%% Copyright 2021 Ian Jauslin %% %% Licensed under the Apache License, Version 2.0 (the "License"); %% you may not use this file except in compliance with the License. %% You may obtain a copy of the License at %% %% http://www.apache.org/licenses/LICENSE-2.0 %% %% Unless required by applicable law or agreed to in writing, software %% distributed under the License is distributed on an "AS IS" BASIS, %% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %% See the License for the specific language governing permissions and %% limitations under the License. \documentclass[subsection_in_all]{ian} \usepackage{code} \usepackage{dsfont} \usepackage{largearray} \usepackage{dlmf} \def\Eta{H} \begin{document} \hbox{} \hfil{\bf\Large {\tt simplesolv}\par \medskip \hfil \large v0.3 } \vfill \tableofcontents \vfill \eject \setcounter{page}1 \pagestyle{plain} \indent {\tt simplesolv} is a tool to compute the solution of the equations of the ``Simplified approach'' to the repulsive Bose gas introduced in\-~\cite{CJL20,CJL20b,CHe21}. This approach provides an approximation to various observables of the ground state of the Hamiltonian \begin{equation} H_N=-\frac12\sum_{i=1}^N\Delta_i+\sum_{1\leqslant i\leqslant j\leqslant N}v(|x_i-x_j|) \end{equation} in three dimensions, with periodic boundary conditions, in the thermodynamic limit $N\to\infty$ at fixed density $\rho$. \bigskip \indent {\tt simplesolv} is written in {\tt julia}. The source code is located in the {\tt src} directory of this bundle. Throughout the documentation, we will refer to the directory containing the {\tt src} directory as the ``installation directory'', and will denote it by the bash variable {\tt\$SIMPLESOLV} (so that the main julia file, for instance, is located at {\tt \$SIMPLESOLV/src/main.jl}). \vskip20pt \section{Basic usage} \indent Denoting the location of the installation directory by {\tt\$SIMPLESOLV}, {\tt simplesolv} is run by calling \begin{code} julia \$SIMPLESOLV/src/main.jl [args] \end{code} where the optional arguments {\tt [args]} take the form {\tt [-p params] [-U potential] [-M method] [-s savefile]}. \bigskip \indent A few commands support multithreaded execution. To enable {\tt julia} to run on several processors, it should be run with the {\tt -p} option. For example, to run on 8 CPUs, run \begin{code} julia -p 8 \$SIMPLESOLV/src/main.jl [args] \end{code} \bigskip \indent {\tt command} specifies which computation is to be carried out, such as {\tt energy} to compute the ground state energy, or {\tt condensate\_fraction} for the uncondensed fraction. The list of available commands depends on the \refname{sec:methods}{{\tt method}} argument, which specifies one of the available methods to solve the equation at hand. The available methods are (see section\-~\ref{sec:methods} for further details) \begin{itemize} \item \refname{sec:easyeq}{{\tt easyeq}} ({\bf default}) for the Simple or Medium equation, or any interpolation between them, with a soft potential using the Newton algorithm, \item \refname{sec:anyeq}{{\tt anyeq}} for any equation in the ``Simplified approach'' using the Newton algorithm. \item \refname{sec:simpleq-Kv}{{\tt simpleq-Kv}} for the Simple equation using explicit expressions involving $\mathfrak Kv$ (see\-~(\ref{Kv})), \item \refname{sec:simpleq-hardcore}{{\tt simpleq-hardcore}} for the Simple equation with a hard core potential using the Newton algorithm, \item \refname{sec:simpleq-iteration}{{\tt simpleq-iteration}} for the Simple equation with a soft potential using the iteration defined in\-~\cite{CJL20}. \end{itemize} Each method is described in detail below, along with the list of commands ({\tt command}) and parameters ({\tt params}) compatible with them. \bigskip \indent {\tt params} should be a `{\tt;}' separated list of entries, each of which is of the form {\tt key=value}. For example {\tt -p "rho=1e-6;v\_a=2"}. (Note that you should not end the list of parameters by a `{\tt;}', otherwise {\tt simplesolv} will interpret that as there being an empty parameter entry, which it cannot split into a key and value, and will fail.) \bigskip \indent \refname{sec:potentials}{{\tt potential}} specifies which potential $v$ should be used, from the following list (see section\-~\ref{sec:potentials} for further details). \begin{itemize} \item \refname{sec:exp}{{\tt exp}} ({\bf default}) for $v(|x|)=ae^{-|x|}$, \item \refname{sec:tent}{{\tt tent}} for $v(|x|)=\mathds 1_{|x|0$. \bigskip \indent \makelink{eq:easyeq_simpleq}{} \makelink{eq:easyeq_medeq}{} The special choice $\beta_K=\beta_L=0$ is called the Simple equation ({\tt simpleq}), and the choice $\beta_K=\beta_L=1$ is called the Medium equation ({\tt medeq}) \bigskip \subsubsection{Usage} \indent Unless otherwise noted, this method takes the following parameters (specified via the {\tt [-p params]} flag, as a `{\tt;}' separated list of entries). \begin{itemize} \item\makelink{param:easyeq_rho}{} {\tt rho} ({\tt Float64}, default: $10^{-6}$): density $\rho$. \item\makelink{param:easyeq_tolerance}{} {\tt tolerance} ({\tt Float64}, default: $10^{-11}$): maximal size of final step in Newton iteration. \item\makelink{param:easyeq_maxiter}{} {\tt maxiter} ({\tt Int64}, default: 21): maximal number of iterations of the Newton algorithm before giving up. \item\makelink{param:easyeq_order}{} {\tt order} ({\tt Int64}, default: 100): order used for all Gauss quadratures (denoted by $N$ below). \item\makelink{param:easyeq_minlrho_init}{} {\tt minlrho\_init} ({\tt Float64}, default: {\tt rho}): to initialize the Newton algorithm, we first compute the solution for a smaller $\rho$, {\tt minlrho} is the minimal value for $\log_{10}\rho$ to start this initialization process. \item\makelink{param:easyeq_nlrho_init}{} {\tt nlrho\_init} ({\tt Int64}, default: 1): number of steps in the initialization process described above. Set to 1 to disable the incremental initialization process. \item\makelink{param:easyeq_bK}{} {\tt bK}, {\tt bL} ({\tt Float64}, default: 1, 1): the values of $\beta_K$ and $\beta_L$. \item\makelink{param:easyeq_eq}{} {\tt eq} ({\tt String}, default: ``{\tt simpleq}'', acceptable values: ``{\tt simpleq}'', ``{\tt medeq}''): A shortcut to select either the \refname{eq:easyeq_simpleq}{Simple equation} ($\beta_K=\beta_L=0$) or the \refname{eq:easyeq_medeq}{Medium equation} ($\beta_L=\beta_K=1$). When this option is set, neither {\tt bK} nor {\tt bL} should be set. \end{itemize} \bigskip The available {\tt commands} are the following. \begin{itemize} \item {\tt energy}\makelink{command:easyeq_energy}{}: compute the energy $e$ at a given $\rho$.\par \underline{Output}: [$e$] [Newton error $\epsilon$]. \item {\tt energy\_rho}\makelink{command:easyeq_energy_rho}{}: compute the energy $e$ as a function of $\rho$. The Newton algorithm is initialized with the hardcore scattering solution (\ref{easyeq_init}) for the lowest $\rho$, and with the previously computed $\rho$ for the larger densities.\par \underline{Disabled parameters}: \refname{param:easyeq_rho}{{\tt rho}}, \refname{param:easyeq_minlrho_init}{{\tt minlrho\_init}} and \refname{param:easyeq_nlrho_init}{{\tt nlrho\_init}}.\par \underline{Extra parameters}: \begin{itemize} \item\makelink{param:easyeq_minlrho}{} {\tt minlrho} ({\tt Float64}, default: $10^{-6}$): minimal value for $\log_{10}\rho$. \item\makelink{param:easyeq_maxlrho}{} {\tt maxlrho} ({\tt Float64}, default: $10^{2}$): maximal value for $\log_{10}\rho$. \item\makelink{param:easyeq_nlrho}{} {\tt nlrho} ({\tt Int64}, default: $100$): number of values for $\rho$ (spaced logarithmically). \item\makelink{param:easyeq_rhos}{} {\tt rhos} ({\tt Array\{Float64\}}, default: $(10^{{\tt minlrho}+\frac{{\tt maxlrho}-{\tt minlrho}}{{\tt nlrho}}n})_n$: list of values for $\rho$, specified as a `{\tt,}' separated list. \end{itemize} \underline{Output} (one line for each value of $\rho$): [$\rho$] [$e$] [Newton error $\epsilon$]. \item\makelink{command:easyeq_condensate_fraction}{} {\tt condensate\_fraction}: compute the uncondensed fraction $\eta$ at a given $\rho$.\par \underline{Output}: [$\eta$] [Newton error $\epsilon$]. \item\makelink{command:easyeq_condensate_fraction_rho}{} {\tt condensate\_fraction\_rho}: compute the uncondensed fraction $\eta$ as a function of $\rho$. The Newton algorithm is initialized with the hardcore scattering solution (\ref{easyeq_init}) for the lowest $\rho$, and with the previously computed $\rho$ for the larger densities.\par \underline{Disabled parameters}: same as \refname{command:easyeq_energy_rho}{{\tt energy\_rho}}.\par \underline{Extra parameters}: same as \refname{command:easyeq_energy_rho}{{\tt energy\_rho}}.\par \underline{Output} (one line for each value of $\rho$): [$\rho$] [$\eta$] [Newton error $\epsilon$]. \item\makelink{command:easyeq_uk}{} {\tt uk}: compute the Fourier transform $\hat u(|k|)$. The values $|k|$ at which $\hat u$ is computed are those coming from the Gauss quadratures, and cannot be set.\par \underline{Output} (one line for each value of $|k|$): [$|k|$] [$\hat u(|k|)$] \item\makelink{command:easyeq_ux}{} {\tt ux}: compute $u$ as a function of $|x|$.\par \underline{Extra parameters}: \begin{itemize} \item\makelink{param:easyeq_xmin}{} {\tt xmin} ({\tt Float64}, default: 0): minimum of the range of $|x|$ to be printed. \item\makelink{param:easyeq_xmax}{} {\tt xmax} ({\tt Float64}, default: 100): maximum of the range of $|x|$ to be printed. \item\makelink{param:easyeq_nx}{} {\tt nx} ({\tt Int64}, default: 100): number of points to print (linearly spaced). \end{itemize} \underline{Output} (one line for each value of $x$): [$|x|$] [$u(|x|)$] \item\makelink{command:easyeq_uux}{} {\tt uux}: compute $2u-\rho u\ast u$ as a function of $|x|$.\par \underline{Extra parameters}: Same as \refname{command:easyeq_ux}{{\tt ux}}.\par \underline{Output} (one line for each value of $x$): [$|x|$] [$2u(|x|)-\rho u\ast u(|x|)$] \end{itemize} \subsubsection{Description} \point{\bf Fourier space formulation.} The computation is carried out in Fourier space. We take the convention that the Fourier transform of a function $f(|x|)$ is \begin{equation} \hat f(|k|)=\int_{\mathbb R^3} dx\ e^{ikx}f(|x|) =\frac{4\pi}{|k|}\int_0^\infty dr\ \frac{\sin(|k|r)}rf(r) . \end{equation} In Fourier space, (\ref{easyeq}) becomes \begin{equation} k^2\hat u=\hat S-2\rho\hat A_K\hat u+\rho^2\hat A_L\hat u^2 \end{equation} \begin{equation} \hat A_K:=\beta_K\hat S+(1-\beta_K)\frac{2e}\rho ,\quad \hat A_L:=\beta_L\hat S+(1-\beta_L)\frac{2e}\rho \end{equation} with \begin{equation} \hat S(|k|)=\int_{\mathbb R^3} dx\ e^{ikx}(1-u(|x|))v(|x|) =\hat v(k)-\hat u\hat\ast\hat v(k) ,\quad \hat f\hat\ast\hat g(|k|):=\int_{\mathbb R^3}\frac{dp}{(2\pi)^3}\ \hat f(|k-p|)\hat g(|p|) . \end{equation} We write this as a quadratic equation for $\hat u$, and solve it, keeping the solution that decays as $|k|\to\infty$: \begin{equation} \rho\hat u(|k|)= \frac{A_K(|k|)}{A_L(|k|)}\left(\xi(|k|)+1-\sqrt{(\xi(|k|)+1)^2-\frac{A_L(|k|)}{A_K^2(|k|)}\hat S(|k|)}\right) \end{equation} that is, \begin{equation} \rho\hat u(|k|)= \frac{\hat S(|k|)}{2A_K(|k|)(\xi(|k|)+1)}\Phi\left({\textstyle\frac{A_L(|k|)}{A_K^2(|k|)}\frac{\hat S(|k|)}{(\xi(|k|)+1)^2}}\right) \label{uk_easyeq} \end{equation} with \begin{equation} \xi(|k|):=\frac{k^2}{2\rho\hat A_K} ,\quad \Phi(x):=\frac{2(1-\sqrt{1-x})}x . \end{equation} Furthermore, using bipolar coordinates (see lemma\-~\ref{lemma:bipolar}), we write $\hat S$ as \begin{equation} \hat S(|k|)=\hat v(|k|)-\frac1{8\pi^3}\int_0^\infty dt\ t\hat u(t)\Eta(|k|,t) ,\quad \Eta(y,t):=\frac{2\pi}y\int_{|y-t|}^{y+t}ds\ s\hat v(s) . \label{easyeq_Eta} \end{equation} By a simple change of variables, \begin{equation} \Eta(y,t)= 4\pi\left(\mathds 1_{y>t}\frac{t}y+\mathds 1_{y\leqslant t}\right) \int_0^1 ds\ ((y+t)s+|y-t|(1-s))v((y+t)s+|y-t|(1-s)) . \label{Eta} \end{equation} \bigskip \point{\bf Evaluating integrals.} To compute these integrals numerically, we will use Gauss-Legendre quadratures: \begin{equation} \int_0^1 dt\ f(t)\approx\frac12\sum_{i=1}^N w_if\left({\textstyle\frac{r_i+1}2}\right) \end{equation} where $w_i$ and $r_i$ are the Gauss-Legendre {\it weights} and {\it abcissa}. The order $N$ corresponds to the parameter \refname{param:easyeq_order}{{\tt order}}. The error made by the quadrature is estimated in appendix\-~\ref{appGL}. We compactify the integrals to the interval $(0,1)$: $y:=\frac1{t+1}$: \begin{equation} \hat S(|k|)=\hat v(|k|)-\frac1{8\pi^3}\int_0^1 dy\ \frac{(1-y)\hat u(\frac{1-y}y)\Eta(|k|,\frac{1-y}y)}{y^3} \end{equation} so, using the Gauss-Legendre quadrature, we approximate \begin{equation} \hat S(|k|)\approx\hat v(|k|)-\frac1{16\pi^3}\sum_{j=1}^N w_j \frac{(1-y_j)\hat u(\frac{1-y_j}{y_j})\Eta(|k|,\frac{1-y_j}{y_j})}{y_j^3} ,\quad y_j:=\frac{r_j+1}2 . \end{equation} This suggests a natural discretization of Fourier space: let \begin{equation} k_i:=\frac{1-r_i}{1+r_i}\equiv\frac{1-y_i}{y_i} . \label{easyeq_ki} \end{equation} Thus, defining \begin{equation} \mathbb U_i:=\rho\hat u(k_i) ,\quad \hat v_i:=\hat v(k_i) \end{equation} and approximate\-~(\ref{uk_easyeq}): \begin{equation} \mathbb U_i=\frac{\mathbb T_i}{2(\mathbb X_i+1)}\Phi\left({\textstyle\mathbb B_i\frac{\mathbb T_i}{(\mathbb X_i+1)^2}}\right) \label{bbU_easyeq} \end{equation} with \begin{equation} \mathbb A_{K,i}:=\beta_K\mathbb S_i+(1-\beta_K)\mathbb E ,\quad \mathbb B_{i}:=\frac{\beta_L\mathbb S_i+(1-\beta_L)\mathbb E}{\mathbb A_{K,i}} ,\quad \mathbb T_i:=\frac{\mathbb S_i}{\mathbb A_{K,i}} \end{equation} \begin{equation} \mathbb S_i:=\hat v_i-\frac1{16\pi^3\rho}\sum_{j=1}^N w_j\frac{(1-y_j)\mathbb U_j\Eta(k_i,k_j)}{y_j^3} ,\quad \mathbb E:=\hat v(0)-\frac1{16\pi^3\rho}\sum_{j=1}^N w_j\frac{(1-y_j)\mathbb U_j\Eta(0,k_j)}{y_j^3} \end{equation} \begin{equation} \mathbb X_i:=\frac{k_i^2}{2\rho\mathbb A_{K,i}} . \end{equation} This is a discrete equation for the vector $(\mathbb U_i)_{i=1}^N$. \bigskip \point{\bf Main algorithm to compute $\mathbb U$.}\par\penalty10000 \medskip\penalty10000 \subpoint We rewrite\-~(\ref{bbU_easyeq}) as a root finding problem: \begin{equation} \Xi_i(\mathbb U):=\mathbb U_i-\frac{\mathbb T_i}{2(\mathbb X_i+1)}\Phi\left({\textstyle B_i\frac{\mathbb T_i}{(\mathbb X_i+1)^2}}\right) =0 \label{root_easyeq} \end{equation} which we solve using the Newton algorithm, that is, we define a sequence of $\mathbb U$'s: \begin{equation} \mathbb U^{(n+1)}=\mathbb U^{(n)}-(D\Xi(\mathbb U^{(n)}))^{-1}\Xi(\mathbb U^{(n)}) \end{equation} where $D\Xi$ is the Jacobian of $\Xi$: \begin{equation} (D\Xi)_{i,j}:=\frac{\partial\Xi_i}{\partial\mathbb U_j} . \end{equation} \bigskip \subpoint For small values of $\rho$, we initialize the algorithm with the hardcore scattering solution \begin{equation} \hat u_0(k)=\frac{4\pi a_0}{k^2} \label{easyeq_init} \end{equation} where $a_0$ is the scattering length of the potential $v$ (or an approximation thereof, which need not be very good). Thus, \begin{equation} \mathbb U^{(0)}_i=\frac{4\pi a_0}{k_i^2} . \end{equation} This is a good approximation for small $\rho$. For larger $\rho$, we choose $\mathbb U^{(0)}$ as the solution of {\tt easyeq} for a slightly smaller $\rho$, and proceed inductively (using the parameters \refname{param:easyeq_minlrho_init}{{\tt minlrho\_init}} and \refname{param:easyeq_nlrho_init}{{\tt nlrho\_init}}). \bigskip \subpoint We are left with computing the Jacobian of $\Xi$: \begin{equation} \begin{largearray} \frac{\partial\Xi_i}{\partial\mathbb U_j} =\delta_{j,i} -\frac1{2(\mathbb X_i+1)}\left( \partial_j\mathbb T_i-\frac{\mathbb T_i\partial_j\mathbb X_i}{\mathbb X_i+1} \right)\Phi\left({\textstyle\mathbb B_i\frac{\mathbb T_i}{(\mathbb X_i+1)^2}}\right) \\[0.5cm]\hfill -\frac{\mathbb T_i}{2(\mathbb X_i+1)^3}\left( \mathbb B_i\partial_j\mathbb T_i+\mathbb T_i\partial_j\mathbb B_i-2\frac{\mathbb B_i\mathbb T_i\partial_j\mathbb X_i}{\mathbb X_i+1} \right)\partial\Phi\left({\textstyle\mathbb B_i\frac{\mathbb T_i}{(\mathbb X_i+1)^2}}\right) \end{largearray} \label{jacobian_easyeq} \end{equation} with \begin{equation} \partial_j\mathbb B_i= (\beta_L(1-\beta_K)-\beta_K(1-\beta_L)) \frac{\mathbb E\partial_j\mathbb S_i-\mathbb S_i\partial_j\mathbb E}{(\beta_K\mathbb S_i+(1-\beta_K)\mathbb E)^2} \end{equation} \begin{equation} \partial_j\mathbb T_i= (1-\beta_K)\frac{\mathbb E\partial_j\mathbb S_i-\mathbb S_i\partial_j\mathbb E}{(\beta_K\mathbb S_i+(1-\beta_K)\mathbb E)^2} ,\quad \partial_j\mathbb A_{K,i}=\beta_K\partial_j\mathbb S_i+(1-\beta_K)\partial_j\mathbb E \end{equation} \begin{equation} \partial_j\mathbb S_i:=-\frac1{16\pi^3\rho}w_j\frac{(1-y_j)\Eta(k_i,k_j)}{y_j^3} ,\quad \partial_j\mathbb E:=-\frac1{16\pi^3\rho}\sum_{j=1}^N w_j\frac{(1-y_j)\Eta(0,k_j)}{y_j^3} \end{equation} \begin{equation} \partial_j\mathbb X_i:=-\frac{k_i^2}{2\rho\mathbb A_{K,i}^2}\partial_j\mathbb A_{K,i} . \end{equation} \bigskip \subpoint We iterate the Newton algorithm until the Newton relative error $\epsilon$ becomes smaller than the \refname{param:easyeq_tolerance}{{\tt tolerance}} parameter. The Newton error is defined as \begin{equation} \epsilon=\frac{\|\mathbb U^{(n+1)}-\mathbb U^{(n)}\|_2}{\|\mathbb U^{(n)}\|_2} \end{equation} where $\|\cdot\|_2$ is the $l_2$ norm. The energy thus obtained is \begin{equation} e=\frac\rho2\mathds E \end{equation} the Fourier transform $\hat u$ of the solution is \begin{equation} \hat u(k_i)\approx\frac{\mathbb U_i}\rho \end{equation} and the solution $u$ in real space is obtained by inverting the Fourier transform \begin{equation} \begin{array}{>\displaystyle r@{\ }>\displaystyle l} u(|x|)=\int\frac{dk}{8\pi^3}\ e^{-ikx}\hat u(|k|) =&\frac1{2\pi^2|x|}\int_0^1dy\ \frac{(1-y)\sin(|x|\frac{1-y}y)\hat u(\frac{1-y}y)}{y^3} \\[0.5cm] \approx& \frac1{4\pi^2|x|}\sum_{j=1}^Nw_j (1+k_j)^2k_j\sin(|x|k_j)\hat u(k_j) . \end{array} \label{ux} \end{equation} To compute $2u-\rho u\ast u$, we replace $\hat u$ with $2\hat u-\rho\hat u^2$ in the previous equation. \bigskip \point{\bf Condensate fraction.