility} +\begin{itemize} +\item Non-interacting magnetic susceptibility +\itemptchange{$\scriptstyle\blacktriangleright$} +\begin{itemize} +\item Isolated impurity: $\chi^{(0)}(0,\beta)\displaystyle\mathop{\longrightarrow}_{\beta\to\infty}\infty$ +\item Chain of electrons: $\displaystyle\lim_{\beta\to\infty}\lim_{L\to\infty}\frac1L\chi_e(0,\beta)<\infty.$ +\end{itemize} +\itemptreset +\item Anti-ferromagnetic interaction: $\lambda_0<0$: +$$ +\lim_{\beta\to\infty}\chi^{(\lambda_0)}(0,\beta)<\infty. +$$ +\item {\it Non-perturbative} effect: the qualitative behavior changes as soon as $\lambda_0\neq0$. +\end{itemize} +\eject + +\title{Previous results} +\begin{itemize} +\item [J.~Kondo, 1964]: third order Born approximation. +\vskip0pt plus3fil +\item [P.~Anderson, 1970], [K.~Wilson, 1975]: renormalization group approach +\itemptchange{$\scriptstyle\blacktriangleright$ } +\begin{itemize} +\item Sequence of effective Hamiltonians at varying energy scales. +\item For anti-ferromagnetic interactions, the effective Hamiltonians go to a {\it non-trivial fixed point}. +\end{itemize} +\itemptreset +\item{\tt Remark}: [N.~Andrei, 1980]: the Kondo model (suitably linearized) is exactly solvable via Bethe Ansatz. +\end{itemize} +\eject + +\title{Current results} +\begin{itemize} +\item Hierarchical Kondo model: idealization of the Kondo model that shares its scaling properties. +\item It is {\it exactly solvable}: the map relating the effective theories at different scales is {\it explicit} (no perturbative expansions). +\item For $\lambda_0<0$, the flow tends to a non-trivial fixed point, and $\chi^{(\lambda_0)}<\infty$ in the $\beta\to\infty$ limit (Kondo effect). +\end{itemize} +\eject + +\title{Hierarchical beta function} \begin{itemize} \item Beta function ({\it exact}) +$$\begin{array}{r@{\ }l} +C^{[m]}=&\displaystyle1+ 3(\ell_0^{[m]})^2+9(\ell_1^{[m]})^2+9(\ell_2^{[m]})^2+324(\ell_3^{[m]})^2\\[0.3cm] +\ell_0^{[m-1]}=&\displaystyle\frac1{C^{[m]}}\Big(\ell_0^{[m]} +18\ell_0^{[m]}\ell_3^{[m]}+3 \ell_0^{[m]}\ell_2^{[m]}+3 \ell_0^{[m]}\ell_1^{[m]} -2(\ell_0^{[m]})^2\Big)\\[0.5cm] +\ell_1^{[m-1]}=&\displaystyle\frac1{C^{[m]}}\Big( \frac12\ell_1^{[m]}+9\ell_2^{[m]}\ell_3^{[m]} +\frac14(\ell_0^{[m]})^2\Big)\\[0.5cm] +\ell_2^{[m-1]}=&\displaystyle\frac1{C^{[m]}}\Big(2\ell_2^{[m]}+36\ell_1^{[m]}\ell_3^{[m]}+ (\ell_0^{[m]})^2\Big)\\[0.5cm] +\ell_3^{[m-1]}=&\displaystyle\frac1{C^{[m]}}\Big(\frac12\ell_3^{[m]}+\frac14\ell_1^{[m]}\ell_2^{[m]}+\frac1{24} (\ell_0^{[m]})^2\Big). +\end{array}$$ +\end{itemize} +\eject + +\title{Flow} +\vfil +\hfil\includegraphics[width=0.8\textwidth]{Figs/beta_phase_half.pdf}\par +Fixed points: $\bm\ell^{(0)}$, $\bm\ell^{(+)}$, $\bm\ell^*$. +\eject + +\title{Kondo effect} +\begin{itemize} +\item Fix $h=0$. +\item At $\bm\ell^{(+)}$, the susceptibility diverges as $\beta$. +\item At $\bm\ell^*$, the susceptibility remains finite in the $\beta\to\infty$ limit. +\end{itemize} +\hfil\includegraphics[width=150pt]{Figs/susc_plot_temp.pdf}\par + +\end{document} -- cgit v1.2.3-54-g00ecf