#include "navier-stokes.h" #include #include // compute solution as a function of time int uk( int K1, int K2, int N1, int N2, unsigned int nsteps, double nu, double delta, double L, _Complex double (*g)(int,int), unsigned int print_freq, unsigned int nthreads ){ _Complex double* u; _Complex double* tmp1; _Complex double* tmp2; _Complex double* tmp3; unsigned int t; fft_vect fft1; fft_vect fft2; fft_vect ifft; int kx,ky; ns_init_tmps(&u, &tmp1, &tmp2, &tmp3, &fft1, &fft2, &ifft, K1, K2, N1, N2, nthreads); ns_init_u(u, K1, K2); // print column headers printf("# 1:i 2:t "); t=3; for(kx=-K1;kx<=K1;kx++){ for (ky=-K2;ky<=K2;ky++){ printf(" %6d:(%4d,%4d)r ",t,kx,ky); t++; printf(" %6d:(%4d,%4d)i ",t,kx,ky); t++; } } // iterate for(t=0;t0){ avg=avg-(avg-alpha)/t; } if(t>0 && t%print_freq==0){ fprintf(stderr,"% .15e % .15e % .15e % .15e % .15e\n",t*delta, __real__ avg, __imag__ avg, __real__ alpha, __imag__ alpha); printf("% .15e % .15e % .15e % .15e % .15e\n",t*delta, __real__ avg, __imag__ avg, __real__ alpha, __imag__ alpha); } } ns_free_tmps(u, tmp1, tmp2, tmp3, fft1, fft2, ifft); return(0); } // compute solution as a function of time, but do not print anything (useful for debugging) int quiet( int K1, int K2, int N1, int N2, unsigned int nsteps, double nu, double delta, double L, _Complex double (*g)(int,int), unsigned int nthreads ){ _Complex double* u; _Complex double* tmp1; _Complex double* tmp2; _Complex double* tmp3; unsigned int t; fft_vect fft1; fft_vect fft2; fft_vect ifft; ns_init_tmps(&u, &tmp1, &tmp2, &tmp3, &fft1, &fft2, &ifft, K1, K2, N1, N2, nthreads); ns_init_u(u, K1, K2); // iterate for(t=0;tfft=fftw_malloc(sizeof(fftw_complex)*N1*N2); fft1->fft_plan=fftw_plan_dft_2d(N1,N2, fft1->fft, fft1->fft, FFTW_FORWARD, FFTW_MEASURE); fft2->fft=fftw_malloc(sizeof(fftw_complex)*N1*N2); fft2->fft_plan=fftw_plan_dft_2d(N1,N2, fft2->fft, fft2->fft, FFTW_FORWARD, FFTW_MEASURE); ifft->fft=fftw_malloc(sizeof(fftw_complex)*N1*N2); ifft->fft_plan=fftw_plan_dft_2d(N1,N2, ifft->fft, ifft->fft, FFTW_BACKWARD, FFTW_MEASURE); return 0; } // release vectors int ns_free_tmps( _Complex double* u, _Complex double* tmp1, _Complex double* tmp2, _Complex double* tmp3, fft_vect fft1, fft_vect fft2, fft_vect ifft ){ // free memory fftw_destroy_plan(fft1.fft_plan); fftw_destroy_plan(fft2.fft_plan); fftw_destroy_plan(ifft.fft_plan); fftw_free(fft1.fft); fftw_free(fft2.fft); fftw_free(ifft.fft); fftw_cleanup_threads(); free(tmp3); free(tmp2); free(tmp1); free(u); return 0; } // initial value int ns_init_u( _Complex double* u, int K1, int K2 ){ int kx,ky; /* srand(17); // random init (set half, then the other half are the conjugates) for(kx=0;kx<=K1;kx++){ for(ky=-K2;ky<=K2;ky++){ if (kx!=0 || ky>0){ double x=-0.5+((double) rand())/RAND_MAX; double y=-0.5+((double) rand())/RAND_MAX; u[klookup(kx,ky,2*K1+1,2*K2+1)]=x+y*I; u[klookup(-kx,-ky,2*K1+1,2*K2+1)]=conj(u[klookup(kx,ky,2*K1+1,2*K2+1)]); } } } // rescale to match with Gallavotti's initialization double rescale; rescale=0; for(kx=-K1;kx<=K1;kx++){ for(ky=-K2;ky<=K2;ky++){ rescale=rescale+((__real__ u[klookup(kx,ky,2*K1+1,2*K2+1)])*(__real__ u[klookup(kx,ky,2*K1+1,2*K2+1)])+(__imag__ u[klookup(kx,ky,2*K1+1,2*K2+1)])*(__imag__ u[klookup(kx,ky,2*K1+1,2*K2+1)]))*(kx*kx+ky*ky); } } for(kx=-K1;kx<=K1;kx++){ for(ky=-K2;ky<=K2;ky++){ u[klookup(kx,ky,2*K1+1,2*K2+1)]=u[klookup(kx,ky,2*K1+1,2*K2+1)]*sqrt(1.54511597324389e+02/rescale); } } */ /* // constant init for(kx=-K1;kx<=K1;kx++){ for(ky=-K2;ky<=K2;ky++){ u[klookup(kx,ky,2*K1+1,2*K2+1)]=1.; } } */ // gaussian init for(kx=-K1;kx<=K1;kx++){ for(ky=-K2;ky<=K2;ky++){ u[klookup(kx,ky,2*K1+1,2*K2+1)]=(kx*kx+ky*ky)*exp(-(kx*kx+ky*ky)); } } return 0; } // next time step for Irreversible Navier-Stokes equation int ins_step( _Complex double* u, int K1, int K2, int N1, int N2, double nu, double delta, double L, _Complex double (*g)(int,int), fft_vect fft1, fft_vect fft2, fft_vect ifft, _Complex double* tmp1, _Complex double* tmp2, _Complex double* tmp3 ){ int kx,ky; // k1 ins_rhs(tmp1, u, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft); // add to output for(kx=-K1;kx<=K1;kx++){ for(ky=-K2;ky<=K2;ky++){ tmp3[klookup(kx,ky,2*K1+1,2*K2+1)]=u[klookup(kx,ky,2*K1+1,2*K2+1)]+delta/6*tmp1[klookup(kx,ky,2*K1+1,2*K2+1)]; } } // u+h*k1/2 for(kx=-K1;kx<=K1;kx++){ for(ky=-K2;ky<=K2;ky++){ tmp2[klookup(kx,ky,2*K1+1,2*K2+1)]=u[klookup(kx,ky,2*K1+1,2*K2+1)]+delta/2*tmp1[klookup(kx,ky,2*K1+1,2*K2+1)]; } } // k2 ins_rhs(tmp1, tmp2, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft); // add to output for(kx=-K1;kx<=K1;kx++){ for(ky=-K2;ky<=K2;ky++){ tmp3[klookup(kx,ky,2*K1+1,2*K2+1)]+=delta/3*tmp1[klookup(kx,ky,2*K1+1,2*K2+1)]; } } // u+h*k2/2 for(kx=-K1;kx<=K1;kx++){ for(ky=-K2;ky<=K2;ky++){ tmp2[klookup(kx,ky,2*K1+1,2*K2+1)]=u[klookup(kx,ky,2*K1+1,2*K2+1)]+delta/2*tmp1[klookup(kx,ky,2*K1+1,2*K2+1)]; } } // k3 ins_rhs(tmp1, tmp2, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft); // add to output for(kx=-K1;kx<=K1;kx++){ for(ky=-K2;ky<=K2;ky++){ tmp3[klookup(kx,ky,2*K1+1,2*K2+1)]+=delta/3*tmp1[klookup(kx,ky,2*K1+1,2*K2+1)]; } } // u+h*k3 for(kx=-K1;kx<=K1;kx++){ for(ky=-K2;ky<=K2;ky++){ tmp2[klookup(kx,ky,2*K1+1,2*K2+1)]=u[klookup(kx,ky,2*K1+1,2*K2+1)]+delta*tmp1[klookup(kx,ky,2*K1+1,2*K2+1)]; } } // k4 ins_rhs(tmp1, tmp2, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft); // add to output for(kx=-K1;kx<=K1;kx++){ for(ky=-K2;ky<=K2;ky++){ u[klookup(kx,ky,2*K1+1,2*K2+1)]=tmp3[klookup(kx,ky,2*K1+1,2*K2+1)]+delta/6*tmp1[klookup(kx,ky,2*K1+1,2*K2+1)]; } } return(0); } // right side of Irreversible Navier-Stokes equation int ins_rhs( _Complex double* out, _Complex double* u, int K1, int K2, int N1, int N2, double nu, double L, _Complex double (*g)(int,int), fft_vect fft1, fft_vect fft2, fft_vect ifft ){ int kx,ky; int i; // compute convolution term ns_T(u,K1,K2,N1,N2,fft1,fft2,ifft); /* // compare convolution term (store result in fft1.fft) ns_T_nofft(fft1.fft, u, K1, K2, N1, N2); double cmp=0.; for(i=0;i=4*K1+1 and N2>=4*K2+1) if (N1<4*K1+1 || N2<4*K2+1){ fprintf(stderr,"error: N1 and N2 need t be >= 4*K1+1 and 4*K2+1 respectively\n"); return(-1); } for(kx=-2*K1;kx<=2*K1;kx++){ for(ky=-2*K2;ky<=2*K2;ky++){ // init out[klookup(kx,ky,N1,N2)]=0.; for(px=-K1;px<=K1;px++){ for(py=-K2;py<=K2;py++){ qx=kx-px; qy=ky-py; // cutoff in q if(qx>=-K1 && qx<=K1 && qy>=-K2 && qy<=K2 && qx*qx+qy*qy>0 && px*px+py*py>0){ out[klookup(kx,ky,N1,N2)]+=(-qx*py+qy*px)*sqrt(qx*qx+qy*qy)/sqrt(px*px+py*py)*u[klookup(px,py,2*K1+1,2*K2+1)]*u[klookup(qx,qy,2*K1+1,2*K2+1)]; } } } } } return 0; } // compute alpha _Complex double compute_alpha( _Complex double* u, int K1, int K2, _Complex double (*g)(int,int) ){ _Complex double num=0; _Complex double denom=0; int kx,ky; for(kx=-K1;kx<=K1;kx++){ for(ky=-K2;ky<=K2;ky++){ denom+=(kx*kx+ky*ky)*(kx*kx+ky*ky)*u[klookup(kx,ky,2*K1+1,2*K2+1)]*conj(u[klookup(kx,ky,2*K1+1,2*K2+1)])*(1+(ky!=0?kx*kx/ky/ky:0)); num+=(kx*kx+ky*ky)*u[klookup(kx,ky,2*K1+1,2*K2+1)]*conj((*g)(kx,ky))*(1+(ky!=0?kx*kx/ky/ky:0)); } } return(num/denom); } // get index for kx,ky in array of size S int klookup( int kx, int ky, int S1, int S2 ){ return (kx>=0 ? kx : S1+kx)*S2 + (ky>=0 ? ky : S2+ky); }