} Finally, to compute the uncondensed fraction, we solve the modified {\tt easyeq} (see\-~\cite{CJL20b}) \begin{equation} (-\Delta+2\mu)u_\mu=v(1-u_\mu)-2\rho K+\rho^2L \label{easyeq_mu} \end{equation} where $K$ and $L$ are defined as in\-~(\ref{easyeq_KL})-(\ref{easyeq_Se}) in which $u$ is replaced with $u_\mu$. The uncondensed fraction is then \begin{equation} \eta=\partial_\mu e|_{\mu=0} =-\frac\rho2\int dx\ v(|x|)\partial_\mu u_\mu(|x|)|_{\mu=0} . \end{equation} To compute the energy in the presence of the parameter $\mu$, we proceed in the same way as for $\mu=0$, the only difference being that $k^2$ should formally be replaced by $k^2+2\mu$. In other words, we consider $\mathbb U_i=u_\mu(|k_i|)$ and define $\Xi(\mathbb U,\mu)$ in the same way as in\-~(\ref{root_easyeq}), except that $\mathbb X_i$ should be replaced by \begin{equation} \frac{k_i^2+2\mu}{2\rho\mathbb A_{K,i}} . \end{equation} We then solve \begin{equation} \Xi(\mathbb U,\mu)=0 . \end{equation} By differentiating this identity with respect to $\mu$, we find $\partial_\mu u_\mu$: \begin{equation} D\Xi\partial_\mu \mathbb U=-\partial_\mu\Xi \end{equation} and the uncondensed fraction is \begin{equation} \eta =\frac12\int dx\ v(x)(D\Xi)^{-1}\partial_\mu\Xi|_{\mu=0} \end{equation} thus \begin{equation} \eta=\frac1{16\pi^3}\int_0^1 dy\ \frac{(1-y)\Eta(0,\frac{1-y}y)(D\Xi)^{-1}\partial_\mu\Xi|_{\mu=0}(\frac{1-y}y)}{y^3} \end{equation} which we approximate using a Gauss-Legendre quadrature: \begin{equation} \eta\approx\frac1{32\pi^3}\sum_{j=1}^N w_j(1-k_j)^2k_j\Eta(0,k_j)\sum_{i=1}^N(D\Xi)^{-1}_{j,i}\partial_\mu\Xi_i|_{\mu=0} . \label{eta_easyeq} \end{equation} We then compute, using\-~(\ref{jacobian_easyeq}), \begin{equation} \partial_\mu\Xi_i|_{\mu=0} = \frac{\mathbb T_i}{2\rho\mathbb A_{K,i}(\mathbb X_i+1)^2}\Phi\left({\textstyle\mathbb B_i\frac{\mathbb T_i}{(\mathbb X_i+1)^2}}\right) +\frac{\mathbb B_i\mathbb T_i^2}{\rho\mathbb A_{K,i}(\mathbb X_i+1)^4}\partial\Phi\left({\textstyle\mathbb B_i\frac{\mathbb T_i}{(\mathbb X_i+1)^2}}\right) . \end{equation} \subsection{\tt anyeq}\label{sec:anyeq} \indent This method is used to solve any of the equations in the Simplified approach. Specifically, it solves the equation \begin{equation} -\Delta u = v(1-u)-2\rho K+\rho^2 L \label{anyeq} \end{equation} with \begin{equation} K=\gamma_K(1-\alpha_Ku)\left(\beta_K u\ast S+(1-\beta_K)\frac{2e}\rho u\right) \label{anyeq_K} \end{equation} and \begin{equation} L:=L_1+L_2+L_3 \end{equation} \begin{equation} L_1:=(1-\alpha_{L,1}u)\left(\beta_{L,1}u\ast u\ast S+(1-\beta_{L,1})\frac{2e}\rho u\ast u\right) \end{equation} \begin{equation} L_2:=-\gamma_{L,2}(1-\alpha_{L,2}u)\left(\beta_{L,2}2u\ast(u(u\ast S))+(1-\beta_{L,2})\frac{4e}\rho u\ast u^2\right) \end{equation} \begin{equation} L_3:=\gamma_{L,3}(1-\alpha_{L,3}u)\left(\beta_{L,3}\frac12\int dydz\ u(y)u(z-x)u(z)u(y-x)S(z-y)+(1-\beta_{L,3})\frac e\rho u^2\ast u^2\right) \end{equation} \begin{equation} e=\frac\rho2\int dx\ (1-u(|x|))v(|x|) . \label{anyeq_e} \end{equation} The parameters $\alpha_\cdot$, $\beta_\cdot$ and $\gamma_\cdot$ can be set to turn\-~(\ref{anyeq}) into any of the approximations of the Simplified approach. For ease of use, there are several predefined equations, given in the following table. \bigskip \def\arraystretch{1.5} \setlength\tabcolsep{5pt} \makelink{table:anyeq_eqs}{} \hfil\begin{tabular}{|r|c|c|c|c|c|c|c|c|c|c|c|c|} \hline &$\alpha_K$ &$\beta_K$ &$\gamma_K$ &$\alpha_{L,1}$ &$\beta_{L,1}$ &$\alpha_{L,2}$ &$\beta_{L,2}$ &$\gamma_{L,2}$ &$\alpha_{L,3}$ &$\beta_{L,3}$ &$\gamma_{L,3}$\\ \hline \makelink{eq:anyeq_compleq}{}{\tt compleq}&1&1&1&1&1&1&1&1&1&1&1\\ \makelink{eq:anyeq_bigeq}{} {\tt bigeq }&1&1&1&1&1&1&1&1&-&-&0\\ \makelink{eq:anyeq_fulleq}{} {\tt fulleq }&1&1&1&1&1&1&1&1&1&0&1\\ \makelink{eq:anyeq_medeq}{} {\tt medeq }&0&1&1&0&1&-&-&0&-&-&0\\ \makelink{eq:anyeq_simpleq}{}{\tt simpleq}&0&0&1&0&0&-&-&0&-&-&0\\ \hline \end{tabular} \bigskip Note that there is no $\gamma_{L,1}$, whose computation would be rather different. Note, in addition, that {\tt simpleq} and {\tt medeq} coincide with their definitions in\-~(\ref{easyeq}). The method used to solve this equation is very different from \refname{sec:easyeq}{{\tt easyeq}}, and is significantly longer to run. \bigskip \subsubsection{Usage} \indent Unless otherwise noted, this method takes the following parameters (specified via the {\tt [-p params]} flag, as a `{\tt;}' separated list of entries). \begin{itemize} \item\makelink{param:anyeq_rho}{} {\tt rho} ({\tt Float64}, default: $10^{-6}$): density $\rho$. \item\makelink{param:anyeq_tolerance}{} {\tt tolerance} ({\tt Float64}, default: $10^{-11}$): maximal size of final step in Newton iteration. \item\makelink{param:anyeq_maxiter}{} {\tt maxiter} ({\tt Int64}, default: 21): maximal number of iterations of the Newton algorithm before giving up. \item\makelink{param:anyeq_P}{} {\tt P} ({\tt Int64}, default: 11): order of all Chebyshev polynomial expansions (denoted by $P$ below). \item\makelink{param:anyeq_N}{} {\tt N} ({\tt Int64}, default: 12): order of all Gauss quadratures (denoted by $N$ below). \item\makelink{param:anyeq_J}{} {\tt J} ({\tt Int64}, default: 10): number of splines (denoted by $J$ below). \item\makelink{param:anyeq_minlrho_init}{} {\tt minlrho\_init} ({\tt Float64}, default: \refname{param:anyeq_rho}{{\tt rho}}): we initialize the Newton algorithm using the solution of \refname{eq:easyeq_medeq}{{\tt medeq}}, computed using the methods in \refname{sec:easyeq}{{\tt easyeq}}. This option is passed to the underlying \refname{sec:easyeq}{{\tt easyeq}} routine. \item\makelink{param:anyeq_nlrho_init}{} {\tt nlrho\_init} ({\tt Int64}, default: 1): this option is passed to the underlying \refname{sec:easyeq}{{\tt easyeq}} routine to initialize the Newton algorithm. \item\makelink{param:anyeq_aK}{} {\tt aK}, {\tt bK}, {\tt gK}, {\tt aL1}, {\tt bL1}, {\tt aL2}, {\tt bL2}, {\tt gL2}, {\tt aL3}, {\tt bL3}, {\tt gL3} ({\tt Float64}, default: 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0): the values of $\alpha_K$, $\beta_K$, $\gamma_K$, $\alpha_{L,1}$, $\beta_{L,1}$, $\alpha_{L,2}$, $\beta_{L,2}$, $\gamma_{L,2}$, $\alpha_{L,3}$, $\beta_{L,3}$, $\gamma_{L,3}$. \item\makelink{param:anyeq_eq}{} {\tt eq} ({\tt String}, default: ``{\tt bigeq}'', acceptable values: ``{\tt compleq}'', ``{\tt bigeq}'', ``{\tt fulleq}'', ``{\tt medeq}'', ``{\tt simpleq}''): A shortcut to select any of the equations defined in the \refname{table:anyeq_eqs}{table above}. When this option is set, none of \refname{param:anyeq_aK}{\tt aK}, \refname{param:anyeq_aK}{\tt bK}, \refname{param:anyeq_aK}{\tt gK}, \refname{param:anyeq_aK}{\tt aL1}, \refname{param:anyeq_aK}{\tt bL1}, \refname{param:anyeq_aK}{\tt aL2}, \refname{param:anyeq_aK}{\tt bL2}, \refname{param:anyeq_aK}{\tt gL2}, \refname{param:anyeq_aK}{\tt aL3}, \refname{param:anyeq_aK}{\tt bL3}, \refname{param:anyeq_aK}{\tt gL3} should be set. \end{itemize} \bigskip The available {\tt commands} are the following. \begin{itemize} \item\makelink{command:anyeq_energy}{} {\tt energy}: compute the energy $e$ at a given $\rho$.\par \underline{Output}: [$e$] [Newton error $\epsilon$]. \item\makelink{command:anyeq_energy_rho}{} {\tt energy\_rho}: compute the energy $e$ as a function of $\rho$. The Newton algorithm is initialized with the solution of \refname{eq:easyeq_medeq}{{\tt medeq}}.\par \underline{Disabled parameters}: \refname{param:anyeq_rho}{{\tt rho}}, \refname{param:anyeq_minlrho_init}{{\tt minlrho\_init}} and \refname{param:anyeq_nlrho_init}{{\tt nlrho\_init}}.\par \underline{Extra parameters}: \begin{itemize} \item\makelink{param:anyeq_minlrho}{} {\tt minlrho} ({\tt Float64}, default: $10^{-6}$): minimal value for $\log_{10}\rho$. \item\makelink{param:anyeq_maxlrho}{} {\tt maxlrho} ({\tt Float64}, default: $10^{2}$): maximal value for $\log_{10}\rho$. \item\makelink{param:anyeq_nlrho}{} {\tt nlrho} ({\tt Int64}, default: $100$): number of values for $\rho$ (spaced logarithmically). \item\makelink{param:anyeq_rhos}{} {\tt rhos} ({\tt Array\{Float64\}}, default: $(10^{{\tt minlrho}+\frac{{\tt maxlrho}-{\tt minlrho}}{{\tt nlrho}}n})_n$: list of values for $\rho$, specified as a `{\tt,}' separated list. \end{itemize} \underline{Output} (one line for each value of $\rho$): [$\rho$] [$e$] [Newton error $\epsilon$].\par \underline{Multithread support}: yes, different values of $\rho$ split up among workers. \item\makelink{command:anyeq_energy_rho_init_prevrho}{} {\tt energy\_rho\_init\_prevrho}: compute the energy $e$ as a function of $\rho$. The Newton algorithm is initialized with the solution of \refname{eq:easyeq_medeq}{{\tt medeq}} for the lowest $\rho$, and with the previously computed $\rho$ for the larger densities.\par \underline{Disabled parameters}: same as \refname{command:anyeq_energy_rho}{{\tt energy\_rho}}.\par \underline{Extra parameters}: same as \refname{command:anyeq_energy_rho}{{\tt energy\_rho}}.\par \underline{Output} (one line for each value of $\rho$): [$\rho$] [$e$] [Newton error $\epsilon$]. \item\makelink{command:anyeq_energy_rho_init_nextrho}{} {\tt energy\_rho\_init\_nextrho}: same as \refname{command:anyeq_energy_rho_init_prevrho}{{\tt energy\_rho\_init\_prevrho}} except that the energy is computed for decreasing densities instead of increasing ones. The Newton algorithm is initialized with the solution of \refname{eq:easyeq_medeq}{{\tt medeq}} for the largest $\rho$, and with the previously computed $\rho$ for the smaller densities.\par \underline{Disabled parameters}: same as \refname{command:anyeq_energy_rho}{{\tt energy\_rho}}.\par \underline{Extra parameters}: same as \refname{command:anyeq_energy_rho}{{\tt energy\_rho}}.\par \underline{Output} (one line for each value of $\rho$): [$\rho$] [$e$] [Newton error $\epsilon$]. \item\makelink{command:anyeq_condensate_fraction}{} {\tt condensate\_fraction}: compute the uncondensed fraction $\eta$ at a given $\rho$.\par \underline{Output}: [$\eta$] [Newton error $\epsilon$]. \item\makelink{command:anyeq_condensate_fraction_rho}{} {\tt condensate\_fraction\_rho}: compute the uncondensed fraction $\eta$ as a function of $\rho$. The Newton algorithm is initialized with the solution of \refname{eq:easyeq_medeq}{{\tt medeq}}.\par \underline{Disabled parameters}: same as \refname{command:anyeq_energy_rho}{{\tt energy\_rho}}.\par \underline{Extra parameters}: same as \refname{command:anyeq_energy_rho}{{\tt energy\_rho}}.\par \underline{Output} (one line for each value of $\rho$): [$\rho$] [$\eta$] [Newton error $\epsilon$].\par \underline{Multithread support}: yes, different values of $\rho$ split up among workers. \item\makelink{command:anyeq_uk}{} {\tt uk}: compute the Fourier transform $\hat u(|k|)$. The values $|k|$ at which $\hat u$ is computed are those coming from the Gauss quadratures, and cannot be set.\par \underline{Output} (one line for each value of $|k|$): [$|k|$] [$\hat u(|k|)$] \item\makelink{command:anyeq_ux}{} {\tt ux}: compute $u$ as a function of $|x|$.\par \underline{Extra parameters}: \begin{itemize} \item\makelink{param:anyeq_xmin}{} {\tt xmin} ({\tt Float64}, default: 0): minimum of the range of $|x|$ to be printed. \item\makelink{param:anyeq_xmax}{} {\tt xmax} ({\tt Float64}, default: 100): maximum of the range of $|x|$ to be printed. \item\makelink{param:anyeq_nx}{} {\tt nx} ({\tt Int64}, default: 100): number of points to print (linearly spaced). \end{itemize} \underline{Output} (one line for each value of $x$): [$|x|$] [$\mathcal Re(u(|x|))$] [$\mathcal Im(u(|x|))$] \item\makelink{command:anyeq_momentum_distribution}{} {\tt momentum\_distribution}: compute the momentum distribution $\mathfrak M(|k|)$ at a given $\rho$.\par \underline{Output} (one line for each value of $|k|$): [$|k|$] [$\mathfrak M(|k|)$] \item\makelink{command_anyeq_2pt}{} {\tt 2pt}: compute the two-point correlation function $C_2(|x|)$ at a given $\rho$.\par \underline{Extra parameters}: same as \refname{command:anyeq_ux}{{\tt ux}}, plus\par \begin{itemize} \item\makelink{param:anyeq_window_L}{} {\tt window\_L} ({\tt Float64}, default: $10^3$): size of the Hann window used to numerically invert the Fourier transform in the computation of the tow-point correlation function, see\-~(\ref{hann}). \end{itemize} \underline{Output} (one line for each value of $|x|$): [$|x|$] [$C_2(|x|)$] \item \makelink{command:anyeq_save_Abar}{} {\tt save\_Abar}: compute the matrix $\bar A$. This matrix is used to compute observables for \refname{eq:anyeq_compleq}{{\tt compleq}}. This command is useful to output the value of $\bar A$ to a file once and for all, and use this file to run commands without recomputing $\bar A$.\par \underline{Disabled parameters}: \refname{param:anyeq_rho}{{\tt rho}}, \refname{param:anyeq_tolerance}{{\tt tolerance}}, \refname{param:anyeq_maxiter}{{\tt maxiter}}, \refname{param:anyeq_minlrho_init}{{\tt minlrho\_init}}, \refname{param:anyeq_nlrho}{{\tt nlrho}}.\par \underline{Output}: [$\bar A$] (the output is not designed to be human-readable; it is obtained through nested {\tt for} loops; for details, see the code).\par \underline{Multithread support}: yes, the first indices are split up among workers, which produces $NJ$ jobs. \end{itemize} \subsubsection{Description} \point{\bf Fourier space formulation.} The computation is carried out in Fourier space. We take the convention that the Fourier transform of a function $f(|x|)$ is \begin{equation} \hat f(|k|)=\int_{\mathbb R^3} dx\ e^{ikx}f(|x|) =\frac{4\pi}{|k|}\int_0^\infty dr\ \frac{\sin(|k|r)}rf(r) . \label{anyeq_fourier} \end{equation} We define a Fourier-space convolution: \begin{equation} \hat f\hat\ast\hat g(|k|):=\int_{\mathbb R^3}\frac{dp}{(2\pi)^3}\ \hat f(|k-p|)\hat g(|p|) . \label{anyeq_hatast} \end{equation} In Fourier space, (\ref{anyeq}) becomes \begin{equation} k^2\hat u(|k|)=\hat S(|k|)-2\rho\hat K(|k|)+\rho^2\hat L(|k|) \end{equation} with \begin{equation} \hat S(|k|)=\int_{\mathbb R^3} dx\ e^{ikx}(1-u(|x|))v(|x|) =\hat v(k)-\hat u\hat\ast\hat v(k) \end{equation} \begin{equation} \rho\hat K= \gamma_K(\beta_K\rho\hat S+(1-\beta_K)2e)\hat u - \gamma_K\alpha_K\hat u\hat\ast((\beta_K\rho\hat S+(1-\beta_K)2e)\hat u) \end{equation} \begin{equation} \rho\hat L_1= (\beta_{L,1}\rho\hat S+(1-\beta_{L,1})2e)\hat u^2 - \alpha_{L,1}\hat u\hat\ast((\beta_{L,1}\rho\hat S+(1-\beta_{L,1})2e)\hat u^2) \end{equation} \begin{equation} \rho\hat L_2= -\gamma_{L,2}(\beta_{L,2}2\rho(\hat u\hat\ast(\hat u\hat S))+(1-\beta_{L,2})4e\hat u\hat\ast\hat u)\hat u + \gamma_{L,2}\alpha_{L,2}\hat u\hat\ast((\beta_{L,2}2\rho(\hat u\hat\ast(\hat u\hat S))+(1-\beta_{L,2})4e\hat u\hat\ast\hat u)\hat u) \end{equation} \begin{equation} \rho\hat L_3= \gamma_{L,3}(1-\beta_{L,3})e(\hat u\hat\ast\hat u)^2 - \gamma_{L,3}\alpha_{L,3}(1-\beta_{L,3})\hat u\hat\ast(e(\hat u\hat\ast\hat u)^2) + \gamma_{L,3}\beta_{L,3}\hat l_3 - \frac1{2\rho}\gamma_{L,3}\alpha_{L,3}\beta_{L,3}\hat u\hat\ast\hat l_3 \end{equation} with \begin{equation} \hat l_3(|k|):= \frac1{\rho^2}\int\frac{dq}{(2\pi)^3}\frac{dq'}{(2\pi)^3}\ \rho\hat u(|k-q'|)\rho\hat u(|q|)\rho\hat u(|q'|)\rho\hat u(|k-q|)\hat S(|q'-q|) \label{l3} \end{equation} Therefore, \begin{equation} \rho^2\hat u(|k|)^2\sigma_{L,1}(|k|) -\left(\frac{k^2}\rho+2\sigma_K(|k|)+2f_1(|k|)\right)\rho\hat u(|k|) +\left(\hat S(|k|)+\frac12f_2(|k|)+G(|k|)\right) = 0 \end{equation} with \begin{equation} \sigma_K:=\frac1{\rho}\gamma_K(\beta_K\rho\hat S+(1-\beta_K)2e) ,\quad \sigma_{L,1}:=\frac1{\rho}(\beta_{L,1}\rho\hat S+(1-\beta_{L,1})2e) \end{equation} \begin{equation} f_1:=\frac1{\rho^2}\gamma_{L,2}(\beta_{L,2}\rho(\rho\hat u\hat\ast(\rho\hat u\hat S))+(1-\beta_{L,2})2e\rho\hat u\hat\ast\rho\hat u) \end{equation} \begin{equation} f_2:=\gamma_{L,3}(1-\beta_{L,3})\frac{2e}{\rho^3}(\rho\hat u\hat\ast\rho\hat u)^2 +\gamma_{L,3}\beta_{L,3}\hat l_3 \end{equation} \begin{equation} \begin{largearray} G:= \frac2{\rho^2}\gamma_K\alpha_K\rho\hat u\hat\ast((\beta_K\rho\hat S+(1-\beta_K)2e)\rho\hat u) - \frac1{\rho^2}\alpha_{L,1}\rho\hat u\hat\ast((\beta_{L,1}\rho\hat S+(1-\beta_{L,1})2e)\rho\hat u^2) \\[0.5cm]\hfill + \frac2{\rho}\alpha_{L,2}\rho\hat u\hat\ast(f_1\rho\hat u) - \frac1{2\rho}\alpha_{L,3}\rho\hat u\hat\ast f_2 . \end{largearray} \end{equation} Therefore, \begin{equation} \rho\hat u=1+\xi -\sqrt{(1+\xi)^2-(1+\zeta)} \label{u} \end{equation} with \begin{equation} \xi:=\frac1{\sigma_{L,1}}\left(\sigma_K-\sigma_{L,1}+\frac{k^2}{2\rho}+f_1\right) ,\quad \zeta:=\frac1{\sigma_{L,1}}\left(\hat S-\sigma_{L,1}+\frac12f_2+G\right) \end{equation} We rewrite\-~(\ref{u}) as \begin{equation} U= \frac{1+\zeta}{2(\xi+1)}\ \Phi\left({\textstyle\frac{1+\zeta}{(\xi+1)^2}}\right) \label{anyeq_hatu} \end{equation} with \begin{equation} U:=\rho\hat u \end{equation} \begin{equation} \Phi(x):=\frac{2(1-\sqrt{1-x})}x . \end{equation} \bigskip \point{\bf Evaluating integrals.