#include "constants.cpp" #include "io.h" #include "navier-stokes.h" #include "statistics.h" #include #include #include // compute solution as a function of time int uk( int K1, int K2, int N1, int N2, uint64_t nsteps, double nu, double delta, double L, _Complex double* u0, _Complex double* g, bool irreversible, unsigned int algorithm, uint64_t print_freq, uint64_t starting_time, unsigned int nthreads, FILE* savefile ){ _Complex double* u; _Complex double* tmp1; _Complex double* tmp2; _Complex double* tmp3; uint64_t t; fft_vect fft1; fft_vect fft2; fft_vect ifft; int kx,ky; ns_init_tmps(&u, &tmp1, &tmp2, &tmp3, &fft1, &fft2, &ifft, K1, K2, N1, N2, nthreads); // copy initial condition copy_u(u, u0, K1, K2); // print column headers printf("# 1:i 2:t "); t=3; for(kx=-K1;kx<=K1;kx++){ for (ky=-K2;ky<=K2;ky++){ printf(" %6lu:(%4d,%4d)r ",t,kx,ky); t++; printf(" %6lu:(%4d,%4d)i ",t,kx,ky); t++; } } // iterate for(t=starting_time;nsteps==0 || tstarting_time && t%print_freq==0){ fprintf(stderr,"%lu % .8e % .8e % .8e % .8e % .8e % .8e % .8e\n",t,t*delta, avg_a, avg_en_x_a, avg_en, alpha, alpha*enstrophy, enstrophy); printf("%8lu % .15e % .15e % .15e % .15e % .15e % .15e % .15e\n",t,t*delta, avg_a, avg_en_x_a, avg_en, alpha, alpha*enstrophy, enstrophy); } // catch abort signal if (g_abort){ // print u to stderr if no savefile if (savefile==NULL){ savefile=stderr; } break; } } if(savefile!=NULL){ fprintf(savefile,"# Continue computation with\n"); // command to resume fprintf(savefile,"#! "); fprintf(savefile, cmd_string); // params // allocate buffer for params if(params_string!=NULL) { char* params=calloc(sizeof(char), strlen(params_string)+1); strcpy(params, params_string); remove_entry(params, "starting_time"); remove_entry(params, "init"); remove_entry(params, "nsteps"); fprintf(savefile," -p \"%s;starting_time=%lu;nsteps=%lu;init=file:%s\"", params, t+1, (nsteps+starting_time < t+1 ? 0 : nsteps+starting_time-t-1), savefile_string); free(params); } fprintf(savefile," enstrophy\n"); // save final u to savefile if(savefile==stderr || savefile==stdout){ write_vec(u, K1, K2, savefile); } else { write_vec_bin(u, K1, K2, savefile); } } ns_free_tmps(u, tmp1, tmp2, tmp3, fft1, fft2, ifft); return(0); } // compute solution as a function of time, but do not print anything (useful for debugging) int quiet( int K1, int K2, int N1, int N2, uint64_t nsteps, double nu, double delta, double L, uint64_t starting_time, _Complex double* u0, _Complex double* g, bool irreversible, unsigned int algorithm, unsigned int nthreads, FILE* savefile ){ _Complex double* u; _Complex double* tmp1; _Complex double* tmp2; _Complex double* tmp3; uint64_t t; fft_vect fft1; fft_vect fft2; fft_vect ifft; ns_init_tmps(&u, &tmp1, &tmp2, &tmp3, &fft1, &fft2, &ifft, K1, K2, N1, N2, nthreads); // copy initial condition copy_u(u, u0, K1, K2); // iterate for(t=starting_time;nsteps==0 || tfft=fftw_malloc(sizeof(fftw_complex)*N1*N2); fft1->fft_plan=fftw_plan_dft_2d(N1,N2, fft1->fft, fft1->fft, FFTW_FORWARD, FFTW_MEASURE); fft2->fft=fftw_malloc(sizeof(fftw_complex)*N1*N2); fft2->fft_plan=fftw_plan_dft_2d(N1,N2, fft2->fft, fft2->fft, FFTW_FORWARD, FFTW_MEASURE); ifft->fft=fftw_malloc(sizeof(fftw_complex)*N1*N2); ifft->fft_plan=fftw_plan_dft_2d(N1,N2, ifft->fft, ifft->fft, FFTW_BACKWARD, FFTW_MEASURE); return 