} To evaluate integrals numerically, we will split integration intervals over splines and use Gauss-Legendre quadratures. More specifically, to compute integrals of the form \begin{equation} \int \frac{dk}{(2\pi)^3}\ f(U(k),k) = \frac1{2\pi^2}\int_0^\infty dt\ t^2f(U(t),t) \end{equation} we first compactify space to $(-1,1]$ by changing variables to $\tau=\frac{1-t}{1+t}$: \begin{equation} \int \frac{dk}{(2\pi)^3}\ f(U(k),k) = \frac1{\pi^2}\int_{-1}^1 d\tau\ \frac{(1-\tau)^2}{(1+\tau)^4}f({\textstyle U(\frac{1-\tau}{1+\tau}),\frac{1-\tau}{1+\tau}}) . \end{equation} We then split $(-1,1]$ into $J$ sub-intervals (given by the parameter \refname{param:anyeq_J}{{\tt J}}), called {\it splines}: \begin{equation} (-1,1]=\bigcup_{j=0}^{J-1}(\tau_j,\tau_{j+1}] . \end{equation} The $\tau$ are taken to be equally spaced, but the code is designed in such a way that this could be changed easily in the future: \begin{equation} \tau_j=-1+\frac{2j}J . \end{equation} In these terms, \begin{equation} \int \frac{dk}{(2\pi)^3}\ f(U(k),k) = \sum_{l=0}^{J-1} \int_{\tau_l}^{\tau_{l+1}} d\tau\ \frac{(1-\tau)^2}{(1+\tau^4}g(U({\textstyle\frac{1-\tau}{1+\tau},\frac{1-\tau}{1+\tau}}) . \end{equation} We then change variables to $r$: \begin{equation} \tau= -\frac{\tau_{l+1}-\tau_l}2\sin({\textstyle\frac{\pi r}2})+\frac{\tau_{l+1}+\tau_l}2 =:\frac{1-\vartheta_l(r)}{1+\vartheta_l(r)} \label{chebyshevvars} \end{equation} (the reason for this specific change of variables will become clear at the end of this paragraph and in the next one) and find \begin{equation} \int \frac{dk}{(2\pi)^3}\ f(U(k),k) = \sum_{l=0}^{J-1} \frac{\tau_{l+1}-\tau_l}{16\pi}\int_{-1}^1 dr\ \cos({\textstyle\frac{\pi r}2})(1+\vartheta_l(r))^2\vartheta_l^2(r)f(U(\vartheta_l(r)),\vartheta_l(r)) . \end{equation} We then approximate the integral using a Gauss-Legendre quadrature of order $N$ (see appendix\-~\ref{appGL}): \begin{equation} \int \frac{dk}{(2\pi)^3}\ f(k) \approx \sum_{l=0}^{J-1} \frac{\tau_{l+1}-\tau_l}{16\pi} \sum_{j=1}^Nw_j \cos({\textstyle\frac{\pi x_j}2})(1+\vartheta_l(x_j))^2\vartheta_l^2(x_j)f(\mathbb U_{l,j},\vartheta_l(x_j)) \label{anyeq_integration} \end{equation} with \begin{equation} \mathbb U_{l,j}:=U(k_{l,j}) ,\quad k_{l,j}:=\frac{2+(\tau_{l+1}-\tau_l)\sin(\frac{\pi x_j}2)-(\tau_{l+1}+\tau_\alpha)}{2-(\tau_{l+1}-\tau_l)\sin(\frac{\pi x_j}2)+(\tau_{l+1}+\tau_l)} . \end{equation} The choice of the change of variables\-~(\ref{chebyshevvars}) is made so that $U$ is evaluated at $k_{l,j}$, which are the momenta that appear naturally in the Chebyshev polynomial expansion below\-~(\ref{klj}). In this way, we can compute arbitrary integrals of functions of $U$ by just computing the values of $\mathbb U_{l,j}$. \bigskip \point{\bf Chebyshev polynomial expansion.} In the case of \refname{sec:easyeq}{{\tt easyeq}}, we saw that using Gauss quadratures reduced the computation to evaluating $U$ at a fixed set of discrete momenta. This is not the case here, due to the presence of more complicated convolutions of $U$. Instead, we will approximate $U$ using polynomial approximations. We will now discuss this approximation for an arbitrary function $a(|k|)$, as we will need it for other functions than simply $U$. \bigskip \subpoint As in the previous paragraph, we compactify $[0,\infty)$ to $(-1,1]$ via the change of variables $r\mapsto\frac{1-r}{1+r}$, and split the interval into splines. Inside each spline, we use a Chebyshev polynomial expansion. However, we need to be careful in the first spline, which encapsulates the behavior at $|k|\to\infty$: $U$ decays to 0 as $|k|\to\infty$, and this behavior cannot be reproduced by a polynomial expansion. To avoid this, if $a\sim|k|^{-\nu_a}$, we expand $|k|^{\nu_a}a$ instead of $a$. Actually, to simplify expressions in the presence of the compactification, we will expand $2^{-\nu_a}(1+|k|)^{\nu_a}a$, which makes no conceptual difference. In the case of $a=U$, we will use $\nu=2$, which we know holds for the Simple equation\-~\cite{CJL20}. Putting all this together, we write, for $\tau\in(-1,1]$, if $|k|\equiv\frac{1-\tau}{1+\tau}$, \begin{equation} 2^{-\nu_a}(1+|k|)^{\nu_a}a(|k|)\equiv \frac1{(1+\tau)^{\nu_a}}a({\textstyle\frac{1-\tau}{1+\tau}}) =\sum_{l=0}^{J-1}\mathds 1_{\tau_l<\tau\leqslant\tau_{l+1}}\sum_{n=0}^\infty \mathbf F_{l,n}^{(\nu_a)}(a) T_n({\textstyle\frac{2\tau-(\tau_l+\tau_{l+1})}{\tau_{l+1}-\tau_l}}) \label{a_chebyshev_spline} \end{equation} in which $\mathds 1_{\tau_l<\tau\leqslant\tau_{l+1}}\in\{0,1\}$ is equal to 1 if and only if $\tau_l<\tau\leqslant\tau_{l+1}$, and \begin{equation} \mathbf F_{l,n}^{(\nu_a)}(a):= \frac{2-\delta_{n,0}}{\pi} \int_0^{\pi} d\theta\ \frac{\cos(n\theta)}{(1+\frac{\tau_{l+1}-\tau_l}2\cos(\theta)+\frac{\tau_{l+1}+\tau_l}2)^{\nu_a}} a({\textstyle\frac{2-(\tau_{l+1}-\tau_l)\cos(\theta)-(\tau_{l+1}+\tau_\alpha)}{2+(\tau_{l+1}-\tau_l)\cos(\theta)+(\tau_{l+1}+\tau_l)}}) \label{bfF} \end{equation} (see appendix\-~\ref{appChebyshev} for a discussion of the Chebyshev polynomial expansion and the error of its truncations). \bigskip \subpoint In order to compute an approximation for $a$ using\-~(\ref{a_chebyshev_spline}), we will truncate the sum over $n$ to a finite value $P$ (given by the parameter \refname{param:anyeq_P}{{\tt P}}). In addition, to compute the integral in\-~(\ref{bfF}), we will use a Gauss-Legendre quadrature of order $N$ (given by the parameter \refname{param:anyeq_N}{{\tt N}}), see appendix\-~\ref{appGL}: \begin{equation} \mathbf F_{l,n}^{(\nu_a)}(a)\approx\mathfrak F_{l,n}^{(\nu_a)}(\mathfrak a):= \frac{2-\delta_{n,0}}2\sum_{j=1}^N w_j \cos({\textstyle\frac{n\pi(1+x_j)}2})\frac{\mathfrak a_{l,j}}{(1-\frac{\tau_{l+1}-\tau_l}2\sin(\frac{\pi x_j}2)+\frac{\tau_{l+1}+\tau_l}2)^{\nu_a}} \label{frakF} \end{equation} with \begin{equation} \mathfrak a_{l,j}:=a(k_{l,j}) ,\quad k_{l,j}:=\frac{2+(\tau_{l+1}-\tau_l)\sin(\frac{\pi x_j}2)-(\tau_{l+1}+\tau_\alpha)}{2-(\tau_{l+1}-\tau_l)\sin(\frac{\pi x_j}2)+(\tau_{l+1}+\tau_l)} \label{klj} \end{equation} and $(x_j,w_j)$ are the abcissa and weights for Gauss-Legendre quadratures. \bigskip \subpoint All in all, we approximate \begin{equation} a({\textstyle\frac{1-\tau}{1+\tau}}) \approx(1+\tau)^{\nu_a}\sum_{l=0}^{J-1}\mathds 1_{\tau_l<\tau\leqslant\tau_{l+1}}\sum_{n=0}^P \mathfrak F_{l,n}^{(\nu_a)}(\mathfrak a) T_n({\textstyle\frac{2\tau-(\tau_l+\tau_{l+1})}{\tau_{l+1}-\tau_l}}) \label{approxchebyshev} \end{equation} with $\mathfrak F$ defined in\-~(\ref{frakF}). Furthermore, using the Chebyshev polynomial expansion and Gauss-Legendre quadratures, we can compute all the observables we are interested in by computing $\mathbb U_{l,j}\equiv U(k_{l,j})$. With this in mind, we will represent the function $U$ as a vector of dimension $NJ$ whose components are $\mathbb U_{l,j}$. \bigskip \point{\bf Convolutions.} Using the Chebyshev polynomial approximation, we can compute convolutions as follows. \medskip \subpoint First, we rewrite the convolution as a two-dimensional integral, using bipolar coordinates (see lemma\-~\ref{lemma:bipolar}): \begin{equation} (a\hat\ast b)(|k|)=\frac1{4\pi^2|k|}\int_0^\infty dt\ ta(t)\int_{||k|-t|}^{|k|+t}ds\ sb(s) \end{equation} We change variables to compactify the integrals $\tau=\frac{1-t}{1+t}$, $\sigma=\frac{1-s}{1+s}$: \begin{equation} (a\hat\ast b)(|k|)=\frac1{4\pi^2|k|}\int_{-1}^1 d\tau\ \frac{2(1-\tau)}{(1+\tau)^3}a({\textstyle\frac{1-\tau}{1+\tau}})\int_{\alpha_-(|k|,\tau)}^{\alpha_+(|k|,\tau)}d\sigma\ \frac{2(1-\sigma)}{(1+\sigma)^3}b({\textstyle\frac{1-\sigma}{1+\sigma}}) \label{convvar} \end{equation} with \begin{equation} \alpha_-(|k|,\tau):=\frac{1-|k|-\frac{1-\tau}{1+\tau}}{1+|k|+\frac{1-\tau}{1+\tau}} ,\quad \alpha_+(|k|,\tau):=\frac{1-||k|-\frac{1-\tau}{1+\tau}|}{1+||k|-\frac{1-\tau}{1+\tau}|} . \label{anyeq_alpha} \end{equation} Therefore, using the approximation\-~(\ref{approxchebyshev}), if $\mathfrak a_{l,j}:=a(k_{l,j})$ and $\mathfrak b_{l,j}:=b(k_{l,j})$ (\ref{klj}), \begin{equation} (a\hat\ast b)(|k_{l,j}|)\approx (\mathfrak a\odot \mathfrak b)_{l,j}:= \frac1{4\pi^2|k_{l,j}|} \sum_{n,m=0}^P \sum_{l,l'=0}^{J-1} \mathfrak F_{l,n}^{(\nu_a)}(\mathfrak a)\mathfrak F_{l',m}^{(\nu_b)}(\mathfrak b) A_{l,n;l',m}^{(\nu_a,\nu_b)}(|k_{l,j}|) \label{odot} \end{equation} with \begin{equation} \begin{largearray} A_{l,n;l',m}^{(\nu_a,\nu_b)}(|k|):= \int_{\tau_l}^{\tau_{l+1}} d\tau\ \frac{2(1-\tau)}{(1+\tau)^{3-\nu_a}}T_n({\textstyle\frac{2\tau-(\tau_l+\tau_{l+1})}{\tau_{l+1}-\tau_l}}) \cdot\\[0.5cm]\hfill\cdot \mathds 1_{\alpha_-(|\tilde k|,\tau)<\tau_{\zeta'+1}} \mathds 1_{\alpha_+(|\tilde k|,\tau)>\tau_{\zeta'}} \int_{\max(\tau_{l'},\alpha_-(|k|,\tau))}^{\min(\tau_{l'+1},\alpha_+(|k|,\tau))}d\sigma\ \frac{2(1-\sigma)}{(1+\sigma)^{3-\nu_b}}T_m({\textstyle\frac{2\sigma-(\tau_{l'}+\tau_{l'+1})}{\tau_{l'+1}-\tau_{l'}}}) \end{largearray} \end{equation} (we need the indicator functions to ensure that the bounds of the integral are correct). Note that $A$ is independent of $a$ and $b$, and can be computed once and for all at the beginning of execution for all values of $k_{l,j}$ (\ref{klj}). We then compute the integrals using Gauss-Legendre quadratures (as is proved in the next paragraph, the integrand is non singular provided $\nu_a,\nu_b\geqslant 2$). \bigskip \subpoint Note that these integrals are not singular as long as $\nu_a,\nu_b\geqslant 2$: indeed (since the only possible problems occur at $-1$, it suffices to consider the case with only one spline), $\alpha_-,\alpha_+>-1$ for $\tau>-1$, and \begin{equation} \alpha_\pm(k,\tau)=-1+(1+\tau)\pm\frac k2(1+\tau)^2+O(1+\tau)^3 \end{equation} and \begin{equation} \int_{\alpha_-(|k|,\tau)}^{\alpha_+(|k|,\tau)}d\sigma\ \left|\frac{2(1-\sigma)}{(1+\sigma)^{3-\nu_b}}T_m(\sigma)\right| \leqslant 4\int_{\alpha_-(|k|,\tau)}^{\alpha_+(|k|,\tau)}d\sigma\ \frac1{(1+\sigma)^{3-\nu_b}} \end{equation} which, if $\nu_b=2$, yields \begin{equation} 4\log\left(\frac{1+\alpha_+(|k|,\tau)}{1+\alpha_-(|k|,\tau)}\right) =4|k|(1+\tau)+O(1+\tau)^2 \end{equation} and if $\nu_b>2$, yields \begin{equation} \frac4{\nu_b-2}\left((1+\alpha_+(|k|,\tau))^{\nu_b-2}-(1+\alpha_-(|k|,\tau))^{\nu_b-2}\right) = \frac4{\nu_b-2}|k|(1+\tau)^{\nu_b-1}(1+O(1+\tau)) . \end{equation} Therefore, \begin{equation} \left|\frac{2(1-\tau)}{(1+\tau)^{3-\nu_a}}T_n(\tau)\int_{\alpha_-(|k|,\tau)}^{\alpha_+(|k|,\tau)}d\sigma\ \frac{2(1-\sigma)}{(1+\sigma)^{3-\nu_b}}T_m(\sigma)\right| \leqslant \frac8{c_{\nu_b}} |k|(1-\tau)(1+\tau)^{\nu_a+\nu_b-4}(1+O(1+\tau)) \end{equation} where $c_{2}:=1$ and $c_{\nu_b}:=\nu_b-2$ if $\nu_b>2$. The integrand is, therefore, not singular as long as $\nu_a,\nu_b\geqslant 2$. \bigskip \subpoint Evaluating convolutions at $k=0$ is not immediate, as the formula for $A(0)$ involves a bit of a computation. To compute $A(0)$, we expand \begin{equation} \alpha_-(|k|,\tau)=\tau-\frac{|k|(1+\tau)^2}2+O(k^2) ,\quad \alpha_+(|k|,\tau)=\tau+\frac{|k|(1+\tau)^2}2+O(k^2) \end{equation} so \begin{equation} A_{\zeta,n;\zeta',m}^{(\nu_a,\nu_b)}(0)=\mathds 1_{\zeta=\zeta'} \frac1{\pi^2} \int_{\tau_\zeta}^{\tau_{\zeta+1}} d\tau\ \frac{(1-\tau)^2}{(1+\tau)^{4-\nu_a-\nu_b}}T_n({\textstyle\frac{2\tau-(\tau_\zeta+\tau_{\zeta+1})}{\tau_{\zeta+1}-\tau_\zeta}}) T_m({\textstyle\frac{2\tau-(\tau_{\zeta}+\tau_{\zeta+1})}{\tau_{\zeta+1}-\tau_{\zeta}}}) \end{equation} which we then compute using a Gauss-Legendre quadrature. We can then evaluate convolutions at $k=0$: \begin{equation} (a\hat\ast b)(0)\approx\left<\mathfrak a\mathfrak b\right> := \frac1{4\pi^2|k_{l,j}|} \sum_{n,m=0}^P \sum_{l,l'=0}^{J-1} \mathfrak F_{l,n}^{(\nu_a)}(\mathfrak a)\mathfrak F_{l',m}^{(\nu_b)}(\mathfrak b) A_{l,n;l',m}^{(\nu_a,\nu_b)}(0) \label{avg} \end{equation} \bigskip \subpoint Let us now compute some choices of $\mathfrak a,\mathfrak b$ more explicitly. \medskip \subsubpoint Let us start with $\mathds 1_{l,n}\hat\ast a$ where $\mathds 1_{l,n}$ is the vector which has 0's everywhere except at position $(l,n)$. We have \begin{equation} \mathfrak F_{l',m}^{(\nu_1)}(\mathds 1_{l,n})=\delta_{l',l}\frac{2-\delta_{m,0}}2w_n\frac{\cos({\textstyle\frac{m\pi(1+x_n)}2})}{(1-\frac{\tau_{l+1}-\tau_l}2\sin(\frac{\pi x_j}2)+\frac{\tau_{l+1}+\tau_l}2)^{\nu_1}} \end{equation} so \begin{equation} (\mathds 1_{n,l''}\odot\mathfrak a)_{m,l}= \sum_{l,p}\sum_{l'}\frac{2-\delta_{l,0}}2w_n\frac{\cos({\textstyle\frac{l\pi(1+x_n)}2})}{(1-\frac{\tau_{l''+1}-\tau_{l''}}2\sin(\frac{\pi x_n}2)+\frac{\tau_{l''+1}+\tau_{l''}}2)^{\nu_1}}A_{l'',l;l',p}^{(\nu_1,\nu_a)}(k_{l,m})\mathfrak F_{l',p}^{(\nu_a)}(\mathfrak a) . \end{equation} \bigskip \subsubpoint We now turn to $a\hat\ast\hat v$. Let \begin{equation} \Upsilon(t,|k|):= \int_{||k|-t|}^{|k|+t}ds\ \frac{s\hat v(s)}{|k|} \label{Upsilon} \end{equation} We have \begin{equation} a\hat\ast\hat v=\frac 1{4\pi^2}\int_0^\infty dt\ ta(t)\Upsilon(t,|k|) . \label{avUpsilon} \end{equation} Following the integration scheme\-~(\ref{anyeq_integration}), \begin{equation} (\mathfrak a\odot\mathfrak v)_{l,i}= \frac1{32\pi}\sum_{l'=0}^{J-1}(\tau_{l'+1}-\tau_{l'})\sum_{j=1}^Nw_j \cos({\textstyle\frac{\pi x_j}2})(1+\vartheta_{l'}(x_j))^2\vartheta_{l'}(x_j)\mathfrak a_{l',j}\Upsilon(\vartheta(x_j),k_{l,i}) . \label{adotv} \end{equation} At $k=0$, \begin{equation} \left<\mathfrak a\mathfrak v\right>= \frac1{32\pi}\sum_{l'=0}^{J-1}(\tau_{l'+1}-\tau_{l'})\sum_{j=1}^Nw_j \cos({\textstyle\frac{\pi x_j}2})(1+\vartheta_{l'}(x_j))^2\vartheta_{l'}(x_j)\mathfrak a_{l',j}\Upsilon(\vartheta(x_j),0) \label{} \end{equation} with \begin{equation} \Upsilon(t,0)=2tv(t) . \end{equation} The quantities $\Upsilon(\vartheta(x_n),k_{l,i})$ and $\Upsilon(\vartheta(x_n),0)$ are independent of $a$ and can be computed once and for all at execution. The integral in\-~(\ref{Upsilon}) is computed using Gauss-Legendre quadratures, but without splitting into splines. To maintain a high precision, we set the order of the integration to \refname{param:anyeq_J}{{\tt J}}$\times$\refname{param:anyeq_N}{{\tt N}}. \bigskip \subsubpoint Finally, \begin{equation} (\mathds 1_{l',n}\odot\mathfrak v)_{l,i}= \frac{\tau_{l'+1}-\tau_{l'}}{32\pi}w_n\cos({\textstyle\frac{\pi x_n}2})(1+\vartheta_{l'}(x_n))^2\vartheta_{l'}(x_n)\Upsilon(\vartheta(x_n),k_{l,i}) \end{equation} and \begin{equation} \left<\mathds 1_{l',n}\mathfrak v\right>= \frac{\tau_{l'+1}-\tau_{l'}}{32\pi}w_n\cos({\textstyle\frac{\pi x_n}2})(1+\vartheta_{l'}(x_n))^2\vartheta_{l'}(x_n)\Upsilon(\vartheta(x_n),0) . \end{equation} \bigskip \point{\bf Evaluating $\hat l_3$.} The only term in\-~(\ref{anyeq}) that does not involve just convolutions (whose computation was described above) is $\hat l_3$ (\ref{l3}). To evaluate it, we first change variables, using a generalization of bipolar coordinates (see lemma\-~\ref{lemma:bipolar2}): \begin{equation} \begin{largearray} \hat l_3(|k|) = \frac1{(2\pi)^5\rho^2| k|^2}\int_0^\infty dt\int_{|| k|-t|}^{| k|+t}ds\int_0^\infty dt'\int_{|| k|-t'|}^{| k|+t'}ds'\int_0^{2\pi}d\theta\ sts't'U(s)U(t)U(s')U(t') \cdot\\\hfill\cdot S(\mathfrak R(s,t,s',t',\theta,| k|)) \end{largearray} \end{equation} with \begin{equation} \begin{largearray} \mathfrak R(s,t,s',t',\theta,| k|) := \frac1{\sqrt 2| k|} \Big( | k|^2(s^2+t^2+(s')^2+(t')^2)-| k|^4-(s^2-t^2)((s')^2-(t')^2) \\[0.5cm]\hfill - \sqrt{(4| k|^2s^2-(| k|^2+s^2-t^2)^2)(4| k|^2(s')^2-(| k|^2+(s')^2-(t')^2)^2)}\cos\theta \Big)^{\frac12} . \end{largearray} \end{equation} We change variables as in\-~(\ref{convvar}): \begin{equation} \begin{largearray} \hat l_3(|k|) = \frac1{(2\pi)^5\rho^2| k|^2} \int_{-1}^1 d\tau\ \frac{2(1-\tau)}{(1+\tau)^3}U({\textstyle\frac{1-\tau}{1+\tau}}) \int_{\alpha_-(| k|,\tau)}^{\alpha_+(| k|,\tau)} d\sigma\ \frac{2(1-\sigma)}{(1+\sigma)^3}U({\textstyle\frac{1-\sigma}{1+\sigma}}) \int_{-1}^1 d\tau'\ \frac{2(1-\tau')}{(1+\tau')^3} \cdot\\[0.5cm]\hfill\cdot U({\textstyle\frac{1-\tau'}{1+\tau'}}) \int_{\alpha_-(| k|,\tau')}^{\alpha_+(| k|,\tau')} d\sigma'\ \frac{2(1-\sigma')}{(1+\sigma')^3}U({\textstyle\frac{1-\sigma'}{1+\sigma'}}) \int_0^{2\pi}d\theta\ S(\mathfrak R({\textstyle \frac{1-\sigma}{1+\sigma},\frac{1-\tau}{1+\tau},\frac{1-\sigma'}{1+\sigma'},\frac{1-\tau'}{1+\tau'},\theta,| k|})) . \end{largearray} \end{equation} We expand $U$ and $ S$ into Chebyshev polynomials as in\-~(\ref{a_chebyshev_spline}), and split the integrals into splines: \begin{equation} \hat l_3(|k_{l,j}|) \approx (\mathbb U^{\otimes4}\otimes\mathbb S)_{l,j}:= \sum_{\lambda_1,\cdots,\lambda_5=0}^{J-1} \sum_{n_1,\cdots,n_5=1}^\infty \bar A_{\lambda_1,n_1;\cdots;\lambda_5,n_5}^{(\nu)}(|k_{l,j}|) \prod_{i=1}^4 \left(\mathfrak F_{\lambda_i,n_i}^{(\nu)}(\mathbb U)\right) \mathfrak F_{\lambda_5,n_5}^{(\nu)}(\mathbb S) \label{otimes} \end{equation} with $\mathbb U_{l,j}:=U(k_{l,j})$, $\mathbb S_{l,j}:=S(k_{l,j})$ and \begin{equation} \begin{largearray} \bar A_{\lambda_1,n_1;\cdots;\lambda_5,n_5}^{(\nu)}(| k|) = \frac1{(2\pi)^5\rho^2| k|^2} \int_{\tau_{\lambda_1}}^{\tau_{\lambda_1+1}} d\tau\ \frac{2(1-\tau)}{(1+\tau)^{3-\nu}}T_{n_1}({\textstyle\frac{2\tau-(\tau_{\lambda_1}+\tau_{\lambda_1+1})}{\tau_{\lambda_1+1}-\tau_{\lambda_1}}}) \cdot\\[0.5cm]\hskip1cm\cdot \mathds 1_{\alpha_-(| k|,\tau)<\tau_{\lambda_2+1}}\mathds 1_{\alpha_+(| k|,\tau)>\tau_{\lambda_2}} \int_{\max(\tau_{\lambda_2},\alpha_-(| k|,\tau))}^{\min(\tau_{\lambda_2+1},\alpha_+(| k|,\tau))} d\sigma\ \frac{2(1-\sigma)}{(1+\sigma)^{3-\nu}}T_{n_2}({\textstyle\frac{2\sigma-(\tau_{\lambda_2}+\tau_{\lambda_2+1})}{\tau_{\lambda_2+1}-\tau_{\lambda_2}}}) \cdot\\[0.5cm]\hskip1cm\cdot \int_{\tau_{\lambda_3}}^{\tau_{\lambda_3+1}} d\tau'\ \frac{2(1-\tau')}{(1+\tau')^{3-\nu}}T_{n_3}({\textstyle\frac{2\tau'-(\tau_{\lambda_3}+\tau_{\lambda_3+1})}{\tau_{\lambda_3+1}-\tau_{\lambda_3}}}) \cdot\\[0.5cm]\hskip1cm\cdot \mathds 1_{\alpha_-(| k|,\tau')<\tau_{\lambda_4+1}}\mathds 1_{\alpha_+(| k|,\tau')>\tau_{\lambda_4}} \int_{\max(\tau_{\lambda_4},\alpha_-(| k|,\tau'))}^{\min(\tau_{\lambda_4+1},\alpha_+(| k|,\tau'))} d\sigma'\ \frac{2(1-\sigma')}{(1+\sigma')^{3-\nu}}T_{n_4}({\textstyle\frac{2\sigma'-(\tau_{\lambda_4}+\tau_{\lambda_4+1})}{\tau_{\lambda_4+1}-\tau_{\lambda_4}}}) \cdot\\[0.5cm]\hskip1cm\cdot \int_0^{2\pi}d\theta\ \frac{2^\nu}{(2+\mathfrak R)^\nu} T_{n_5}({\textstyle\frac{2\frac{1-\mathfrak R}{1+\mathfrak R}-(\tau_{\lambda_5}+\tau_{\lambda_5+1})}{\tau_{\lambda_5+1}-\tau_{\lambda_5}}}) \mathds 1_{\tau_{\lambda_5}<\frac{1-\mathfrak R}{1+\mathfrak R}<\tau_{\lambda_5+1}} \end{largearray} \end{equation} in which $\mathfrak R$ is a shorthand for $\mathfrak R({\textstyle \frac{1-\sigma}{1+\sigma},\frac{1-\tau}{1+\tau},\frac{1-\sigma'}{1+\sigma'},\frac{1-\tau'}{1+\tau'},\theta,| k|})$. Note that $\bar A$ is independent of $U$, and can be computed once and for all at the beginning of execution. Since the tensor $\bar A$ is quite large (it contains $(NJ)^5$ entries), and its computation can be rather long it can be inconvenient to compute $\bar A$ at every execution. Instead, one can use the \refname{command:anyeq_save_Abar}{{\tt save\_Abar}} method to compute $\bar A$ and save it to a file, which can then be recalled via the {\tt -s} option on the command line. \bigskip \point{\bf Main algorithm to compute $U$.} We are now ready to detail how $U\equiv\rho\hat u$ is computed. All of the observables we are interested in are approximated from the values $\mathbb U_{l,j}:=U(k_{l,j})$ (\ref{klj}). \bigskip \subpoint The equation for $(\mathbb U_{l,j})_{l\in\{0,\cdots,J-1\},j\in\{1,\cdots,N\}}$ is obtained by approximating\-~(\ref{anyeq_hatu}) according to the prescriptions detailed above: \begin{equation} \mathbb U_{l,j}:= \frac{1+\mathbb Y_{l,j}}{2(\mathbb X_{l,j}+1)}\ \Phi\left({\textstyle\frac{1+\mathbb Y_{l,j}}{(\mathbb X_{l,j}+1)^2}}\right) \label{bbU} \end{equation} \begin{equation} \mathbb X_{l,j}:=\frac1{\mathbb L_{l,j}}\left(\mathbb K_{l,j}-\mathbb L_{l,j}+\frac{k_{l,j}^2}{2\rho}+\mathbb I_{l,j}\right) ,\quad \mathbb Y_{l,j}:=\frac1{\mathbb L_{l,j}}\left(\mathbb S_{l,j}-\mathbb L_{l,j}+\frac12\mathbb J_{l,j}+\mathbb G_{l,j}\right) \end{equation} \begin{equation} \mathbb S_{l,j}:= \mathfrak v_{l,j}-\frac1{\rho}(\mathbb U\odot\mathfrak v)_{l,j} ,\quad \mathfrak v_{l,j}:=\hat v(k_{l,j}) ,\quad \mathbb E:=\hat v(0)-\frac1{\rho}\left<\mathbb U\mathfrak v\right> \end{equation} \begin{equation} \mathbb I_{l,j}:=\frac1{\rho}\gamma_{L,2}(\beta_{L,2}(\mathbb U\odot(\mathbb U\mathbb S))_{l,j}+(1-\beta_{L,2})\mathbb E(\mathbb U\odot\mathbb U)_{l,j}) \end{equation} \begin{equation} \mathbb K_{l,j}:=\gamma_K(\beta_K\mathbb S_{l,j}+(1-\beta_K)\mathbb E) ,\quad \mathbb L_{l,j}:=\gamma_{L,1}(\beta_{L,1}\mathbb S_{l,j}+(1-\beta_{L,1})\mathbb E) \end{equation} \begin{equation} \mathbb J_{l,j}:=\gamma_{L,3}(1-\beta_{L,3})\frac{\mathbb E}{\rho^2}(\mathbb U\odot\mathbb U)^2_{l,j} +\gamma_{L,3}\beta_{L,3}(\mathbb U^{\otimes4}\otimes\mathbb S)_{l,j} \end{equation} \begin{equation} \begin{largearray} \mathbb G_{l,j}:= \frac2{\rho}\gamma_K\alpha_K(\mathbb U\odot((\beta_K\mathbb S+(1-\beta_K)\mathbb E)\mathbb U))_{l,j} \\[0.5cm]\hfill - \frac1{\rho}\alpha_{L,1}(\mathbb U\odot((\beta_{L,1}\mathbb S+(1-\beta_{L,1})\mathbb E)\mathbb U^2))_{l,j} + \frac2{\rho}\alpha_{L,2}(\mathbb U\odot(\mathbb I\mathbb U))_{l,j} - \frac1{2\rho}\alpha_{L,3}(\mathbb U\odot \mathbb J)_{l,j} \end{largearray} \end{equation} (see\-~(\ref{odot}), (\ref{otimes}) and\-~(\ref{avg}) for the definitions of $\odot$, $\otimes$ and $\left<\cdot\right>$). \bigskip \subpoint We rewrite\-~(\ref{bbU}) as a root finding problem: \begin{equation} \Xi_{l,j}(\mathbb U):= \mathbb U_{l,j}- \frac{1+\mathbb Y_{l,j}}{2(\mathbb X_{l,j}+1)}\ \Phi\left({\textstyle\frac{1+\mathbb Y_{l,j}}{(\mathbb X_{l,j}+1)^2}}\right) =0 \label{root_anyeq} \end{equation} which we solve using the Newton algorithm, that is, we define a sequence of $\mathbb U$'s: \begin{equation} \mathbb U^{(n+1)}=\mathbb U^{(n)}-(D\Xi(\mathbb U^{(n)}))^{-1}\Xi(\mathbb U^{(n)}) \end{equation} where $D\Xi$ is the Jacobian of $\Xi$: \begin{equation} (D\Xi)_{l,j;l',i}:=\frac{\partial\Xi_{l,j}}{\partial\mathbb U_{l',i}} . \end{equation} \bigskip \subpoint We initialize the algorithm with the solution of the \refname{eq:easyeq_medeq}{Medium equation}, which is computed using the \refname{sec:easyeq}{{\tt easyeq}} method. However, \refname{sec:easyeq}{{\tt easyeq}} only computes $\hat u$ at the momenta given by the Gauss-Legendre quadratures\-~(\ref{easyeq_ki}). To obtain a value for $\hat u$ at $k_{l,j}$, we use a linear interpolation (code is provided for a polynomial interpolation, which has not performed as well). The parameters \refname{param:anyeq_tolerance}{{\tt tolerance}}, \refname{param:anyeq_maxiter}{{\tt maxiter}}, \refname{param:anyeq_minlrho_init}{{\tt minlrho\_init}}, \refname{param:anyeq_nlrho_init}{{\tt nlrho\_init}} are passed on to \refname{sec:easyeq}{easyeq} as is, and the order of the Gauss-Legendre quadratures is set to \refname{param:anyeq_J}{{\tt J}}$\times$\refname{param:anyeq_N}{{\tt N}}. \bigskip \subpoint We are left with computing the Jacobian of $\Xi$: \begin{equation} \begin{largearray} \partial_{l',i}\Xi_{l,j}\equiv \frac{\partial\Xi_{l,j}}{\partial\mathbb U_{l',i}}= \delta_{l,l'}\delta_{i,j} +\frac1{2(\mathbb X_{l,j}+1)}\left( \frac{(1+\mathbb Y_{l,j})\partial_{l',i}\mathbb X_{l,j}}{\mathbb X_{l,j}+1} - \partial_{l',i}\mathbb Y_{l,j} \right) \Phi\left({\textstyle\frac{1+\mathbb Y_{l,j}}{(\mathbb X_{l,j}+1)^2}}\right) \\[0.5cm]\hfill +\frac{(1+\mathbb Y_{l,j})}{2(\mathbb X_{l,j}+1)^3}\left( \frac{2(1+\mathbb Y_{l,j})}{\mathbb X_{l,j}+1}\partial_{l',i}\mathbb X_{l,j} -\partial_{l',i}\mathbb Y_{l,j} \right)\ \partial\Phi\left({\textstyle\frac{1+\mathbb Y_{l,j}}{(\mathbb X_{l,j}+1)^2}}\right) \end{largearray} \end{equation} with \begin{equation} \partial_{l',i}\mathbb X_{l,j}= \frac1{\mathbb L_{l,j}}\left(\partial_{l',i}\mathbb K_{l,j}-\partial_{l',i}\mathbb L_{l,j}+\partial_{l',i}\mathbb I_{l,j}\right) - \frac{\partial_{l',i}\mathbb L_{l,j}}{\mathbb L_{l,j}}\mathbb X_{l,j} \end{equation} \begin{equation} \partial_{l',i}\mathbb Y_{l,j}= \frac1{\mathbb L_{l,j}}\left(\partial_{l',i}\mathbb S_{l,j}-\partial_{l',i}\mathbb L_{l,j}+\frac12\partial_{l',i}\mathbb J_{l,j}+\partial_{l',i}\mathbb G_{l,j}\right) - \frac{\partial_{l',i}\mathbb L_{l,j}}{\mathbb L_{l,j}}\mathbb Y_{l,j} \end{equation} \begin{equation} \partial_{l',i}\mathbb S_{l,j}= -\frac1{\rho}(\mathds 1_{l',i}\odot\mathfrak v)_{l,j} ,\quad \partial_{l',i}\mathbb E=-\frac1{\rho}\left<\mathds 1_{l',i}\mathfrak v\right> \end{equation} \begin{equation} \partial_{l',i}\mathbb K_{l,j}:=\gamma_K(\beta_K\partial_{l',i}\mathbb S_{l,j}+(1-\beta_K)\partial_{l',i}\mathbb E) ,\quad \partial_{l',i}\mathbb L_{l,j}:=\gamma_{L,1}(\beta_{L,1}\partial_{l',i}\mathbb S_{l,j}+(1-\beta_{L,1})\partial_{l',i}\mathbb E) \end{equation} \begin{equation} \begin{largearray} \partial_{l',i}\mathbb I_{l,j}= \frac1{\rho}\gamma_{L,2}\left(\beta_{L,2}( \mathds 1_{l',i}\odot(\mathbb U\mathbb S) + \mathbb U\odot(\mathds 1_{l',i}\mathbb S+\mathbb U\partial_{l',i}\mathbb S) )_{l,j} \right.\\[0.5cm]\hfill\left. + (1-\beta_{L,2})( \partial_{l',i}\mathbb E(\mathbb U\odot\mathbb U)_{l,j} + 2\mathbb E(\mathbb U\odot\mathds 1_{l',i})_{l,j} )\right) \end{largearray} \end{equation} \begin{equation} \begin{largearray} \partial_{l',i}\mathbb J_{l,j}= \frac1{\rho^2}\gamma_{L,3}(1-\beta_{L,3})\left( \partial_{l',i}\mathbb E(\mathbb U\odot\mathbb U)^2_{l,j} + 4\mathbb E(\mathbb U\odot\mathbb U)_{l,j}(\mathbb U\odot\mathds 1_{l',i})_{l,j} \right) \\[0.5cm]\hfill +\gamma_{L,3}\beta_{L,3}( 4\mathds 1_{l',i}\otimes\mathbb U^{\otimes3}\otimes\mathbb S + \mathbb U^{\otimes4}\otimes\partial_{l',i}\mathbb S )_{l,j} \end{largearray} \end{equation} \begin{equation} \begin{largearray} \partial_{l',i}\mathbb G_{l,j}= \frac2{\rho}\gamma_K\alpha_K\beta_K\left( \mathds 1_{l',i}\odot(\mathbb S\mathbb U) + \mathbb U\odot(\mathbb S\mathds 1_{l',i} +\partial_{l',i}\mathbb S\mathbb U) \right)_{l,j} \\[0.5cm]\hfill +\frac2{\rho}\gamma_K\alpha_K(1-\beta_K)\left( \partial_{l',i}\mathbb E(\mathbb U\odot\mathbb U)_{l,j} +2\mathbb E(\mathds 1_{l',i}\odot\mathbb U)_{l,j} \right) \\[0.5cm]\indent - \frac1{\rho}\alpha_{L,1}\beta_{L,1}\left( \mathds 1_{l',i}\odot(\mathbb S\mathbb U^2) + \mathbb U\odot( \partial_{l',i}\mathbb S\mathbb U^2 + 2\mathbb S\mathbb U\mathds 1_{l',i} ) \right)_{l,j} \\[0.5cm]\hfill - \frac1{\rho}\alpha_{L,1}(1-\beta_{L,1})\left( \mathbb E\mathds 1_{l',i}\odot\mathbb U^2 + \mathbb U\odot( \partial_{l',i}\mathbb E\mathbb U^2 + 2\mathbb E\mathbb U\mathds 1_{l',i} ) \right)_{l,j} \\[0.5cm]\hfill + \frac2{\rho}\alpha_{L,2}( (\mathds 1_{l',i}\odot(\mathbb I\mathbb U))_{l,j} + \mathbb U\odot( \partial_{l',i}\mathbb I\mathbb U + \mathbb I\mathds 1_{l',i}) )_{l,j} - \frac1{2\rho}\alpha_{L,3}( \mathds 1_{l',i}\odot \mathbb J + \mathbb U\odot\partial_{l',i}\mathbb J )_{l,j} . \end{largearray} \end{equation} \bigskip \subpoint We iterate the Newton algorithm until the Newton relative error $\epsilon$ becomes smaller than the \refname{param:easyeq_tolerance}{{\tt tolerance}} parameter. The Newton error is defined as \begin{equation} \epsilon=\frac{\|\mathbb U^{(n+1)}-\mathbb U^{(n)}\|_2}{\|\mathbb U^{(n)}\|_2} \end{equation} where $\|\cdot\|_2$ is the $l_2$ norm. The energy thus obtained is \begin{equation} e=\frac\rho2\mathds E \end{equation} the Fourier transform $\hat u$ of the solution is \begin{equation} \hat u(k_{l,j})\approx\frac{\mathbb U_{l,j}}\rho \end{equation} where $k_{l,j}$ was defined in\-~(\ref{klj}), and the solution $u$ in real space is obtained by inverting the Fourier transform, following the prescription of\-~(\ref{anyeq_integration}): \begin{equation} u(|x|)=\int \frac{dk}{(2\pi)^3}\ e^{-ikx}\hat u(|k|) \approx \sum_{l=0}^{J-1} \frac{\tau_{l+1}-\tau_l}{16\pi} \sum_{j=1}^Nw_j \cos({\textstyle\frac{\pi x_j}2})(1+\vartheta_l(x_j))^2\vartheta_l(x_j)\mathbb U_{l,j}\sin(\vartheta_l(x_j)|x|) . \end{equation} \bigskip \point{\bf Condensate fraction.} To compute the condensate fraction, we solve the modified {\tt anyeq} (see\-~\cite{CJL20b}): \begin{equation} (-\Delta+2\mu)u_\mu = (1-u_\mu)v-2\rho K+\rho^2 L . \end{equation} where $K$ and $L$ are defined as in\-~(\ref{anyeq_K})-(\ref{anyeq_e}) in which $u$ is replaced with $u_\mu$. The uncondensed fraction is then \begin{equation} \eta=\partial_\mu e|_{\mu=0} =-\frac\rho2\int dx\ v(x)\partial_\mu u_\mu(x)|_{\mu=0} . \end{equation} To compute the energy in the presence of the parameter $\mu$, we proceed in the same way as for $\mu=0$, the only difference being that $k^2$ should formally be replaced by $k^2+2\mu$. In other words, we consider $\mathbb U_{j,l}=u_\mu(|k_{j,l}|)$ and define $\Xi(\mathbb U,\mu)$ in the same way as in\-~(\ref{root_anyeq}), except that $\mathbb X_i$ should be replaced by \begin{equation} \mathbb X_{l,j}=\frac1{\mathbb L_{l,j}}\left(\mathbb K_{l,j}-\mathbb L_{l,j}+\frac{k_{l,j}^2+2\mu}{2\rho}+\mathbb I_{l,j}\right) . \end{equation} We then solve \begin{equation} \Xi(\mathbb U_\mu,\mu)=0 \end{equation} By differentiating this identity with respect to $\mu$, we find $\partial_\mu u_\mu$: \begin{equation} \partial_\mu \mathbb U|_{\mu=0}=-(D\Xi)^{-1}\partial_\mu\Xi|_{\mu=0} \end{equation} and \begin{equation} \partial_\mu\Xi|_{\mu=0}= \frac{(1+\mathbb Y_{l,j})\partial_\mu\mathbb X_{l,j}}{2(\mathbb X_{l,j}+1)^2} \Phi\left({\textstyle\frac{1+\mathbb Y_{l,j}}{(\mathbb X_{l,j}+1)^2}}\right) +\frac{(1+\mathbb Y_{l,j})^2}{(\mathbb X_{l,j}+1)^4}\partial_\mu\mathbb X_{l,j} \partial\Phi\left({\textstyle\frac{1+\mathbb Y_{l,j}}{(\mathbb X_{l,j}+1)^2}}\right) ,\quad \partial_\mu\mathbb X_{l,j}=\frac1{\rho\mathbb L_{l,j}} . \end{equation} We then approximate \begin{equation} \eta\approx -\frac12\left<\mathfrak v\partial_\mu\mathbb U\right> \end{equation} (see\-~(\ref{avg})). \bigskip \point{\bf Correlation function.} The two-point correlation function is \begin{equation} C_2(x):= 2\rho\frac{\delta e}{\delta v(x)} . \end{equation} In Fourier space, \begin{equation} C_2(x)= 2\rho\int dk\ e^{ikx}\frac{\delta e}{\delta\hat v(k)} =2\rho\int dk\ \frac{\sin(|k||x|)}{|k||x|}\frac{\delta e}{\delta\hat v(k)} . \label{C2fourier} \end{equation} \bigskip \subpoint We can compute this quantity by considering a modified {\tt anyeq} in Fourier space, by formally replacing $\hat v$ with \begin{equation} \hat v+\lambda g(|k|) ,\quad g(|k|):=\frac{\sin(|k||x|)}{|k||x|} . \end{equation} Indeed, if $e_\lambda$ denotes the energy of this modified equation, \begin{equation} \partial_\lambda e_\lambda|_{\lambda=0} =\int dk\ \frac{\delta e}{\hat v(k)}\partial_\lambda({\textstyle \hat v(k)+\lambda g(|k|)}) =\int dk\ g(|k|)\frac{\delta e}{\hat v(k)} \end{equation} so, denoting the solution of the modified equation by $u_\lambda$, \begin{equation} C_2(x)=2\rho\partial_\lambda e_\lambda|_{\lambda=0} =-\rho^2\int dx\ (g(x)u_0(x)+v(x)\partial_\lambda u_\lambda(x)|_{\lambda=0}) . \end{equation} We compute $\partial_\lambda u_\lambda|_{\lambda=0}$ in the same way as the uncondensed fraction: we define $\Xi(\mathbb U,\lambda)$ by formally adding $\lambda g(|k|)$ to $\hat v$, solve $\Xi(\mathbb U,\lambda)=0$, and differentiate: \begin{equation} \partial_\lambda\mathbb U|_{\lambda=0}=-(D\Xi)^{-1}\partial_\lambda\Xi|_{\lambda=0} . \end{equation} \bigskip \subpoint We compute $\partial_\lambda\Xi|_{\lambda=0}$: \begin{equation} \begin{largearray} \partial_\lambda\Xi_{l,j}= \delta_{l,l'}\delta_{i,j} +\frac1{2(\mathbb X_{l,j}+1)}\left( \frac{(1+\mathbb Y_{l,j})\partial_\lambda\mathbb X_{l,j}}{\mathbb X_{l,j}+1} - \partial_\lambda\mathbb Y_{l,j} \right) \Phi\left({\textstyle\frac{1+\mathbb Y_{l,j}}{(\mathbb X_{l,j}+1)^2}}\right) \\[0.5cm]\hfill +\frac{(1+\mathbb Y_{l,j})}{2(\mathbb X_{l,j}+1)^3}\left( \frac{2(1+\mathbb Y_{l,j})}{\mathbb X_{l,j}+1}\partial_\lambda\mathbb X_{l,j} -\partial_\lambda\mathbb Y_{l,j} \right)\ \partial\Phi\left({\textstyle\frac{1+\mathbb Y_{l,j}}{(\mathbb X_{l,j}+1)^2}}\right) \end{largearray} \end{equation} with \begin{equation} \partial_\lambda\mathbb S_{l,j}= \mathfrak g_{l,j} -\frac1{\rho}(\mathbb U\odot\mathfrak g)_{l,j} ,\quad \partial_\lambda\mathbb E=g(0)-\frac1{\rho}\left<\mathbb U\mathfrak g\right> \end{equation} \begin{equation} \partial_\lambda\mathbb X_{l,j}= \frac1{\mathbb L_{l,j}}\left(\partial_\lambda\mathbb K_{l,j}-\partial_\lambda\mathbb L_{l,j}+\partial_\lambda\mathbb I_{l,j}\right) - \frac{\partial_\lambda\mathbb L_{l,j}}{\mathbb L_{l,j}}\mathbb X_{l,j} \end{equation} \begin{equation} \partial_\lambda\mathbb Y_{l,j}= \frac1{\mathbb L_{l,j}}\left(\partial_\lambda\mathbb S_{l,j}-\partial_\lambda\mathbb L_{l,j}+\frac12\partial_\lambda\mathbb J_{l,j}+\partial_\lambda\mathbb G_{l,j}\right) - \frac{\partial_\lambda\mathbb L_{l,j}}{\mathbb L_{l,j}}\mathbb Y_{l,j} \end{equation} \begin{equation} \partial_\lambda\mathbb K_{l,j}:=\gamma_K(\beta_K\partial_\lambda\mathbb S_{l,j}+(1-\beta_K)\partial_\lambda\mathbb E) ,\quad \partial_\lambda\mathbb L_{l,j}:=\gamma_{L,1}(\beta_{L,1}\partial_\lambda\mathbb S_{l,j}+(1-\beta_{L,1})\partial_\lambda\mathbb E) \end{equation} \begin{equation} \partial_\lambda\mathbb I_{l,j}= \frac1{\rho}\gamma_{L,2}\left( \beta_{L,2}(\mathbb U\odot(\mathbb U\partial_\lambda\mathbb S)_{l,j} + (1-\beta_{L,2})\partial_\lambda\mathbb E(\mathbb U\odot\mathbb U)_{l,j} \right) \end{equation} \begin{equation} \partial_\lambda\mathbb J_{l,j}= \frac1{\rho^2}\gamma_{L,3}(1-\beta_{L,3})\partial_\lambda\mathbb E(\mathbb U\odot\mathbb U)^2_{l,j} +\gamma_{L,3}\beta_{L,3}(\mathbb U^{\otimes4}\otimes\partial_\lambda\mathbb S)_{l,j} \end{equation} \begin{equation} \begin{largearray} \partial_\lambda\mathbb G_{l,j}= \frac2{\rho}\gamma_K\alpha_K\beta_K\left(\partial_\lambda\mathbb S\mathbb U\right)_{l,j} +\frac2{\rho}\gamma_K\alpha_K(1-\beta_K)\partial_\lambda\mathbb E(\mathbb U\odot\mathbb U)_{l,j} - \frac1{\rho}\alpha_{L,1}\beta_{L,1}\left(\mathbb U\odot\partial_\lambda\mathbb S\mathbb U^2\right)_{l,j} \\[0.5cm]\hfill - \frac1{\rho}\alpha_{L,1}(1-\beta_{L,1})\partial_\lambda\mathbb E\left(\mathbb U\odot(\mathbb U^2)\right)_{l,j} + \frac2{\rho}\alpha_{L,2}\mathbb U\odot(\partial_\lambda\mathbb I\mathbb U)_{l,j} - \frac1{2\rho}\alpha_{L,3}(\mathbb U\odot\partial_\lambda\mathbb J)_{l,j} . \end{largearray} \end{equation} To evaluate $(\mathbb U\odot\mathfrak g)$ and $\left<\mathbb U\mathfrak g\right>$, we proceed as in\-~(\ref{adotv}) and\-~(\ref{}). To do so, we replace $\hat v$ with $g$ in the computation of $\Upsilon$. \bigskip \subpoint In order to invert the Fourier transform in\-~(\ref{C2fourier}) numerically, we will use a Hann window (see appendix\-~\ref{appendix:hann}) \begin{equation} H_L(k):=\mathds 1_{|k|<\frac L2}\cos^2({\textstyle\frac{\pi|k|}{L}}) . \label{hann} \end{equation} The parameter $L$ is set using \refname{param:anyeq_window_L}{{\tt window\_L}}. The computation is changed only in that $g$ is changed to $H_L(k)\frac{\sin(|k||x|)}{|k||x|}$. \bigskip \point {\bf Momentum distribution.