0; } // release vectors int ns_free_tmps( _Complex double* u, _Complex double* tmp1, _Complex double* tmp2, _Complex double* tmp3, fft_vect fft1, fft_vect fft2, fft_vect ifft ){ // free memory fftw_destroy_plan(fft1.fft_plan); fftw_destroy_plan(fft2.fft_plan); fftw_destroy_plan(ifft.fft_plan); fftw_free(fft1.fft); fftw_free(fft2.fft); fftw_free(ifft.fft); fftw_cleanup_threads(); free(tmp3); free(tmp2); free(tmp1); free(u); return 0; } // copy u0 to u int copy_u( _Complex double* u, _Complex double* u0, int K1, int K2 ){ int i; for(i=0;i0 ? -K2 : 1);ky<=K2;ky++){ tmp3[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+delta/6*tmp1[klookup_sym(kx,ky,K2)]; } } // u+h*k1/2 for(kx=0;kx<=K1;kx++){ for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){ tmp2[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+delta/2*tmp1[klookup_sym(kx,ky,K2)]; } } // k2 ns_rhs(tmp1, tmp2, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible); // add to output for(kx=0;kx<=K1;kx++){ for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){ tmp3[klookup_sym(kx,ky,K2)]+=delta/3*tmp1[klookup_sym(kx,ky,K2)]; } } // u+h*k2/2 for(kx=0;kx<=K1;kx++){ for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){ tmp2[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+delta/2*tmp1[klookup_sym(kx,ky,K2)]; } } // k3 ns_rhs(tmp1, tmp2, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible); // add to output for(kx=0;kx<=K1;kx++){ for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){ tmp3[klookup_sym(kx,ky,K2)]+=delta/3*tmp1[klookup_sym(kx,ky,K2)]; } } // u+h*k3 for(kx=0;kx<=K1;kx++){ for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){ tmp2[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+delta*tmp1[klookup_sym(kx,ky,K2)]; } } // k4 ns_rhs(tmp1, tmp2, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible); // add to output for(kx=0;kx<=K1;kx++){ for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){ u[klookup_sym(kx,ky,K2)]=tmp3[klookup_sym(kx,ky,K2)]+delta/6*tmp1[klookup_sym(kx,ky,K2)]; } } return(0); } // RK 2 algorithm int ns_step_rk2( _Complex double* u, int K1, int K2, int N1, int N2, double nu, double delta, double L, _Complex double* g, fft_vect fft1, fft_vect fft2, fft_vect ifft, _Complex double* tmp1, _Complex double* tmp2, bool irreversible ){ int kx,ky; // k1 ns_rhs(tmp1, u, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible); // u+h*k1/2 for(kx=0;kx<=K1;kx++){ for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){ tmp2[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+delta/2*tmp1[klookup_sym(kx,ky,K2)]; } } // k2 ns_rhs(tmp1, tmp2, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible); // add to output for(kx=0;kx<=K1;kx++){ for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){ u[klookup_sym(kx,ky,K2)]+=delta*tmp1[klookup_sym(kx,ky,K2)]; } } return(0); } // right side of Irreversible/Reversible Navier-Stokes equation int ns_rhs( _Complex double* out, _Complex double* u, int K1, int