} To compute the momentum distribution (see\-~\cite{CHe21}), we add a parameter $\lambda$ to {\tt anyeq}: \begin{equation} -\Delta u_\lambda(|x|) = (1-u_\lambda(|x|))v(|x|)-2\rho K(|x|)+\rho^2 L(|x|) -2\lambda \hat u_0(q)\cos(q\cdot x) \end{equation} ($\hat u_0\equiv\hat u_\lambda|_{\lambda=0}$). The momentum distribution is then \begin{equation} \mathcal M(q)=\partial_\lambda e|_{\lambda=0} =-\frac\rho2\int dx\ v(x)\partial_\lambda u_\lambda(x)|_{\lambda=0} . \end{equation} Note that the Fourier transform of $2\lambda\hat u_0(q)\cos(q\cdot x)$ is \begin{equation} -(2\pi)^3\lambda\hat u_0(q)(\delta(q+k)+\delta(q-k)) . \label{fouriermomentum} \end{equation} We compute $\partial_\lambda u_\lambda|_{\lambda=0}$ in the same way as the uncondensed fraction. \bigskip \subpoint In order to do so we will discretize momentum space, see\-~(\ref{klj}), and so it is necessary to construct a discrete analog of the delta-functions in\-~(\ref{fouriermomentum}). The starting point we take is \begin{equation} \int dk f(k)\delta(k-q) =f(q) \end{equation} so, when approximating the integral according to\-~(\ref{anyeq_integration}), we find \begin{equation} \frac{\pi^2}2\sum_{l=0}^{J-1} (\tau_{l+1}-\tau_l) \sum_{j=1}^Nw_j \cos({\textstyle\frac{\pi x_j}2})(1+\vartheta_l(x_j))^2\vartheta_l^2(x_j)f(\vartheta_l(x_j))\tilde\delta(\vartheta_l(x_j)-k_{l',i}) \approx f(k_{l',i}) \end{equation} where $\tilde\delta$ is the approximation of the delta-function. Since \begin{equation} \vartheta_l(x_j)\equiv k_{l,j} \end{equation} (see\-~(\ref{chebyshevvars})), we find that the definition of $\tilde\delta$ must be \begin{equation} \tilde\delta_{l,j;l',i} := \delta_{l,l'}\delta_{j,i} \frac2{\pi^2} \left( (\tau_{l+1}-\tau_l) w_j \cos({\textstyle\frac{\pi x_j}2}) (1+k_{l,j})^2k_{l,j}^2 \right)^{-1} . \end{equation} Note that, due to the invariance under rotation, the approximation for $\delta(q+k)$ is equal to that for $\delta(q-k)$. \bigskip \subpoint To compute the momentum distribution at $q=k_{l',i}$, we define $\Xi(\mathbb U,\lambda)$ by formally adding $-2(2\pi)^3\lambda \hat u_0(k_{l',i})\tilde\delta_{l,j;l',i}$ to $\mathbb G_{l,j}$, which corresponds to replacing $\mathbb Y$ with \begin{equation} \mathbb Y_{l,j}= \frac1{\mathbb L_{l,j}}\left(\mathbb S_{l,j}-\mathbb L_{l,j}+\frac12\mathbb J_{l,j}+\mathbb G_{l,j}-2(2\pi)^3\lambda\frac{\mathbb U_{l',i}}\rho\tilde\delta_{l,j;l',i}\right) \end{equation} Then we solve $\Xi(\mathbb U,\lambda)=0$, and differentiate: \begin{equation} \partial_\lambda\mathbb U|_{\lambda=0}=-(D\Xi)^{-1}\partial_\lambda\Xi|_{\lambda=0} . \end{equation} Finally, \begin{equation} \partial_\lambda\Xi_{l,j}|_{\lambda=0} = -\partial_\lambda\mathbb Y_{l,j}|_{\lambda=0}\left( \frac1{2(\mathbb X_{l,j}+1)} \Phi\left({\textstyle\frac{1+\mathbb Y_{l,j}}{(\mathbb X_{l,j}+1)^2}}\right) +\frac{(1+\mathbb Y_{l,j})}{2(\mathbb X_{l,j}+1)^3} \partial\Phi\left({\textstyle\frac{1+\mathbb Y_{l,j}}{(\mathbb X_{l,j}+1)^2}}\right) \right) \end{equation} with \begin{equation} \partial_\lambda\mathbb Y_{l,j}|_{\lambda=0}= \frac{2(2\pi)^3\mathbb U_{l',i}\tilde\delta_{l,j;l',i}}{\rho\mathbb L_{l,j}} . \end{equation} \subsection{{\tt simpleq-Kv}}\label{sec:simpleq-Kv} \indent The method is used to compute observables for the simple equation \begin{equation} -\Delta u = v(1-u)-4eu+2e\rho u\ast u ,\quad e=\frac\rho2\int dx\ (1-u(|x|))v(|x|) . \label{simpleq} \end{equation} One can show\-~\cite[Theorem\-~1.6]{CJL20b} that the condensate fraction is \begin{equation} \eta=\frac{\rho\int v(x)\mathfrak Ku(x)\ dx}{1-\rho\int v(x)\mathfrak K(2u(x)-\rho u\ast u(x))\ dx} \label{simpleq-Kv_eta} \end{equation} with \begin{equation}\label{bg6} \mathfrak K = (-\Delta + v + 4e(1 - \rho u\ast))^{-1} . \label{Kv} \end{equation} Similarly, the two-point correlation function is\-~\cite[(45)]{CHe21} \begin{equation} C_2= \rho^2(1-u)+ \rho^2\frac{\mathfrak Kv(1-u)-2\rho u\ast \mathfrak Kv+\rho^2u\ast u\ast \mathfrak Kv}{1-\rho\int dx\ v(x)\mathfrak K(2u(x)-\rho u\ast u(x))} . \label{simpleq-Kv_C2} \end{equation} Thus, using the fact that $\mathfrak K$ is self-adjoint, we can compute these observables of the simple equation directly from the knowledge of $\mathfrak Kv$. \bigskip \subsubsection{Usage} \indent The computation uses the same approximation scheme as \refname{sec:anyeq}{{\tt anyeq}}, as well as using the solution of \refname{sec:anyeq}{{\tt anyeq}}. As such, it takes a similar list of parameters: \refname{param:anyeq_rho}{{\tt rho}}, \refname{param:anyeq_tolerance}{{\tt tolerance}}, \refname{param:anyeq_maxiter}{{\tt maxiter}}, \refname{param:anyeq_P}{{\tt P}}, \refname{param:anyeq_N}{{\tt N}}, \refname{param:anyeq_J}{{\tt J}}, \refname{param:anyeq_minlrho_init}{{\tt minlrho\_init}}, \refname{param:anyeq_nlrho_init}{{\tt nlrho\_init}}. \bigskip The available {\tt commands} are the following. \bigskip \begin{itemize} \item\makelink{command:simpleq-Kv_Kv}{} {\tt Kv}: compute $\mathfrak Kv$ as a function of $|x|$.\par \underline{Extra parameters}: \begin{itemize} \item\makelink{param:simpleq-Kv_xmin}{} {\tt xmin} ({\tt Float64}, default: 0): minimum of the range of $|x|$ to be printed. \item\makelink{param:simpleq-Kv_xmax}{} {\tt xmax} ({\tt Float64}, default: 100): maximum of the range of $|x|$ to be printed. \item\makelink{param:simpleq-Kv_nx}{} {\tt nx} ({\tt Int64}, default: 100): number of points to print (linearly spaced). \end{itemize} \underline{Output} (one line for each value of $|x|$): [$|x|$] [$\mathfrak K v$] \item\makelink{command:simpleq-Kv_condensate-fraction}{} {\tt condensate-fraction}: compute the uncondensed fraction as a function of $\rho$\par \underline{Extra parameters}: \begin{itemize} \item\makelink{param:simpleq-Kv_minlrho}{} {\tt minlrho} ({\tt Float64}, default: $10^{-6}$): minimal value for $\log_{10}\rho$. \item\makelink{param:simpleq-Kv_maxlrho}{} {\tt maxlrho} ({\tt Float64}, default: $10^{2}$): maximal value for $\log_{10}\rho$. \item\makelink{param:simpleq-Kv_nlrho}{} {\tt nlrho} ({\tt Int64}, default: $100$): number of values for $\rho$ (spaced logarithmically). \item\makelink{param:simpleq-Kv_rhos}{} {\tt rhos} ({\tt Array\{Float64\}}, default: $(10^{{\tt minlrho}+\frac{{\tt maxlrho}-{\tt minlrho}}{{\tt nlrho}}n})_n$: list of values for $\rho$, specified as a `{\tt,}' separated list. \end{itemize} \underline{Output} (one line for each value of $\rho$): [$\rho$] [$\eta$] \item\makelink{command:simpleq-Kv_2pt}{} {\tt 2pt}: compute the two-point correlation as a function of $|x|$.\par \underline{Extra parameters}: same as \refname{command:simpleq-Kv_Kv}{{\tt Kv}}.\par \underline{Output} (one line for each value of $|x|$): [$|x|$] [$C_2$] \end{itemize} \subsubsection{Description} \indent In Fourier space\-~(\ref{anyeq_fourier}), \begin{equation} \hat{\mathfrak K}^{-1}f := \int dx\ e^{ikx} (-\Delta+4e(1-\rho u\ast)+v)f =(k^2+4e(1-\rho\hat u(|k|))+\hat v\hat\ast)\hat f \end{equation} where $\hat\ast$ is defined in\-~(\ref{anyeq_hatast}). We follow the same approximation scheme as \refname{sec:anyeq}{{\tt anyeq}}: \begin{equation} \hat{\mathfrak K}^{-1}f(k_{l,j}) \approx(k_{l,j}^2+4e(1-\mathbb U_{l,j}))\mathfrak f_{l,j} + (\mathfrak v\odot\mathfrak f)_{l,j} \end{equation} with $\mathfrak f_{l,j}:=f(k_{l,j})$, $\mathbb U_{l,j}:=\rho u(|k_{l,j}|)$, $\odot$ is defined in\-~(\ref{odot}), and $k_{l,j}$ is defined in\-~(\ref{klj}). Therefore, we approximate the operator $\hat{\mathfrak K}^{-1}$ by a matrix: \begin{equation} \hat{\mathfrak K}^{-1}f(k_{l,j})\approx \sum_{l'=0}^{J-1}\sum_{i=1}^N M_{l,j;l',i}\mathfrak f_{l',i} \end{equation} with, by\-~(\ref{odot}) and\-~(\ref{frakF}), \begin{equation} \begin{largearray} M_{l,j;l',i}:= \delta_{l',l}\delta_{j,i}(k_{l,j}^2+4e(1-\mathbb U_{l,j})) \\\hfill + \frac1{4\pi^2|k_{l,j}|}\sum_{n,m=0}^P\sum_{l''=0}^{J-1}\mathfrak F_{l'',n}^{(\nu_v)}(\mathfrak v) A_{l'',n;l',m}^{(\nu_v,\nu_f)}(|k_{l,j}|) \frac{\frac{2-\delta_{m,0}}2w_i\cos(\frac{m\pi(1+x_i)}2)}{(1-\frac{\tau_{l'+1}-\tau_{l'}}2\sin(\frac{\pi x_i}2)+\frac{\tau_{l'+1}+\tau_{l'}}2)^{\nu_f}} . \end{largearray} \end{equation} Defining $\mathds 1_{l',i}$ as the vector whose only non-vanishing component is that indexed by $l',i$ which is equal to 1, we can rewrite \begin{equation} M_{l,j;l',i}:= \delta_{l',l}\delta_{j,i}(k_{l,j}^2+4e(1-\mathbb U_{l,j})) + (\mathfrak v\odot\mathds 1_{l',i})_{l,j} . \end{equation} Thus \begin{equation} \mathfrak Kv\approx M^{-1}\mathfrak v . \end{equation} \bigskip \indent To compute\-~(\ref{simpleq-Kv_eta}), we write \begin{equation} \eta=\frac{\rho\int\frac{dk}{(2\pi)^3} \hat u(k)\hat{\mathfrak K}\hat v(k)}{1-\rho\int \frac{dk}{(2\pi)^3)}(2\hat u(k)-\rho\hat u^2(k))\hat{\mathfrak K}\hat v(k)} \end{equation} which we approximate as \begin{equation} \eta\approx\frac{\left<\mathbb UM^{-1}\mathfrak v\right>}{1-\left<(2\mathbb U-\mathbb U^2)M^{-1}\mathfrak v\right>} \end{equation} where $\left<\cdot\right>$ is defined in\-~(\ref{avg}). We can thus compute $\eta$ using the solution $\mathbb U$ computed by \refname{sec:anyeq}{{\tt anyeq}}. \bigskip \indent To compute\-~(\ref{simpleq-Kv_C2}), we write \begin{equation} C_2= \rho^2(1-u(x))+ \rho^2\frac{\mathfrak Kv(x)(1-u(x))+\int\frac{dk}{(2\pi)^3}(-2\rho\hat u\hat{\mathfrak K}\hat v+\rho^2\hat u^2\hat{\mathfrak K}\hat v)}{1-\rho\int\frac{dk}{(2\pi)^3}\ (2\hat u(k)-\rho \hat u^2(k))\hat{\mathfrak K}\hat v(k)} \end{equation} which we approximate as \begin{equation} C_2\approx \rho^2-\rho\left+ \rho^2\frac{\left(1-\rho^{-1}\left)+\left<(-2\mathbb U M^{-1}\mathfrak v+\mathbb UM^{-1}\mathfrak v)\right>}{1-\left<(2\mathbb U-\mathbb U^2)M^{-1}\mathfrak v\right>} . \end{equation} We can thus compute $C_2$ using the solution $\mathbb U$ computed by \refname{sec:anyeq}{{\tt anyeq}}. \subsection{\tt simpleq-hardcore}\label{sec:simpleq-hardcore} \indent This method is used to solve the Simple equation with a hardcore potential: \begin{equation} \left\{\begin{array}{>\displaystyle ll} (-\Delta+4e) u(x)=2e\rho u\ast u(x) &\mathrm{for\ }|x|>1\\ u(x)=1 &\mathrm{for\ }|x|\leqslant1 \end{array}\right. \label{linearhc} \end{equation} with \begin{equation} e=-\frac{4\pi\rho\partial u|_{|x|\searrow 1}}{2(1-\frac83\pi\rho+\rho^2\int_{|x|<1}dx\ u\ast u(x))} . \label{hardcore_energy} \end{equation} \bigskip This equation is solved in $x$-space, and as such is very different from \refname{sec:easyeq}{{\tt easyeq}}, and significantly longer to run. \bigskip \subsubsection{Usage} \indent Unless otherwise noted, this method takes the following parameters (specified via the {\tt [-p params]} flag, as a `{\tt;}' separated list of entries). \begin{itemize} \item\makelink{param:simpleq-hardcore_rho}{} {\tt rho} ({\tt Float64}, default: $10^{-6}$): density $\rho$. \item\makelink{param:simpleq-hardcore_tolerance}{} {\tt tolerance} ({\tt Float64}, default: $10^{-11}$): maximal size of final step in Newton iteration. \item\makelink{param:simpleq-hardcore_maxiter}{} {\tt maxiter} ({\tt Int64}, default: 21): maximal number of iterations of the Newton algorithm before giving up. \item\makelink{param:simpleq-hardcore_P}{} {\tt P} ({\tt Int64}, default: 11): order of all Chebyshev polynomial expansions (denoted by $P$ below). \item\makelink{param:simpleq-hardcore_N}{} {\tt N} ({\tt Int64}, default: 12): order of all Gauss quadratures (denoted by $N$ below). \item\makelink{param:simpleq-hardcore_J}{} {\tt J} ({\tt Int64}, default: 10): number of splines (denoted by $J$ below). \end{itemize} \bigskip The available {\tt commands} are the following. \begin{itemize} \item\makelink{command:simpleq-hardcore_energy_rho}{} {\tt energy\_rho}: compute the energy $e$ as a function of $\rho$.\par \underline{Disabled parameters}: \refname{param:simpleq-hardcore_rho}{{\tt rho}}.\par \underline{Extra parameters}: \begin{itemize} \item\makelink{param:simpleq-hardcore_minlrho}{} {\tt minlrho} ({\tt Float64}, default: $10^{-6}$): minimal value for $\log_{10}\rho$. \item\makelink{param:simpleq-hardcore_maxlrho}{} {\tt maxlrho} ({\tt Float64}, default: $10^{2}$): maximal value for $\log_{10}\rho$. \item\makelink{param:simpleq-hardcore_nlrho}{} {\tt nlrho} ({\tt Int64}, default: $100$): number of values for $\rho$ (spaced logarithmically). \item\makelink{param:simpleq-hardcore_rhos}{} {\tt rhos} ({\tt Array\{Float64\}}, default: $(10^{{\tt minlrho}+\frac{{\tt maxlrho}-{\tt minlrho}}{{\tt nlrho}}n})_n$: list of values for $\rho$, specified as a `{\tt,}' separated list. \end{itemize} \underline{Output} (one line for each value of $\rho$): [$\rho$] [$e$] [Newton error $\epsilon$].\par \underline{Multithread support}: yes, different values of $\rho$ split up among workers. \item\makelink{command:simpleq-hardcore_condensate_fraction_rho}{} {\tt condensate\_fraction\_rho}: compute the uncondensed fraction $\eta$ as a function of $\rho$.\par \underline{Disabled parameters}: same as \refname{command:simpleq-hardcore_energy_rho}{{\tt energy\_rho}}.\par \underline{Extra parameters}: same as \refname{command:simpleq-hardcore_energy_rho}{{\tt energy\_rho}}.\par \underline{Output} (one line for each value of $\rho$): [$\rho$] [$\eta$] [Newton error $\epsilon$].\par \underline{Multithread support}: yes, different values of $\rho$ split up among workers. \item\makelink{command:simpleq-hardcore_ux}{} {\tt ux}: compute $u$ as a function of $|x|$.\par \underline{Extra parameters}: \begin{itemize} \item\makelink{param:simpleq-hardcore_xmin}{} {\tt xmin} ({\tt Float64}, default: 0): minimum of the range of $|x|$ to be printed. \item\makelink{param:simpleq-hardcore_xmax}{} {\tt xmax} ({\tt Float64}, default: 100): maximum of the range of $|x|$ to be printed. \item\makelink{param:simpleq-hardcore_nx}{} {\tt nx} ({\tt Int64}, default: 100): number of points to print (linearly spaced). \end{itemize} \underline{Output} (one line for each value of $x$): [$|x|$] [$u(|x|)$] \end{itemize} \subsubsection{Description} \indent In order to carry out the computation of the solution of\-~(\ref{linearhc}) and compute the condensate fraction at the same time, we will consider the equation with an added parameter $\mu>0$: \begin{equation} (-\Delta+4\epsilon)u=2e\rho u\ast u ,\quad \epsilon:=e+\frac\mu2 \label{hardcore_simple} \end{equation} for $|x|>1$. \bigskip \point{\bf Energy.} To compute the energy $e$ of this equation, with the extra parameter $\mu$, we consider the limit of the soft sphere potential $\lambda\mathds 1_{|x|<1}$ (see\-~(\ref{easyeq}) with $\beta_K=\beta_L=0$): \begin{equation} (-\Delta+2\mu+4e)u(x)=s_\lambda(x)+2e\rho u\ast u ,\quad s_\lambda(x):=\lambda(1-u(x))\mathds 1_{|x|\leqslant 1} ,\quad \frac{2e}\rho=\int dx\ s_\lambda(x) . \end{equation} Furthermore, since $\partial u$ need not be continuous at $|x|=1$, by integrating $-\Delta u$ over a thin spherical shell of radius 1, we find that, for $|x|\leqslant 1$, \begin{equation} -\Delta u(x)=-\delta(|x|-1)\partial u|_{|x|\searrow1} \end{equation} so, formally, \begin{equation} s_\infty(x)=\mathds 1_{|x|\leqslant 1}(2e(2-\rho u\ast u(x))+2\mu)-\delta(|x|-1)\partial u|_{|x|\searrow1} \end{equation} and \begin{equation} \frac{2e}\rho=\int dx\ s_\infty(x) = 2e\left(\frac{8\pi}3-\rho\int_{|x|<1}u\ast u(x)\right)+\frac{8\pi}3\mu-4\pi\partial u|_{|x|\searrow1} . \end{equation} Therefore, \begin{equation} e=\frac{2\pi\rho(\frac23\mu-\partial u|_{|x|\searrow1})}{1-\frac{8\pi}3\rho+\rho^2\int_{|x|<1}dx\ u\ast u(x)} . \label{emu} \end{equation} \bigskip \point{\bf Integral equation.} We turn the differential equation in\-~(\ref{hardcore_simple}) into an integral equation. Let \begin{equation} w(|x|):=|x|u(x) \end{equation} we have, for $r>1$, \begin{equation} (-\partial_r^2+4\epsilon)w(r)=2e\rho ru\ast u(r) . \end{equation} Furthermore, the bounded solution of \begin{equation} (-\partial_r^2+\alpha^2)w(r)=F(r) ,\quad w(1)=1 \end{equation} is \begin{equation} w(r)=e^{-\alpha(r-1)}+\int_0^\infty ds\ \frac{F(s+1)}{2\alpha}\left(e^{-\alpha|(r-1)-s|}-e^{-\alpha((r-1)+s)}\right) \label{solw} \end{equation} so, for $r>1$, \begin{equation} u(r)= \frac 1re^{-2\sqrt\epsilon(r-1)} + \frac{\rho e}{2r\sqrt\epsilon}\int_0^\infty ds\ (s+1)(u\ast u(s+1))\left(e^{-2\sqrt\epsilon|(r-1)-s|}-e^{-2\sqrt\epsilon((r-1)+s)}\right) . \end{equation} In order to compute the integral more easily, we split it: \begin{equation} \begin{largearray} u(r)= \frac 1re^{-2\sqrt\epsilon(r-1)} + \frac{\rho e}{r\sqrt\epsilon}\int_0^{r-1} ds\ (s+1)(u\ast u(s+1))\sinh(2\sqrt\epsilon s)e^{-2\sqrt\epsilon(r-1)} \\[0.5cm]\hfill + \frac{\rho e}{r\sqrt\epsilon}\sinh(2\sqrt\epsilon(r-1))\int_{r-1}^\infty ds\ (s+1)(u\ast u(s+1))e^{-2\sqrt\epsilon s} . \end{largearray} \end{equation} We change variables in the last integral: \begin{equation} \begin{largearray} u(r)= \frac 1re^{-2\sqrt\epsilon(r-1)} + \frac{\rho e}{r\sqrt\epsilon}\int_0^{r-1} ds\ (s+1)(u\ast u(s+1))\sinh(2\sqrt\epsilon s)e^{-2\sqrt\epsilon(r-1)} \\[0.5cm]\hfill + \frac{\rho e}{2r\sqrt\epsilon}\left(1-e^{-4\sqrt\epsilon(r-1)}\right)\int_0^\infty d\sigma\ (\sigma+r)(u\ast u(\sigma+r))e^{-2\sqrt\epsilon\sigma} . \end{largearray} \label{uinteq} \end{equation} \bigskip \point{\bf The auto-convolution term.} We split \begin{equation} u(r)=\mathds 1_{r>1}u_+(r-1)+\mathds 1_{r\leqslant 1} . \end{equation} in terms of which \begin{equation} u\ast u= \mathds 1_{r\leqslant 1}\ast\mathds 1_{r\leqslant 1} +2\mathds 1_{r\leqslant 1}\ast(u_+(r-1)\mathds 1_{r>1}) +(\mathds 1_{r>1}u_+(r-1))\ast(u_+(r-1)\mathds 1_{r>1}) \label{u*u_dcmp} \end{equation} In bipolar coordinates (see lemma\-~\ref{lemma:bipolar}), \begin{equation} \mathds 1_{r\leqslant 1}\ast\mathds 1_{r\leqslant 1}(r) = \frac{2\pi}{r}\int_0^1 dt\ t\int_{|r-t|}^{r+t}ds\ s\mathds 1_{s\leqslant 1} \label{1*1} \end{equation} and, if $r\geqslant 0$ and $t\geqslant 0$, then \begin{equation} \int_{|r-t|}^{r+t}ds\ s\mathds 1_{s\leqslant 1} = \mathds 1_{r-1\leqslant t\leqslant r+1}\int_{|r-t|}^{\min(1,r+t)}ds\ s = \mathds 1_{r-1\leqslant t\leqslant r+1} \left( \mathds 1_{t\leqslant 1-r} 2rt + \mathds 1_{t>1-r} \frac{1-(r-t)^2}2 \right) . \label{int1} \end{equation} Therefore, if $r\geqslant 1$ \begin{equation} \mathds 1_{r\leqslant 1}\ast\mathds 1_{r\leqslant 1}(r) = \mathds 1_{r\leqslant 2} \frac{2\pi}{r}\int_{r-1}^1 dt\ t \frac{1-(r-t)^2}2 = \mathds 1_{r\leqslant 2}\frac\pi{12}(r-2)^2(r+4) \label{u*u_1} \end{equation} and if $r<1$, \begin{equation} \mathds 1_{r\leqslant 1}\ast\mathds 1_{r\leqslant 1}(r) = \frac{2\pi}r\int_0^1dt\ t \left( \mathds 1_{t\leqslant 1-r} 2rt + \mathds 1_{t>1-r} \frac{1-(r-t)^2}2 \right) \end{equation} so \begin{equation} \mathds 1_{r\leqslant 1}\ast\mathds 1_{r\leqslant 1}(r) =\frac43\pi(1-r)^3 +\frac\pi{12}r(36-48r+17r^2) = \frac\pi{12}(r-2)^2(r+4) . \end{equation} Thus, (\ref{u*u_1}) holds for all $r$. Furthermore, \begin{equation} 2\mathds 1_{r\leqslant 1}\ast(u_+(r-1)\mathds 1_{r>1}) = \frac{4\pi}{r}\int_1^\infty dt\ tu_+(t-1)\int_{|r-t|}^{r+t}ds\ s\mathds 1_{s\leqslant 1} \end{equation} so, if $r\geqslant 0$ then, by\-~(\ref{int1}), \begin{equation} 2\mathds 1_{r\leqslant 1}\ast(u_+(r-1)\mathds 1_{r>1})(r) = \frac{2\pi}{r}\int_{\max(1,r-1)}^{r+1} dt\ tu_+(t-1)(1-(r-t)^2) . \label{u*u_cross} \end{equation} Finally, if $r\geqslant 0$ then \begin{equation} (\mathds 1_{r>1}u_+(r-1))\ast(u_+(r-1)\mathds 1_{r>1})(r) = \frac{2\pi}{r}\int_1^\infty dt\ tu_+(t-1)\int_{\max{(1,|r-t|)}}^{r+t}ds\ su_+(s-1) . \label{u*u_u} \end{equation} Thus, by~\-(\ref{u*u_1}), (\ref{u*u_cross}) and\-~(\ref{u*u_u}), for $r\geqslant -1$, \begin{equation} \begin{largearray} u\ast u(1+r)= \mathds 1_{r\leqslant 1}\frac\pi{12}(r-1)^2(r+5) + \frac{2\pi}{r+1}\int_{\max(0,r-1)}^{r+1} dt\ (t+1)u_+(t)(1-(r-t)^2) \\[0.5cm]\hfill + \frac{2\pi}{r+1}\int_0^\infty dt\ (t+1)u_+(t)\int_{\max{(0,|r-t|-1)}}^{r+t+1}ds\ (s+1)u_+(s) . \end{largearray} \end{equation} We then compactify the integrals by changing variables to $\tau=\frac{1-t}{1+t}$ and $\sigma=\frac{1-s}{1+s}$: \begin{equation} \begin{largearray} u\ast u(1+r)= \mathds 1_{r\leqslant 1}\frac\pi{12}(r-1)^2(r+5) + \frac{8\pi}{r+1}\int_{-\frac r{2+r}}^{\min(1,\frac{2-r}r)} d\tau\ \frac1{(1+\tau)^3}u_+({\textstyle\frac{1-\tau}{1+\tau}})(1-(r-{\textstyle\frac{1-\tau}{1+\tau}})^2) \\[0.5cm]\hfill + \frac{32\pi}{r+1}\int_{-1}^1 d\tau\ \frac1{(1+\tau)^3}u_+({\textstyle\frac{1-\tau}{1+\tau}})\int_{\alpha_-(1+r,\tau)}^{\min(1,\beta_+(r,\tau))}d\sigma\ \frac1{(1+\sigma)^3}u_+({\textstyle\frac{1-\sigma}{1+\sigma}}) . \end{largearray} \label{u*u} \end{equation} with \begin{equation} \alpha_-(1+r,\tau):=\frac{-r-\frac{1-\tau}{1+\tau}}{2+r+\frac{1-\tau}{1+\tau}} ,\quad \beta_+(r,\tau):=\frac{2-|r-\frac{1-\tau}{1+\tau}|}{|r-\frac{1-\tau}{1+\tau}|} \end{equation} (note that $\alpha_-$ is the same as defined for fulleq). Finally, note that, if $\beta_+<1$, that is, if $|r-\frac{1-\tau}{1+\tau}|>1$, then \begin{equation} \beta_+(r,\tau)=\alpha_+({\textstyle |r-\frac{1-\tau}{1+\tau}|-1+\frac{1-\tau}{1+\tau}},\tau) \end{equation} where \begin{equation} \alpha_+(r,\tau):=\frac{1-|r-\frac{1-\tau}{1+\tau}|}{1+|r-\frac{1-\tau}{1+\tau}|} \end{equation} is the same as is defined for \refname{sec:anyeq}{{\tt anyeq}} (\ref{anyeq_alpha}). \bigskip \point{\bf Chebyshev polynomial expansion.} We use the same interpolation as we used in \refname{sec:anyeq}{{\tt anyeq}}: (\ref{a_chebyshev_spline}) \begin{equation} \frac1{(1+\tau)^{\nu_u}}u_+({\textstyle\frac{1-\tau}{1+\tau}})=\sum_{l=0}^{J-1}\mathds 1_{\tau_l\leqslant\tau<\tau_{l+1}}\sum_{n=0}^\infty \mathbf F_{l,n}^{(\nu_u)}(u_+) T_n({\textstyle\frac{2\tau-(\tau_l+\tau_{l+1})}{\tau_{l+1}-\tau_l}}) \label{a_chebyshev_spline} \end{equation} ($J$ is set by the parameter \refname{param:simpleq-hardcore_J}{{\tt J}}) with \begin{equation} \mathbf F_{l,n}^{(\nu_u)}(u_+):= \frac{2-\delta_{n,0}}{\pi} \int_0^{\pi} d\theta\ \frac{\cos(n\theta)}{(1+\frac{\tau_{l+1}-\tau_l}2\cos(\theta)+\frac{\tau_{l+1}+\tau_l}2)^{\nu_u}} u_+({\textstyle\frac{2-(\tau_{l+1}-\tau_l)\cos(\theta)-(\tau_{l+1}+\tau_\alpha)}{2+(\tau_{l+1}-\tau_l)\cos(\theta)+(\tau_{l+1}+\tau_l)}}) \label{bfF} \end{equation} and we take $\nu_u$ to be the decay exponent of $u$, which we will assume is $\nu_u=4$. In particular, by\-~(\ref{u*u}), \begin{equation} u\ast u(1+r)=\mathds 1_{r\leqslant 1}B^{(0)}(r)+\sum_l\sum_n\mathbf F_{l,n}^{(\nu_u)}(u_+)B^{(1)}_{l,n}(r)+\sum_{l,l'}\sum_{n,m}\mathbf F_{l,n}^{(\nu_u)}(u_+)\mathbf F_{l',m}^{(\nu_u)}(u_+)B^{(2)}_{l,n;l',m}(r) \label{u*u} \end{equation} with \begin{equation} B^{(0)}(r):= \frac\pi{12}(r-1)^2(r+5) \end{equation} \begin{equation} B^{(1)}_{l,n}(r):= \mathds 1_{\tau_l<\frac{2-r}r}\mathds 1_{\tau_{l+1}>-\frac r{2+r}} \frac{8\pi}{r+1}\int_{\max(\tau_l,-\frac r{2+r})}^{\min(\tau_{l+1},\frac{2-r}r)} d\tau\ \frac1{(1+\tau)^{3-\nu_u}}(1-(r-{\textstyle\frac{1-\tau}{1+\tau}})^2)T_n({\textstyle\frac{2\tau-(\tau_l+\tau_{l+1})}{\tau_{l+1}-\tau_l}}) \end{equation} \begin{equation} \begin{largearray} B^{(2)}_{l,n;l',m}(r):= \frac{32\pi}{r+1}\int_{\tau_l}^{\tau_{l+1}} d\tau\ \frac1{(1+\tau)^{3-\nu_u}}T_n({\textstyle\frac{2\tau-(\tau_l+\tau_{l+1})}{\tau_{l+1}-\tau_l}}) \mathds 1_{\tau_{l'}<\alpha_+(|r-\frac{1-\tau}{1+\tau}|-\frac{2\tau}{1+\tau},\tau)}\mathds 1_{\tau_{l'+1}>\alpha_-(1+r,\tau)} \cdot\\[0.5cm]\hfill\cdot \int_{\max(\tau_{l'},\alpha_-(1+r,\tau))}^{\min(\tau_{l'+1},\alpha_+(|r-\frac{1-\tau}{1+\tau}|-\frac{2\tau}{1+\tau},\tau))}d\sigma\ \frac1{(1+\sigma)^{3-\nu_u}}T_m({\textstyle\frac{2\sigma-(\tau_{l'}+\tau_{l'+1})}{\tau_{l'+1}-\tau_{l'}}}) . \end{largearray} \end{equation} Thus, by\-~(\ref{uinteq}), for $r>0$, \begin{equation} u_+(r,e,\epsilon)= D^{(0)}(r,e,\epsilon) + \sum_l\sum_n\mathbf F_{l,n}^{(\nu_u)}(u_+)D^{(1)}_{l,n}(r,e,\epsilon) + \sum_{l,l'}\sum_{n,m}\mathbf F_{l,n}^{(\nu_u)}(u_+)\mathbf F_{l',m}^{(\nu_u)}(u_+)D^{(2)}_{l,n;l',m}(r,e,\epsilon) \label{hardcore_u+} \end{equation} with \begin{equation} \begin{largearray} D^{(0)}(r,e,\epsilon):= \frac 1{r+1}e^{-2\sqrt\epsilon r} + \frac{\rho e}{(r+1)\sqrt\epsilon}\int_0^{\min(1,r)} ds\ (s+1)B^{(0)}(s)\sinh(2\sqrt\epsilon s)e^{-2\sqrt\epsilon r} \\[0.5cm]\hfill + \mathds 1_{r\leqslant 1} \frac{\rho e}{2(r+1)\sqrt\epsilon}\left(1-e^{-4\sqrt\epsilon r}\right)\int_0^{1-r} d\sigma\ (\sigma+r+1)B^{(0)}(\sigma+r)e^{-2\sqrt\epsilon\sigma} \end{largearray} \label{D0} \end{equation} \begin{equation} \begin{largearray} D^{(1)}_{l,n}(r,e,\epsilon):= \frac{\rho e}{(r+1)\sqrt\epsilon}\int_0^r ds\ (s+1)B^{(1)}_{l,n}(s)\sinh(2\sqrt\epsilon s)e^{-2\sqrt\epsilon r} \\[0.5cm]\hfill + \frac{\rho e}{2(r+1)\sqrt\epsilon}\left(1-e^{-4\sqrt\epsilon r}\right)\int_0^\infty d\sigma\ (\sigma+r+1)B_{l,n}^{(1)}(\sigma+r)e^{-2\sqrt\epsilon\sigma} . \end{largearray} \label{D1} \end{equation} and \begin{equation} \begin{largearray} D^{(2)}_{l,n;l',m}(r,e,\epsilon):= \frac{\rho e}{(r+1)\sqrt\epsilon}\int_0^r ds\ (s+1)B^{(2)}_{l,n;l',m}(s)\sinh(2\sqrt\epsilon s)e^{-2\sqrt\epsilon r} \\[0.5cm]\hfill + \frac{\rho e}{2(r+1)\sqrt\epsilon}\left(1-e^{-4\sqrt\epsilon r}\right)\int_0^\infty d\sigma\ (\sigma+r+1)B_{l,n;l',m}^{(2)}(\sigma+r)e^{-2\sqrt\epsilon\sigma} . \end{largearray} \label{D2} \end{equation} \bigskip \point{\bf Energy.} We now compute the approximation for the energy, using\-~(\ref{hardcore_energy}). \bigskip \subpoint We start with $\partial u|_{|x|\searrow 1}$. By\-~(\ref{uinteq}), \begin{equation} \partial u|_{|x|\searrow 1} = -(1+2\sqrt\epsilon) + 2\rho e\int_0^\infty d\sigma\ (\sigma+1)(u\ast u(\sigma+1))e^{-2\sqrt\epsilon\sigma} \end{equation} \bigskip which, by\-~(\ref{u*u}), becomes \begin{equation} \begin{largearray} \partial u|_{|x|\searrow 1} = -(1+2\sqrt\epsilon) + \gamma^{(0)}(e,\epsilon) + \sum_l\sum_n\mathbf F_{l,n}^{(\nu_u)}(u_+)\gamma^{(1)}_{l,n}(e,\epsilon) +\\\hfill+ \sum_{l,l'}\sum_{n,m}\mathbf F_{l,n}^{(\nu_u)}(u_+)\mathbf F_{l',m}^{(\nu_u)}(u_+)\gamma^{(2)}_{l,n;l',m}(e,\epsilon) \end{largearray} \end{equation} with \begin{equation} \gamma^{(0)}(e,\epsilon):= 2\rho e\int_0^1 d\sigma\ (\sigma+1)B^{(0)}(\sigma)e^{-2\sqrt\epsilon\sigma} \end{equation} \begin{equation} \gamma^{(1)}_{l,n}(e,\epsilon):= 2\rho e\int_0^\infty d\sigma\ (\sigma+1)B_{l,n}^{(1)}(\sigma)e^{-2\sqrt\epsilon\sigma} \end{equation} and \begin{equation} \gamma^{(2)}_{l,n;l',m}(e,\epsilon):= 2\rho e\int_0^\infty d\sigma\ (\sigma+1)B_{l,n;l',m}^{(2)}(\sigma)e^{-2\sqrt\epsilon\sigma} . \end{equation} \subpoint Let us now turn to $\int_{|x|<1}dx\ u\ast u(x)$. We have \begin{equation} \int_{|x|<1}dx\ u\ast u(x) = 4\pi\int_0^1 dr\ r^2 u\ast u(r) \end{equation} so, by\-~(\ref{u*u}), \begin{equation} \int_{|x|<1}dx\ u\ast u(x) = \bar\gamma^{(0)}(r) + \sum_l\sum_n\mathbf F_{l,n}^{(\nu_u)}(u_+)\bar\gamma^{(1)}_{l,n}(r) + \sum_{l,l'}\sum_{n,m}\mathbf F_{l,n}^{(\nu_u)}(u_+)\mathbf F_{l',m}^{(\nu_u)}(u_+)\bar\gamma^{(2)}_{l,n;l',m}(r) \label{intusu} \end{equation} with \begin{equation} \bar\gamma^{(0)}:= 4\pi\int_0^1 d\sigma\ \sigma^2B^{(0)}(\sigma-1) \end{equation} \begin{equation} \bar\gamma^{(1)}_{l,n}:= 4\pi\int_0^1 d\sigma\ \sigma^2B_{l,n}^{(1)}(\sigma-1) \end{equation} and \begin{equation} \bar\gamma^{(2)}_{l,n;l',m}:= 4\pi\int_0^1 d\sigma\ \sigma^2B_{l,n;l',m}^{(2)}(\sigma-1) . \end{equation} \bigskip \subpoint Thus, \begin{equation} \begin{largearray} e=2\pi\rho \cdot\\\hfill\cdot \frac { C(\epsilon) - \gamma^{(0)}(e,\epsilon) - \sum_l\sum_n\mathbf F_{l,n}^{(\nu_u)}(u_+)\gamma^{(1)}_{l,n}(e,\epsilon) - \sum_{l,l'}\sum_{n,m}\mathbf F_{l,n}^{(\nu_u)}(u_+)\mathbf F_{l',m}^{(\nu_u)}(u_+)\gamma^{(2)}_{l,n;l',m}(e,\epsilon) } {1-\frac83\pi\rho+\rho^2\left( \bar\gamma^{(0)} + \sum_l\sum_n\mathbf F_{l,n}^{(\nu_u)}(u_+)\bar\gamma^{(1)}_{l,n} + \sum_{l,l'}\sum_{n,m}\mathbf F_{l,n}^{(\nu_u)}(u_+)\mathbf F_{l',m}^{(\nu_u)}(u_+)\bar\gamma^{(2)}_{l,n;l',m} \right)} . \end{largearray} \end{equation} \begin{equation} C(\epsilon):=\frac23\mu+(1+2\sqrt\epsilon) =\frac43(\epsilon-e)+1+2\sqrt\epsilon \end{equation} \bigskip \point{\bf Newton algorithm.} In this paragraph, we set $\epsilon=e$, that is, $\mu=0$. \bigskip \subpoint As we did for \refname{sec:anyeq}{{\tt anyeq}}, we discretize the integral in\-~(\ref{bfF}) by using a Gauss-Legendre quadrature, and truncate the sum over Chebyshev polynomials to order \refname{param:simpleq-hardcore_P}{{\tt P}}. We then reduce the computation to a finite system of equations, whose variables are \begin{equation} e ,\quad \mathfrak u_{l,j}:=u_+(r_{l,j}) ,\quad r_{l,j}:= \frac{2+(\tau_{l+1}-\tau_l)\sin(\frac{\pi x_j}2)-(\tau_{l+1}+\tau_\alpha)}{2-(\tau_{l+1}-\tau_l)\sin(\frac{\pi x_j}2)+(\tau_{l+1}+\tau_l)} \end{equation} where $x_j$ are the abcissa for Gauss-Legendre quadratures (see\-~(\ref{klj})). In other words, we define a vector $\mathbb U$ in dimension \refname{param:simpleq-hardcore_N}{{\tt N}}$\times$\refname{param:simpleq-hardcore_J}{{\tt J}}$+1$, where the first \refname{param:simpleq-hardcore_N}{{\tt N}}$\times$\refname{param:simpleq-hardcore_J}{{\tt J}} terms are $\mathfrak u_{l,j}$ and the last component is $e$. We then write\-~(\ref{hardcore_u+}) as, for $l\in\{0,\cdots,J-1\}$, $j\in\{1,\cdots,N\}$, \begin{equation} \Xi_{lN+j}(\mathbb U)=0 ,\quad \Xi_{NJ+1}(\mathbb U)=0 \end{equation} (note that $\Xi_{lN+j}$ corresponds to the pair $(l,j)$) with \begin{equation} \begin{largearray} \Xi_{lN+j}(\mathbb U):= -\mathfrak u_{l,j} + \mathbb D^{(0)}(r_{l,j},e) + \sum_{l'}\sum_n\mathfrak F_{l',n}^{(\nu_u)}(\mathfrak u)\mathbb D^{(1)}_{l',n}(r_{l,j},e) +\\\hfill+ \sum_{l',l''}\sum_{n,m}\mathfrak F_{l',n}^{(\nu_u)}(\mathfrak u)\mathfrak F_{l'',m}^{(\nu_u)}(\mathfrak u)\mathbb D^{(2)}_{l',n;l'',m}(r_{l,j},e) \end{largearray} \end{equation} \begin{equation} \begin{largearray} \Xi_{NJ+1}(\mathbb U):=-e +\\\hfill+ 2\pi\rho \frac { C(e) - \mathfrak g^{(0)}(e) - \sum_l\sum_n\mathfrak F_{l,n}^{(\nu_u)}(\mathfrak u)\mathfrak g^{(1)}_{l,n}(e) - \sum_{l,l'}\sum_{n,m}\mathfrak F_{l,n}^{(\nu_u)}(\mathfrak u)\mathfrak F_{l',m}^{(\nu_u)}(\mathfrak u)\mathfrak g^{(2)}_{l,n;l',m}(e) } {1-\frac83\pi\rho+\rho^2\left( \bar{\mathfrak g}^{(0)} + \sum_l\sum_n\mathfrak F_{l,n}^{(\nu_u)}(\mathfrak u)\bar{\mathfrak g}^{(1)}_{l,n} + \sum_{l,l'}\sum_{n,m}\mathfrak F_{l,n}^{(\nu_u)}(\mathfrak u)\mathfrak F_{l',m}^{(\nu_u)}(\mathfrak u)\bar{\mathfrak g}^{(2)}_{l,n;l',m} \right)} . \end{largearray} \end{equation} where $\mathfrak F$ is defined in\-~(\ref{frakF}), and $\mathbb D^{(i)}$, $\mathfrak g^{(i)}$, $\bar{\mathfrak g}^{(i)}$ are defined like $D^{(i)}$, $\gamma^{(i)}$ and $\bar\gamma^{(i)}$ except that the integrals over bounded intervals are approximated using Gauss-Legendre quadratures, and the integrals from $0$ to $\infty$ are approximated using Gauss-Laguerre quadratures. Gauss-Legendre and Gauss-Laguerre quadratures and their errors are discussed in appendix\-~\ref{appGL}. The orders of the quadratures are given by the variable \refname{param:simpleq-hardcore_N}{{\tt N}}. \bigskip \subpoint We then solve $\Xi=0$ using the Newton algorithm, that is, we define a sequence of $\mathbb U$'s: \begin{equation} \mathbb U^{(n+1)}=\mathbb U^{(n)}-(D\Xi(\mathbb U^{(n)}))^{-1}\Xi(\mathbb U^{(n)}) \end{equation} where $D\Xi$ is the Jacobian of $\Xi$: \begin{equation} (D\Xi)_{\alpha,\beta}:=\frac{\partial\Xi_\alpha}{\partial\mathbb U_\beta} . \end{equation} We initialize the algorithm with \begin{equation} \mathbb U^{(0)}_{lN+j}=\frac1{(1+r_{l,j}^2)^2} ,\quad \mathbb U^{(0)}_{JN+1}=\pi\rho . \end{equation} \bigskip \subpoint We are left with computing the Jacobian of $\Xi$: \begin{equation} \begin{largearray} \frac{\partial\Xi_{lN+j}(\mathbb U)}{\partial\mathfrak u_{l',i}}= -\delta_{l,l'}\delta_{j,i} + \sum_{l''}\sum_n\mathfrak F_{l'',n}^{(\nu_u)}(\mathds 1_{l',i})\mathbb D^{(1)}_{l'',n}(r_{l,j},e) +\\\hfill+ 2\sum_{l'',l'''}\sum_{n,m}\mathfrak F_{l'',n}^{(\nu_u)}(\mathfrak u)\mathfrak F_{l''',m}^{(\nu_u)}(\mathds 1_{l',j})\mathbb D^{(2)}_{l'',n;l''',m}(r_{l,j},e) \end{largearray} \end{equation} where $\mathds 1_{l',i}$ is a vector whose only non-vanishing entry is the $(l',i)$-th, which is 1, \begin{equation} \begin{largearray} \frac{\partial\Xi_{JN+1}(\mathbb U)}{\partial\mathfrak u_{l',i}} =\\\hfill= 2\pi\rho \frac { - \sum_l\sum_n\mathfrak F_{l,n}^{(\nu_u)}(\mathds 1_{l',i})\mathfrak g^{(1)}_{l,n}(e) - 2\sum_{l,l''}\sum_{n,m}\mathfrak F_{l,n}^{(\nu_u)}(\mathfrak u)\mathfrak F_{l'',m}^{(\nu_u)}(\mathds 1_{l',i})\mathfrak g^{(2)}_{l,n;l'',m}(e) } {1-\frac83\pi\rho+\rho^2\left( \bar{\mathfrak g}^{(0)} + \sum_l\sum_n\mathfrak F_{l,n}^{(\nu_u)}(\mathfrak u)\bar{\mathfrak g}^{(1)}_{l,n} + \sum_{l,l''}\sum_{n,m}\mathfrak F_{l,n}^{(\nu_u)}(\mathfrak u)\mathfrak F_{l'',m}^{(\nu_u)}(\mathfrak u)\bar{\mathfrak g}^{(2)}_{l,n;l'',m} \right)} \\[1cm]\hfill -(\Xi_{NJ+1}(\mathbb U)+e) \frac {\rho^2\left( \sum_l\sum_n\mathfrak F_{l,n}^{(\nu_u)}(\mathds 1_{l'.i})\bar{\mathfrak g}^{(1)}_{l,n} + 2\sum_{l,l''}\sum_{n,m}\mathfrak F_{l,n}^{(\nu_u)}(\mathfrak u)\mathfrak F_{l'',m}^{(\nu_u)}(\mathds 1_{l',i})\bar{\mathfrak g}^{(2)}_{l,n;l'',m} \right)}{1-\frac83\pi\rho+\rho^2\left( \bar{\mathfrak g}^{(0)} + \sum_l\sum_n\mathfrak F_{l,n}^{(\nu_u)}(\mathfrak u)\bar{\mathfrak g}^{(1)}_{l,n} + \sum_{l,l''}\sum_{n,m}\mathfrak F_{l,n}^{(\nu_u)}(\mathfrak u)\mathfrak F_{l'',m}^{(\nu_u)}(\mathfrak u)\bar{\mathfrak g}^{(2)}_{l,n;l'',m} \right)} . \end{largearray} \end{equation} \begin{equation} \begin{largearray} \frac{\partial\Xi_{lN+j}(\mathbb U)}{\partial e}= \partial_e\mathbb D^{(0)}(r_{l,j},e) + \sum_{l'}\sum_n\mathfrak F_{l',n}^{(\nu_u)}(\mathfrak u)\partial_e\mathbb D^{(1)}_{l',n}(r_{l,j},e) +\\\hfill+ \sum_{l',l''}\sum_{n,m}\mathfrak F_{l',n}^{(\nu_u)}(\mathfrak u)\mathfrak F_{l'',m}^{(\nu_u)}(\mathfrak u)\partial_e\mathbb D^{(2)}_{l',n;l'',m}(r_{l,j},e) \end{largearray} \end{equation} \begin{equation} \begin{largearray} \frac{\partial\Xi_{NJ+1}(\mathbb U)}{\partial e} = -1 +\\\hfill+ 2\pi\rho \frac { \partial_e C(e) - \partial_e\mathfrak g^{(0)}(e) - \sum_l\sum_n\mathfrak F_{l,n}^{(\nu_u)}(\mathfrak u)\partial_e\mathfrak g^{(1)}_{l,n}(e) - \sum_{l,l'}\sum_{n,m}\mathfrak F_{l,n}^{(\nu_u)}(\mathfrak u)\mathfrak F_{l',m}^{(\nu_u)}(\mathfrak u)\partial_e\mathfrak g^{(2)}_{l,n;l',m}(e) } {1-\frac83\pi\rho+\rho^2\left( \bar{\mathfrak g}^{(0)} + \sum_l\sum_n\mathfrak F_{l,n}^{(\nu_u)}(\mathfrak u)\bar{\mathfrak g}^{(1)}_{l,n} + \sum_{l,l'}\sum_{n,m}\mathfrak F_{l,n}^{(\nu_u)}(\mathfrak u)\mathfrak F_{l',m}^{(\nu_u)}(\mathfrak u)\bar{\mathfrak g}^{(2)}_{l,n;l',m} \right)} . \end{largearray} \end{equation} To compute $\partial_e\mathbb D^{(i)}$ and $\partial_e\mathfrak g^{(i)}$, we use $\partial_e=\frac1{2\sqrt e}\frac\partial{\partial\sqrt e}$ and \begin{equation} \frac{\partial C(e)}{\partial\sqrt e}=2 \end{equation} \begin{equation} \begin{largearray} \frac{\partial D^{(0)}(r,e)}{\partial\sqrt e} = -\frac{2r}{r+1}e^{-2\sqrt er} \\[0.5cm]\hfill + \frac{\rho}{r+1}\int_0^{\min(1,r)} ds\ (s+1)B^{(0)}(s)e^{-2\sqrt er}\left( (1-2\sqrt er)\sinh(2\sqrt e s) +2\sqrt es\cosh(2\sqrt e s) \right) \\[0.5cm] + \mathds 1_{r\leqslant 1} \frac{\rho}{2(r+1)}\int_0^{1-r} d\sigma\ (\sigma+r+1)B^{(0)}(\sigma+r) \cdot\\[0.5cm]\hfill\cdot \left( (1-2\sqrt e\sigma)\left(1-e^{-4\sqrt er}\right)e^{-2\sqrt e\sigma} + 4\sqrt e re^{-2\sqrt e(2r+\sigma)} \right) \end{largearray} \end{equation} \begin{equation} \begin{largearray} \frac{\partial D_{l,n}^{(1)}(r,e)}{\partial\sqrt e} = \frac{\rho}{r+1}\int_0^{r} ds\ (s+1)B_{l,n}^{(1)}(s)e^{-2\sqrt er}\left( (1-2\sqrt er)\sinh(2\sqrt e s) +2\sqrt es\cosh(2\sqrt e s) \right) \\[0.5cm] + \frac{\rho}{2(r+1)}\int_0^\infty d\sigma\ (\sigma+r+1)B_{l,n}^{(1)}(\sigma+r) \cdot\\[0.5cm]\hfill\cdot \left( (1-2\sqrt e\sigma)\left(1-e^{-4\sqrt er}\right)e^{-2\sqrt e\sigma} + 4\sqrt e re^{-2\sqrt e(2r+\sigma)} \right) \end{largearray} \end{equation} \begin{equation} \begin{largearray} \frac{\partial D_{l,n;l',m}^{(2)}(r,e)}{\partial\sqrt e} \\[0.5cm] = \frac{\rho}{r+1}\int_0^{r} ds\ (s+1)B_{l,n;l',m}^{(2)}(s)e^{-2\sqrt er}\left( (1-2\sqrt er)\sinh(2\sqrt e s) +2\sqrt es\cosh(2\sqrt e s) \right) \\[0.5cm] + \frac{\rho}{2(r+1)}\int_0^\infty d\sigma\ (\sigma+r+1)B_{l,n;l',m}^{(2)}(\sigma+r) \cdot\\[0.5cm]\hfill\cdot \left( (1-2\sqrt e\sigma)\left(1-e^{-4\sqrt er}\right)e^{-2\sqrt e\sigma} + 4\sqrt e re^{-2\sqrt e(2r+\sigma)} \right) . \end{largearray} \end{equation} Furthermore, \begin{equation} \frac{\partial\gamma^{(0)}(e)}{\partial\sqrt e}= 4\rho\sqrt e\int_0^1 d\sigma\ (\sigma+1)B^{(0)}(\sigma)(1-\sqrt e\sigma)e^{-2\sqrt e\sigma} \end{equation} \begin{equation} \frac{\partial\gamma^{(1)}_{l,n}(e)}{\partial\sqrt e}= 4\rho e\int_0^\infty d\sigma\ (\sigma+1)B_{l,n}^{(1)}(\sigma)(1-\sqrt e\sigma)e^{-2\sqrt e\sigma} \end{equation} and \begin{equation} \frac{\partial\gamma^{(2)}_{l,n;l',m}(e)}{\partial\sqrt e}= 4\rho e\int_0^\infty d\sigma\ (\sigma+1)B_{l,n;l',m}^{(2)}(\sigma)(1-\sqrt e\sigma)e^{-2\sqrt e\sigma} . \end{equation} Finally, to get from $D$ to $\mathbb D$ and $\gamma$ to $\mathfrak g$, we approximate the integrate using Gauss-Legendre and Gauss-Laguerre quadratures (see appendix\-~\ref{appGL}), as described above. \bigskip \subpoint We iterate the Newton algorithm until the Newton relative error $\epsilon$ becomes smaller than the \refname{param:easyeq_tolerance}{{\tt tolerance}} parameter. The Newton error is defined as \begin{equation} \epsilon=\frac{\|\mathbb U^{(n+1)}-\mathbb U^{(n)}\|_2}{\|\mathbb U^{(n)}\|_2} \end{equation} where $\|\cdot\|_2$ is the $l_2$ norm. The energy thus obtained is \begin{equation} e=\mathbb U_{JN+1} . \end{equation} \bigskip \point{\bf Condensate fraction.} To compute the condensate fraction, we use the parameter $\mu$ in\-~(\ref{hardcore_simple}). The uncondensed fraction is \begin{equation} \eta=\partial_\mu e|_{\mu=0} . \end{equation} To compute $\partial_\mu e$, we use \begin{equation} \Xi(\mathbb U)=0 \end{equation} which we differentiate with respect to $\mu$: \begin{equation} \partial_\mu\mathbb U=-(D\Xi)^{-1}\partial_\mu\Xi . \end{equation} We are left with computing $\partial_\mu\Xi$: \begin{equation} \begin{largearray} \frac{\partial\Xi_{lN+j}(\mathbb U)}{\partial\mu}= \partial_\mu\mathbb D^{(0)}(r_{l,j},e,\epsilon) + \sum_{l'}\sum_n\mathfrak F_{l',n}^{(\nu_u)}(\mathfrak u)\partial_\mu\mathbb D^{(1)}_{l',n}(r_{l,j},e,\epsilon) +\\\hfill+ \sum_{l',l''}\sum_{n,m}\mathfrak F_{l',n}^{(\nu_u)}(\mathfrak u)\mathfrak F_{l'',m}^{(\nu_u)}(\mathfrak u)\partial_\mu\mathbb D^{(2)}_{l',n;l'',m}(r_{l,j},e,\epsilon) \end{largearray} \end{equation} \begin{equation} \begin{largearray} \frac{\partial\Xi_{NJ+1}(\mathbb U)}{\partial \mu} =\\\hfill= 2\pi\rho \frac { \partial_\mu C(\epsilon) - \partial_\mu\mathfrak g^{(0)}(e,\epsilon) - \sum_l\sum_n\mathfrak F_{l,n}^{(\nu_u)}(\mathfrak u)\partial_\mu\mathfrak g^{(1)}_{l,n}(e,\epsilon) - \sum_{l,l'}\sum_{n,m}\mathfrak F_{l,n}^{(\nu_u)}(\mathfrak u)\mathfrak F_{l',m}^{(\nu_u)}(\mathfrak u)\partial_\mu\mathfrak g^{(2)}_{l,n;l',m}(e,\epsilon) } {1-\frac83\pi\rho+\rho^2\left( \bar{\mathfrak g}^{(0)} + \sum_l\sum_n\mathfrak F_{l,n}^{(\nu_u)}(\mathfrak u)\bar{\mathfrak g}^{(1)}_{l,n} + \sum_{l,l'}\sum_{n,m}\mathfrak F_{l,n}^{(\nu_u)}(\mathfrak u)\mathfrak F_{l',m}^{(\nu_u)}(\mathfrak u)\bar{\mathfrak g}^{(2)}_{l,n;l',m} \right)} . \end{largearray} \end{equation} We then use $\partial_\mu=\frac1{4\sqrt\epsilon}\partial_{\sqrt\epsilon}$ and \begin{equation} \left.\frac{\partial C(\epsilon)}{\partial\sqrt\epsilon}\right|_{\mu=0} = \frac83\sqrt\epsilon+2 \end{equation} \begin{equation} \begin{largearray} \left.\frac{\partial D^{(0)}(r)}{\partial\sqrt\epsilon}\right|_{\mu=0}= -\frac{2r}{r+1}e^{-2\sqrt{e}r} \\[0.5cm]\hfill + \frac{\rho}{(r+1)}\int_0^{\min(1,r)} ds\ (s+1)B^{(0)}(s)e^{-2\sqrt{e}r}((-1-2\sqrt er)\sinh(2\sqrt{e} s)+2\sqrt es\cosh(2\sqrt{e} s)) \\[0.5cm] + \mathds 1_{r\leqslant 1} \frac{\rho}{2(r+1)}\int_0^{1-r} d\sigma\ (\sigma+r+1)B^{(0)}(\sigma+r) \cdot\\[0.5cm]\hfill\cdot \left((-1-2\sqrt e\sigma)\left(1-e^{-4\sqrt er}\right)e^{-2\sqrt{e}\sigma}+4\sqrt ere^{-2\sqrt{e}(2r+\sigma)}\right) \end{largearray} \end{equation} \begin{equation} \begin{largearray} \left.\frac{\partial D_{l,n}^{(1)}(r)}{\partial\sqrt\epsilon}\right|_{\mu=0} = \frac{\rho}{r+1}\int_0^{r} ds\ (s+1)B_{l,n}^{(1)}(s)e^{-2\sqrt er}\left( (-1-2\sqrt er)\sinh(2\sqrt e s) +2\sqrt es\cosh(2\sqrt e s) \right) \\[0.5cm] + \frac{\rho}{2(r+1)}\int_0^\infty d\sigma\ (\sigma+r+1)B_{l,n}^{(1)}(\sigma+r) \cdot\\[0.5cm]\hfill\cdot \left( (-1-2\sqrt e\sigma)\left(1-e^{-4\sqrt er}\right)e^{-2\sqrt e\sigma} + 4\sqrt e re^{-2\sqrt e(2r+\sigma)} \right) \end{largearray} \end{equation} \begin{equation} \begin{largearray} \left.\frac{\partial D_{l,n;l',m}^{(2)}(r)}{\partial\sqrt\epsilon}\right|_{\mu=0} \\[0.5cm] = \frac{\rho}{r+1}\int_0^{r} ds\ (s+1)B_{l,n;l',m}^{(2)}(s)e^{-2\sqrt er}\left( (-1-2\sqrt er)\sinh(2\sqrt e s) +2\sqrt es\cosh(2\sqrt e s) \right) \\[0.5cm] + \frac{\rho}{2(r+1)}\int_0^\infty d\sigma\ (\sigma+r+1)B_{l,n;l',m}^{(2)}(\sigma+r) \cdot\\[0.5cm]\hfill\cdot \left( (-1-2\sqrt e\sigma)\left(1-e^{-4\sqrt er}\right)e^{-2\sqrt e\sigma} + 4\sqrt e re^{-2\sqrt e(2r+\sigma)} \right) . \end{largearray} \end{equation} \begin{equation} \left.\frac{\partial \gamma^{(0)}}{\partial\sqrt\epsilon}\right|_{\mu=0} = -4\rho e\int_0^1 d\sigma\ \sigma(\sigma+1)B^{(0)}(\sigma)e^{-2\sqrt e\sigma} \end{equation} \begin{equation} \left.\frac{\partial\gamma^{(1)}_{l,n}}{\partial\sqrt\epsilon}\right|_{\mu=0} = -4\rho e\int_0^\infty d\sigma\ (\sigma+1)\sigma B_{l,n}^{(1)}(\sigma)e^{-2\sqrt e\sigma} \end{equation} and \begin{equation} \left.\frac{\partial\gamma^{(2)}_{l,n;l',m}}{\partial\sqrt\epsilon}\right|_{\mu=0} = -4\rho e\int_0^\infty d\sigma\ (\sigma+1)\sigma B_{l,n;l',m}^{(2)}(\sigma)e^{-2\sqrt e\sigma} . \end{equation} \subsection{\tt simpleq-iteration}\label{sec:simpleq-iteration} \indent This method is used to solve the Simple equation using the iteration described in\-~\cite{CJL20}. The Simple equation is \begin{equation} -\Delta u = S-4e u+2e\rho u\ast u \label{simpleq_iteration} \end{equation} \begin{equation} S:=(1-u)v ,\quad \rho:=\frac{2e}{\int dx\ (1-u(|x|))v(|x|)} . \label{simpleq_Se} \end{equation} for a soft potential $v$ at fixed energy $e>0$. The iteration is defined as \begin{equation} -\Delta u_n=S_n-4eu_n+2e\rho_{n-1}u_{n-1}\ast u_{n-1} ,\quad u_0=0 ,\quad \rho_{n-1}= \frac{2e}{\int dx\ (1-u_{n-1}(|x|))v(|x|)} . \label{iteration} \end{equation} \bigskip \subsubsection{Usage} \indent Unless otherwise noted, this method takes the following parameters (specified via the {\tt [-p params]} flag, as a `{\tt;}' separated list of entries). \begin{itemize} \item\makelink{param:simpleq-iteration_e}{} {\tt e} ({\tt Float64}, default: $10^{-4}$): energy $e$. \item\makelink{param:simpleq-iteration_maxiter}{} {\tt maxiter} ({\tt Int64}, default: 21): maximal number of iterations. \item\makelink{param:simpleq-iteration_order}{} {\tt order} ({\tt Int64}, default: 100): order used for all Gauss quadratures (denoted by $N$ below). \end{itemize} \bigskip The available {\tt commands} are the following. \begin{itemize} \item {\tt rho\_e}\makelink{command:simpleq-iteration_rho_e}{}: compute the density $\rho$ as a function of $e$.\par \underline{Disabled parameters}: \refname{param:simpleq-iteration_e}{{\tt e}}.\par \underline{Extra parameters}: \begin{itemize} \item\makelink{param:simpleq-iteration_minle}{} {\tt minle} ({\tt Float64}, default: $10^{-6}$): minimal value for $\log_{10}e$. \item\makelink{param:simpleq-iteration_maxle}{} {\tt maxle} ({\tt Float64}, default: $10^{2}$): maximal value for $\log_{10}e$. \item\makelink{param:simpleq-iteration_nle}{} {\tt nle} ({\tt Int64}, default: $100$): number of values for $e$ (spaced logarithmically). \item\makelink{param:simpleq-iteration_es}{} {\tt es} ({\tt Array\{Float64\}}, default: $(10^{{\tt minle}+\frac{{\tt maxle}-{\tt minle}}{{\tt nle}}n})_n$: list of values for $e$, specified as a `{\tt,}' separated list. \end{itemize} \underline{Output} (one line for each value of $e$): [$e$] [$\rho$]. \item\makelink{command:simpleq-iteration_ux}{} {\tt ux}: compute $u$ as a function of $|x|$.\par \underline{Extra parameters}: \begin{itemize} \item\makelink{param:simpleq-iteration_xmin}{} {\tt xmin} ({\tt Float64}, default: 0): minimum of the range of $|x|$ to be printed. \item\makelink{param:simpleq-iteration_xmax}{} {\tt xmax} ({\tt Float64}, default: 100): maximum of the range of $|x|$ to be printed. \item\makelink{param:simpleq-iteration_nx}{} {\tt nx} ({\tt Int64}, default: 100): number of points to print (linearly spaced). \end{itemize} \underline{Output} (one line for each value of $x$): [$|x|$] [$u_1(|x|)$] [$u_2(|x|)$] [$u_3(|x|)$] $\cdots$ \end{itemize} \subsubsection{Description} \indent In Fourier space \begin{equation} \hat u_n(|k|):=\int dx\ e^{ikx}u_n(|x|) \end{equation} (\ref{iteration}) becomes \begin{equation} (k^2+4e)\hat u_n(|k|)=\hat S_n(|k|)+2e\rho_{n-1}\hat u_{n-1}(k)^2 ,\quad \rho_n:=\frac{2e}{\hat S_n(0)} \label{iteration_uk} \end{equation} with \begin{equation} \hat S_n(|k|) =\hat v(|k|)-\frac1{(2\pi)^3}\int dp\ \hat u_n(|p|)\hat v(|k-p|) . \end{equation} We write $\hat S_n$ in bipolar coordinates (see lemma\-~\ref{lemma:bipolar}): \begin{equation} \hat S_n(|k|)=\hat v(|k|)-\frac1{(2\pi)^3}\int_0^\infty dt\ t\hat u_n(t)\Eta(|k|,t) \end{equation} with \begin{equation} \Eta(y,t):=\frac{2\pi}y\int_{|y-t|}^{y+t}ds\ s\hat v(s) \end{equation} (note that this agrees with the function\-~(\ref{easyeq_Eta}) defined for \refname{sec:easyeq}{{\tt easyeq}}). We also change variables to \begin{equation} y=\frac1{t+1} ,\quad t=\frac{1-y}y \end{equation} \begin{equation} \hat S_n(|k|)=\hat v(|k|)-\frac1{(2\pi)^3}\int_0^1 dy\ \frac{(1-y)\hat u_n(\frac{1-y}y)\Eta(|k|,\frac{1-y}y)}{y^3} . \end{equation} We approximate this integral using a Gauss-Legendre quadrature (see appendix\-~\ref{appGL}) and discretize Fourier space: \begin{equation} k_i:=\frac{1-x_i}{1+x_i} ,\quad y_i:=\frac{x_i+1}2 \end{equation} where $x_i$ are the Gauss-Legendre abscissa, and \begin{equation} \hat S_n(k_i)\approx\hat v(k_i)-\frac1{2(2\pi)^3}\sum_{j=1}^Nw_j\frac{(1-y_j)\hat u_n(\frac{1-y_j}{y_j})\Eta(k_i,\frac{1-y_j}{y_j})}{y_j^3} \end{equation} so if \begin{equation} \mathbb U_i(n):=\hat u_n(k_i) ,\quad \mathbf v_i:=\hat v(k_i) \end{equation} we have \begin{equation} \sum_{j=1}^NA_{i,j}\mathbb U_j(n)=b_i^{(n)} \end{equation} with \begin{equation} A_{i,j}:=(k_i^2+4e)\delta_{i,j}+\frac{w_j(1-y_j)\Eta(k_i,\frac{1-y_j}{y_j})}{2(2\pi)^3y_j^3} \end{equation} and \begin{equation} b_i^{(n)}:=\mathbf v_i+2e\rho_{n-1}\mathbb U_i(n-1)^2 \end{equation} in terms of which \begin{equation} \mathbb U=A^{-1}b^{(n)} . \end{equation} Finally, we compute $\rho_n$ using the second of\-~(\ref{iteration_uk}): \begin{equation} \rho_n=\frac{2e}{\hat S_n(0)} ,\quad S_n(0)\approx\hat v(0) -\frac1{2(2\pi)^3}\sum_{j=1}^Nw_j\frac{(1-y_j)\hat u_n(\frac{1-y_j}{y_j})\Eta(0,\frac{1-y_j}{y_j})}{y_j^3} . \end{equation} \section{Potentials}\label{sec:potentials} \indent In this section, we describe the potentials available in {\tt simplesolv}, and provide documentation to add custom potentials to {\tt simplesolv}. \bigskip \subsection{Built-in potentials} \subsubsection{{\tt exp}}\label{sec:exp} \indent In $x$-space, \begin{equation} v(|x|)=ae^{-|x|} . \end{equation} The constant $a$ is specified through the {\tt v\_a} parameter, and can be any real number. Note that $v\geqslant 0$ if and only if $a\geqslant 0$. This is the potential that is selected by default. \bigskip \point In Fourier space, \begin{equation} \hat v(|k|)=\int dx\ e^{ikx}v(|x|) =\frac{8\pi a}{(1+k^2)^2} . \end{equation} In particular, $v$ is of positive type (that is, $\hat v\geqslant 0$) if and only if $a\geqslant 0$. \bigskip \point The zero energy scattering solution, that is, the solution of \begin{equation} (-\Delta+v)\psi=0 ,\quad \lim_{|x|\to\infty}\psi=1 \end{equation} is \begin{equation} \psi(r)=\frac{cI_0(2\sqrt a e^{-\frac r2})+2K_0(2\sqrt a e^{-\frac r2})}r ,\quad c=-\frac{2K_0(2\sqrt a)}{I_0(2\sqrt a)} \end{equation} where $I_0$ and $K_0$ are the modified Bessel functions, and the square root is taken with a branch cut on the negative imaginary axis. In other words, if $a<0$, $\sqrt a=i\sqrt{|a|}$ and\-~\dlmfcite{(10.27.6),(10.27.9),(10.27.10)}{1.1.3} \begin{equation} I_0(ix)=J_0(x) ,\quad K_0(ix)=-\frac\pi2(Y_0(x)+iJ_0(x)) \end{equation} where $J_0$ and $Y_0$ are the Bessel functions, so \begin{equation} \psi(r)=\pi\frac{c'J_0(2\sqrt{|a|} e^{-\frac r2})-Y_0(2\sqrt{|a|} e^{-\frac r2})}r ,\quad c'=\frac{Y_0(2\sqrt{|a|})}{J_0(2\sqrt{|a|})} . \end{equation} The scattering length is\-~\dlmfcite{(10.25.2),(10.31.2)}{1.1.3} \begin{equation} \mathfrak a_0=\lim_{r\to\infty}r(1-\psi(r)) =\log(a)+2\gamma+\frac{2K_0(2\sqrt a)}{I_0(2\sqrt a)} \end{equation} where $\gamma$ is the Euler constant, which, for $a<0$, is \begin{equation} \mathfrak a_0=\log|a|+2\gamma-\frac{\pi Y_0(2\sqrt{|a|})}{J_0(2\sqrt{|a|})} . \end{equation} \subsubsection{{\tt tent}}\label{sec:tent} \indent In $x$-space, \begin{equation} v(|x|)=\mathds 1_{|x|0$. Note that $v\geqslant 0$ if and only if $a\geqslant 0$. Note that \begin{equation} v(|x|)=\frac a{b^3}\mathds 1_{|x|<\frac b2}\ast\mathds 1_{|x|<\frac b2} \end{equation} (this is more easily checked in Fourier space than explicitly computing the convolution). \bigskip \indent In Fourier space, \begin{equation} \hat v(|k|)=\int dx\ e^{ikx}v(|x|)=a\frac{b^3}8\left(4\pi\frac{\sin(\frac{|k|b}2)-\frac{|k|b}2\cos(\frac{|k|b}2)}{\frac{(|k|b)^3}8}\right)^2 . \end{equation} Note that this is $\frac a{b^3}(\hat\mathds 1_{|x|<\frac b2})^2$. In particular, $v$ is of positive type (that is, $\hat v\geqslant 0$) if and only if $a\geqslant 0$. \subsubsection{{\tt expcry}}\label{sec:expcry} \indent In $x$-space \begin{equation} v(|x|)=e^{-|x|}-ae^{-b|x|} . \end{equation} The constants $a$ and $b$ are specified through the {\tt v\_a} and {\tt v\_b} parameters, and $a\in\mathbb R$, $b>0$. Note that $v\geqslant 0$ if and only if $a\leqslant 1$ and $b\geqslant 1$. \bigskip \indent In Fourier space \begin{equation} \hat v(|k|)=\int dx\ e^{ikx}v(|x|) =8\pi\left(\frac1{(1+k^2)^2}-\frac{ab}{(b^2+k^2)^2}\right) \end{equation} In particular, $\hat v$ is of positive type (that is, $\hat v\geqslant 0$) if and only if $ab\leqslant 1$, $a\leqslant b$ and $a\leqslant b^3$. If $a\leqslant 1$, $b\geqslant 1$ and $ab>1$, then $\hat v$ has a unique minimum at \begin{equation} |k_*|=\sqrt{\frac{b^2-(ab)^{\frac13}}{(ab)^{\frac13}-1}} ,\quad \hat v(|k_*|)= -8\pi\frac{((ab)^{\frac13}-1)^3}{b^2-1} . \end{equation} \subsubsection{{\tt npt}}\label{sec:npt} \indent In $x$-space \begin{equation} v(|x|)=x^2e^{-|x|} . \end{equation} Note that $v\geqslant 0$. \bigskip \indent In Fourier space \begin{equation} \hat v(|k|)=\int dx\ e^{ikx}v(|x|) =96\pi\frac{1-k^2}{(1+k^2)^4} . \end{equation} In particular, $v$ is not of positive type (that is, $\hat v$ is not $\geqslant 0$). \subsubsection{{\tt alg}}\label{sec:alg} \indent In $x$-space \begin{equation} v(|x|)=\frac1{1+\frac14|x|^4} . \end{equation} Note that $v\geqslant 0$. \bigskip \indent In Fourier space \begin{equation} \hat v(|k|)=\int dx\ e^{ikx}v(|x|) =4\pi^2 e^{-|k|}\frac{\sin(|k|)}{|k|} . \end{equation} In particular, $v$ is not of positive type (that is, $\hat v$ is not $\geqslant 0$). \subsubsection{{\tt algwell}}\label{sec:algwell} \indent In $x$-space \begin{equation} v(|x|)=\frac{1+a|x|^4}{(1+|x|^2)^4} . \end{equation} The constant $a$ can be set using the parameter {\tt v\_a} and can be any real number. Note that $v\geqslant 0$ if and only if $a\geqslant 0$. If $a>8$, this potential has a local minimum at $|x_-|$ and a local maximum at $|x_+|$: \begin{equation} |x_\pm|=\sqrt{\frac12(1\pm\sqrt{1-8a^{-1}})} . \end{equation} \bigskip \indent In Fourier space \begin{equation} \hat v(|k|)=\int dx\ e^{ikx}v(|x|) =\frac{\pi^2}{24}e^{-|k|}(a(k^2-9|k|+15)+k^2+3|k|+3) . \end{equation} In particular, $v$ is of positive type (that is, $\hat v$ is not $\geqslant 0$) if and only if \begin{equation} -\frac15\leqslant a\leqslant 3+\frac87\sqrt7\approx6.02 . \end{equation} \subsubsection{{\tt exact}}\label{sec:exact} \indent In $x$-space \begin{equation} v(|x|)= \frac{12c( x^6b^6(2e-b^2) +b^4x^4(9e-7b^2) +4b^2x^2(3e-2b^2) +(5e+16b^2))}{(1+b^2x^2)^2(4+b^2x^2)^2((1+b^2x^2)^2-c)} \end{equation} The constants $a,b,c,e$ can be set using the parameters {\tt v\_a}, {\tt v\_b}, {\tt v\_c}, {\tt v\_e}, and $a,e\in\mathbb R$, $b\neq0$, $c>0$, $c\neq9$. Note that $v\geqslant 0$ if and only if\-~\cite{CJL20b} \begin{equation} b>0 ,\quad 0{\rm \{potential function\}}(k,v\_param\_a,v\_param\_b,{\rm...})\par \indent a0={\rm \{scattering length function\}}(v\_param\_a,v\_param\_b,{\rm...})\par \end{code} where the number of {\tt v\_param} entries should be the number of parameters of the potential. The parameters that are currently read from the parameters list are {\tt a}, {\tt b}, {\tt c} and {\tt e}. To add a parameter, it must first be declared and initialized after line 35, and code to read it should be added after line 172: \begin{code} elseif lhs="v\_{\rm\{name of parameter\}}"\par \indent v\_param\_{\rm\{name of parameter\}}=parse(Float64,rhs) \end{code} If the new parameter has a type other than {\tt Float64}, this should be changed in the {\tt parse} function, and in the initialization. \bigskip \indent The approximation of the scattering length is only used to initialize the Newton algorithm for \refname{sec:easyeq}{{\tt easyeq}}, so it is not important that it be exact. In fact, some of the built-in potentials set the scattering length to 1, when it has proved too difficult to compute it exactly. \appendix \section{Chebyshev polynomial expansion}\label{appChebyshev} \indent In this appendix, we compute the error of Chebyshev polynomial expansions of regular functions. Specifically, we will consider class-$s$ Gevrey functions (which is a generalization of the notion of analyticity: analytic functions are Gevrey functions with $s=1$). A class-$s$ Gevrey function on $[-1,1]$ is a $\mathcal C^\infty$ function that satisfies, $\forall n\in\mathbb N$, \begin{equation} \mathop{\mathrm{sup}}_{x\in[-1,1]}\left|\frac{d^nf(x)}{dx^n}\right|\leqslant C_0C^n(n!)^s. \end{equation} Formally, the Chebyshev polynomial expansion of $f$ is \begin{equation} f(x)=\frac{c_0}2+\sum_{j=1}^\infty c_j T_j(x) \label{eqcheby} \end{equation} where $T_j$ is the $j$-th Chebyshev polynomial: \begin{equation} T_j(x):=\cos(j\arccos(x)) \end{equation} and \begin{equation} c_j:=\frac2\pi\int_0^\pi d\theta\ f(\cos\theta)\cos(j\theta) . \end{equation} \bigskip \theo{Lemma}\label{lemmaChebyshev} Let $f$ be a class-$s$ Gevrey function on $[-1,1]$ with $s\in\mathbb N\setminus\{0\}$. There exist $b_0,b>0$, which are independent of $s$, such that the coefficients $c_j$ of the Chebyshev polynomial expansion are bounded as \begin{equation} c_j\leqslant b_0e^{-bj^{\frac1s}} . \label{boundchebyshevcoef} \end{equation} In particular, the Chebyshev polynomial expansion is absolutely convergent pointwise (and, therefore in any $L_p$ norm), and, for every $N\geqslant 1$, \begin{equation} \left|f(x)-\frac{c_0}2-\sum_{j=1}^N c_j T_j(x)\right| \leqslant \frac{b_0}{1-e^{-b}}(s-1)!(N^{\frac1s}+b^{-1})^{s-1}e^{-bN^{\frac1s}} . \label{boundchebyshev} \end{equation} \endtheo \bigskip \indent\underline{Proof}: Note that~\-(\ref{eqcheby}) is nothing other than the Fourier cosine series expansion of $F(\theta):=f(\cos(\theta))$, which is an even, periodic, class-$s$ Gevrey function on $[-\pi,\pi]$, whose $j$-th Fourier coefficient for $j\in\mathbb Z$ is equal to $\frac12c_{|j|}$. The bound\-~(\ref{boundchebyshevcoef}) follows from a well-known estimate of the decay of Fourier coefficients of class-$s$ Gevrey functions (see e.g.~\-\cite[Theorem~\-3.3]{Ta87}). The bound\-~(\ref{boundchebyshev}) then follows from $|T_j(x)|\leqslant 1$ and lemma\-~\ref{lemma:ineqgevrey} below. \qed \bigskip \theo{Lemma}\label{lemma:ineqgevrey} Given $b>0$ and two integers $N,s>0$, \nopagebreakaftereq \begin{equation} \sum_{j=N}^\infty e^{-bj^{\frac1s}} \leqslant (s-1)!\left(N^{\frac1s}+\frac1{1-e^{-b}}\right)^{s-1}\frac{e^{-bN^{\frac1s}}}{1-e^{-b}} \end{equation} \endtheo \restorepagebreakaftereq \bigskip \indent\underline{Proof}: If $\nu_{N,s}^s:=\lfloor N^{\frac1s}\rfloor^s$ denotes the largest integer that is $\leqslant N$ and has an integer $s$-th root, then \begin{equation} \sum_{j=N}^\infty e^{-bj^{\frac1s}}\leqslant \sum_{j=\nu_{N,s}^s}^\infty e^{-bj^{\frac1s}}\leqslant \sum_{k=\nu_{N,s}}^\infty(k^s-(k-1)^s)e^{-bk}\leqslant s\sum_{k=\nu_{N,s}}^\infty k^{s-1}e^{-bk} . \end{equation} We then estimate \begin{equation} \sum_{k=\nu_{N,s}}^\infty k^{s-1}e^{-bk}=\frac{d^{s-1}}{d(-b)^{s-1}}\sum_{k=\nu_{N,s}}^\infty e^{-bk} \leqslant (s-1)!\left(\nu_{N,s}+\frac1{1-e^{-b}}\right)^{s-1}\frac{e^{-b\nu_{N,s}}}{1-e^{-b}} \end{equation} which concludes the proof of the lemma. \qed \section{Gauss quadratures}\label{appGL} \indent Gauss quadratures are approximation schemes to compute integrals of the form \begin{equation} \int_a^bdt\ \omega(t)f(t) \end{equation} where $\omega(x)\geqslant 0$ is one of several functions that Gauss quadratures can treat. The possible choices of $\omega$ and $(a,b)$ are \begin{itemize} \item $(a,b)=(-1,1)$, $\omega(t)=1$: Gauss-Legendre quadratures. \item $(a,b)=(-1,1)$, $\omega(t)=(1-t)^\alpha(1+t)^\beta$, $\alpha,\beta>-1$: Gauss-Jacobi quadratures. \item $(a,b)=(-1,1)$, $\omega(t)=(1-t^2)^{-\frac12}$: Gauss-Chebyshev quadratures. \item $(a,b)=(0,\infty)$, $\omega(t)=e^{-t}$: Gauss-Laguerre quadratures. \item $(a,b)=(0,\infty)$, $\omega(t)=t^\alpha e^{-t}$, $\alpha>-1$: generalized Gauss-Laguerre quadratures. \item $(a,b)=(0,\infty)$, $\omega(t)=e^{-t^2}$: Gauss-Hermite quadratures. \end{itemize} It is not our goal here to discuss Gauss quadratures in detail, or their relation to orthogonal polynomials. Instead, we will compute the error made when approximating such an integral by a Gauss quadrature. \bigskip \indent For each Gauss quadrature, the integral is approximated in the form \begin{equation} \int_a^b dt\ \omega(t) f(t) \approx \sum_{i=1}^Nw_if(r_i) \end{equation} where $w_i$ are called the {\it weights}, $r_i$ are the {\it abcissa}, and $N$ is the {\it order}. The weights and abcissa depend on both $\omega$ and the order $N$. The crucial property of Gauss quadratures is that they are {\it exact} when $f$ is a polynomial of order $\leqslant 2N-1$. \bigskip \indent In this appendix, we compute the error of Gauss quadratures when used to integrate regular functions. Specifically, we will consider class-$s$ Gevrey functions (which is a generalization of the notion of analyticity: analytic functions are Gevrey functions with $s=1$). A class-$s$ Gevrey function on is a $\mathcal C^\infty$ function that satisfies, $\forall n\in\mathbb N$, \begin{equation} \mathop{\mathrm{sup}}_{x\in[-1,1]}\left|\frac{d^nf(x)}{dx^n}\right|\leqslant C_0C^n(n!)^s. \end{equation} \bigskip \theo{Lemma}\label{lemmaGL} Let $f$ be a class-$s$ Gevrey function with $s\in\mathbb N\setminus\{0\}$. There exist $b_0,b>0$, which are independent of $s$, and $N_0>0$, which is independent of $s$ and $f$, such that, if $N\geqslant N_0$, then, denoting the Gauss weights and abcissa by $w_i$ and $r_i$, \begin{equation} \left|\int_a^bdt\ \omega(t)f(t)-\sum_{i=1}^Nw_if(r_i)\right| \leqslant b_0(s-1)!((2N-1)^{\frac1s}+b^{-1})^{s-1}e^{-b(2N-1)^{\frac1s}}\left(\int_a^b\omega(t)+\sum_{i=1}^Nw_i\right) . \end{equation} In particular, if $f$ is analytic (i.e. $s=1$), then \begin{equation} \left|\int_a^bdt\ \omega(t)f(t)-\sum_{i=1}^Nw_if(r_i)\right| \leqslant b_0e^{-b(2N-1)}\left(\int_a^b\omega(t)+\sum_{i=1}^Nw_i\right) . \end{equation} \endtheo \bigskip \indent\underline{Proof}: We expand $f$ into Chebyshev polynomials as in\-~(\ref{eqcheby}): \begin{equation} f(x)=\frac{c_0}2+\sum_{j=1}^{\infty}c_jT_j(x) \end{equation} Let \begin{equation} g(x):=f(x)-\frac{c_0}2-\sum_{j=1}^{2N-1} c_j T_j(x) . \end{equation} Since order-$N$ Gauss quadratures are exact on polynomials of order $\leqslant 2N-1$, we have \begin{equation} \int_a^bdt\ \omega(t)f(t)-\sum_{i=1}^Nw_if(r_i) = \int_a^bdt\ \omega(t)g(t)-\sum_{i=1}^Nw_ig(r_i) \end{equation} and, by lemma\-~\ref{lemmaChebyshev}, \begin{equation} |g(x)|\leqslant (\mathrm{const}.)(s-1)!((2N-1)^{\frac1s}+b^{-1})^{s-1}e^{-b(2N-1)^{\frac1s}} . \label{boundchebyshev} \end{equation} \qed \section{Bipolar coordinates}\label{appendix:bipolar} \indent Bipolar coordinates are very useful for computing convolutions of radial functions in three dimensions. \bigskip \theo{Lemma}\label{lemma:bipolar} For $y\in\mathbb R^3$, \nopagebreakaftereq \begin{equation} \int_{\mathbb R^3}dx\ f(|x|,|x-y|) = \frac{2\pi}{|y|}\int_0^\infty dt\int_{||y|-t|}^{|y|+t}ds\ stf(s,t) \end{equation} \endtheo \restorepagebreakaftereq \indent\underline{Proof}: Without loss of generality, we assume that $y=(0,0,a)$ with $a>0$. We first change to cylindrical coordinates: $(\rho,\theta,x_3)$: \begin{equation} \int_{\mathbb R^3}dx\ f(|x|,|x-y|) = 2\pi\int_0^\infty d\rho\int_{-\infty}^\infty dx_3\ \rho f(|(\rho,0,x_3)|,|(\rho,0,x_3-a)|) . \end{equation} Next, we change variables to \begin{equation} s=|(\rho,0,x_3)| ,\quad t=|(\rho,0,x_3-a)| . \end{equation} The inverse of this transformation is \begin{equation} x_3=\pm\frac{a^2+s^2-t^2}{2a} ,\quad \rho=\frac1{2a}\sqrt{4a^2s^2-(a^2+s^2-t^2)^2} \label{inverse} \end{equation} and its Jacobian is \begin{equation} \frac{2ts}{\sqrt{-2a^4+2a^2(t^2+s^2)-(t^2-s^2)^2}} =\frac{ts}{\rho a} . \label{jacobian} \end{equation} \qed \bigskip \indent The following is a generalization of the previous lemma to functions of four variables. \bigskip \theo{Lemma}\label{lemma:bipolar2} For $y\in\mathbb R^3$, \begin{equation} \begin{largearray} \int_{\mathbb R^6}dxdx'\ f(|x|,|x-y|,|x'|,|x'-y|,|x-x'|) \\[0.5cm]\hfill = \frac{2\pi}{|y|^2}\int_0^\infty dt\int_{||y|-t|}^{|y|+t}ds\int_0^\infty dt'\int_{||y|-t'|}^{|y|+t'}ds'\int_0^{2\pi}d\theta\ sts't'f(s,t,s',t',\xi(s,t,s',t',\theta,|y|)) \end{largearray} \end{equation} with \nopagebreakaftereq \begin{equation} \begin{largearray} \xi(s,t,s',t',\theta,|y|) := \frac1{\sqrt 2|y|} \Big( |y|^2(s^2+t^2+(s')^2+(t')^2)-|y|^4-(s^2-t^2)((s')^2-(t')^2) \\[0.5cm]\hfill - \sqrt{(4|y|^2s^2-(|y|^2+s^2-t^2)^2)(4|y|^2(s')^2-(|y|^2+(s')^2-(t')^2)^2)}\cos\theta \Big)^{\frac12} . \end{largearray} \end{equation} \endtheo \restorepagebreakaftereq \indent\underline{Proof}: Without loss of generality, we assume that $y=(0,0,a)$ with $a>0$. We first change to cylindrical coordinates: $(\rho,\theta,x_3;\rho',\theta',x_3')$: \begin{equation} \begin{largearray} \int_{\mathbb R^6}dxdx'\ f(|x|,|x-y|,|x'|,|x'-y|,|x-x'|) \\[0.5cm]\hfill = 2\pi\int_0^\infty d\rho\int_{-\infty}^\infty dx_3 \int_0^\infty d\rho'\int_{-\infty}^\infty dx_3'\int_0^{2\pi}d\theta' \ \rho\rho' f( s,t,s',t', |(\rho-\rho'\cos\theta',\rho'\sin\theta',x_3-x_3')| ) . \end{largearray} \end{equation} where \begin{equation} s:=|(\rho,0,x_3)| ,\quad t:=|(\rho,0,x_3-a)| ,\quad s':=|(\rho'\cos\theta',\rho'\sin\theta',x_3')|, t':=|(\rho'\cos\theta',\rho'\sin\theta',x_3'-a)| \end{equation} Next, we change variables to $(s,t,s',t',\theta')$. The Jacobian of this transformation is, by\-~(\ref{jacobian}), \begin{equation} \frac{tst's'}{\rho\rho' a^2} . \end{equation} Furthermore, by\-~(\ref{inverse}), \begin{equation} x_3-x_3'=\frac{s^2-t^2-(s')^2+(t')^2}{2a} \end{equation} and \begin{equation} \rho=\frac{\sqrt{4a^2s^2-(a^2+s^2-t^2)^2}}{2a} ,\quad \rho'=\frac{\sqrt{4a^2(s')^2-(a^2+(s')^2-(t')^2)^2}}{2a} \end{equation} so \begin{equation} \begin{largearray} |(\rho-\rho'\cos\theta',\rho'\sin\theta',x_3-x_3')| = \frac1{2a} \left( 4a^2s^2-(a^2+s^2-t^2)^2 + 4a^2(s')^2-(a^2+(s')^2-(t')^2)^2 \right.\\[0.5cm]\hfill\left. - 2\sqrt{(4a^2s^2-(a^2+s^2-t^2)^2)(4a^2(s')^2-(a^2+(s')^2-(t')^2)^2)}\cos\theta' + (s^2-t^2-(s')^2+(t')^2)^2 \right)^{\frac12} \end{largearray} \end{equation} and \begin{equation} \begin{largearray} |(\rho-\rho'\cos\theta',\rho'\sin\theta',x_3-x_3')| = \frac1{\sqrt 2a} \Big( a^2(s^2+t^2+(s')^2+(t')^2)-a^4-(s^2-t^2)((s')^2-(t')^2) \\[0.5cm]\hfill - \sqrt{(4a^2s^2-(a^2+s^2-t^2)^2)(4a^2(s')^2-(a^2+(s')^2-(t')^2)^2)}\cos\theta' \Big)^{\frac12} . \end{largearray} \end{equation} \qed \section{Hann windowing}\label{appendix:hann} \indent In this appendix, we discuss the use of Hann windows to compute Fourier transforms. Consider the Fourier transform \begin{equation} \hat f(k)=\int dx\ e^{ikx}f(x) . \end{equation} Evaluating this integral numerically can be tricky, especially at high $|k|$, because of the rapid oscillations at large $|x|$. A trick to palliate such a problem is to multiply $f$ by a {\it window function} $h_L$, which cuts off distances of order $L$. We then compute, instead of $\hat f$, \begin{equation} \tilde f(k)=\int dx\ e^{ikx}h_L(x)f(x) . \end{equation} We can then evaluate $\tilde f$ using standard numerical techniques, such as Gauss quadratures (see appendix\-~\ref{appGL}), without issues at large $|x|$. However, in doing so, we will make an error in the Fourier transform. To quantify this error, note that \begin{equation} \tilde f(k) =\hat h_L\hat\ast\hat f(k) \equiv\int\frac{dq}{(2\pi)^d}\ \hat h_L(q)\hat f(k-q) \end{equation} so if we choose $h_L$ in such a way that $\hat h_L$ is peaked around the origin, then $\tilde f$ will not differ too much from $\hat f$: \begin{equation} \hat f(k)-\tilde f(k) =((2\pi)^d\delta(k)-\hat h_L)\hat\ast\hat f(k) . \end{equation} \bigskip \indent The {\it Hann} window is defined as \begin{equation} h_L(x)=\cos^2({\textstyle\frac{\pi|x|}L})\mathds 1_{|x|<\frac L2} \end{equation} whose Fourier transform is, in $d=3$, \begin{equation} \hat h_L(k)= \frac{4\pi^3 L^2}{|k|}\frac{((|k|L)^3-4|k|L\pi^2)\cos(\frac{|k|L}2)-2(3(|k|L)^2-4\pi^2)\sin(\frac{|k|L}2)}{((|k|L)^3-4|k|L\pi^2)^2} \end{equation} which decays at large $|k|L$ as \begin{equation} \hat h_L(k)\sim\frac{4\pi^3}{|k|^4L}\cos({\textstyle\frac{|k|L}2}) . \end{equation} \vfill \eject \begin{thebibliography}{WWW99} \small \IfFileExists{bibliography/bibliography.tex}{\input bibliography/bibliography.tex}{} \end{thebibliography} \end{document}