K2, int N1, int N2, double nu, double L, _Complex double* g, fft_vect fft1, fft_vect fft2, fft_vect ifft, bool irreversible ){ int kx,ky; int i; double alpha; // compute convolution term ns_T(u,K1,K2,N1,N2,fft1,fft2,ifft); if (irreversible) { alpha=nu; } else { alpha=compute_alpha(u,K1,K2,g,L); } for(i=0; i0 ? -K2 : 1);ky<=K2;ky++){ out[klookup_sym(kx,ky,K2)]=-4*M_PI*M_PI/L/L*alpha*(kx*kx+ky*ky)*u[klookup_sym(kx,ky,K2)]+g[klookup_sym(kx,ky,K2)]+4*M_PI*M_PI/L/L/sqrt(kx*kx+ky*ky)*ifft.fft[klookup(kx,ky,N1,N2)]; } } return(0); } // convolution term in right side of convolution equation int ns_T( _Complex double* u, int K1, int K2, int N1, int N2, fft_vect fft1, fft_vect fft2, fft_vect ifft ){ int kx,ky; int i; // F(px/|p|*u)*F(qy*|q|*u) // init to 0 for(i=0; i=2*K1+1 and N2>=2*K2+1) if (N1<2*K1+1 || N2<2*K2+1){ fprintf(stderr,"error: N1 and N2 need t be >= 2*K1+1 and 2*K2+1 respectively\n"); return(-1); } for(kx=-K1;kx<=K1;kx++){ for(ky=-K2;ky<=K2;ky++){ // init out[klookup(kx,ky,N1,N2)]=0.; for(px=-K1;px<=K1;px++){ for(py=-K2;py<=K2;py++){ qx=kx-px; qy=ky-py; // cutoff in q if(qx>=-K1 && qx<=K1 && qy>=-K2 && qy<=K2 && qx*qx+qy*qy>0 && px*px+py*py>0){ out[klookup(kx,ky,N1,N2)]+=(-qx*py+qy*px)*sqrt(qx*qx+qy*qy)/sqrt(px*px+py*py)*getval_sym(u, px,py,K2)*getval_sym(u, qx,qy,K2); } } } } } return 0; } // compute alpha double compute_alpha( _Complex double* u, int K1, int K2, _Complex double* g, double L ){ _Complex double num=0; double denom=0; int kx,ky; num=0.; denom=0.; for(kx=0;kx<=K1;kx++){ for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){ num+=L*L/4/M_PI/M_PI*(kx*kx+ky*ky)*getval_sym(g, kx,ky,K2)*conj(getval_sym(u, kx,ky,K2)); denom+=__real__ (kx*kx+ky*ky)*(kx*kx+ky*ky)*getval_sym(u, kx,ky,K2)*conj(getval_sym(u, kx,ky,K2)); } } return __real__ num/denom; } // compute energy double compute_energy( _Complex double* u, int K1, int K2 ){ int kx,ky; double out=0.; for(kx=0;kx<=K1;kx++){ for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){ out+=__real__ (getval_sym(u, kx,ky,K2)*conj(getval_sym(u, kx,ky,K2))); } } return 2*out; } // compute enstrophy double compute_enstrophy( _Complex double* u, int K1, int K2, double L ){ int kx,ky; double out=0.; for(kx=0;kx<=K1;kx++){ for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){ out+=__real__ (4*M_PI*M_PI/L/L*(kx*kx+ky*ky)*getval_sym(u, kx,ky,K2)*conj(getval_sym(u, kx,ky,K2))); } } return 2*out; } // get index for kx,ky in array of size S int klookup( int kx, int ky, int S1, int S2 ){ return (kx>=0 ? kx : S1+kx)*S2 + (ky>=0 ? ky : S2+ky); } // get index for kx,ky in array of size K1,K2 in which only the terms with kx>=0 and if kx=0, ky>0 are stored int klookup_sym( int kx, int ky, int K2 ){ if (kx<0) { fprintf(stderr, "bug!: attempting to access a symmetrized vector at kx<0\n Contact Ian at ian.jauslin@rutgers.edu!\n"); exit(-1); } if (kx==0) { if (ky<=0){ fprintf(stderr, "bug!: attempting to access a symmetrized vector at kx=0 and ky<=0\n Contact Ian at ian.jauslin@rutgers.edu!\n"); exit(-1); } return ky-1; } return K2+(kx-1)*(2*K2+1) + (ky>=0 ? ky : (2*K2+1)+ky); } // get u_{kx,ky} from a vector u in which only the values for kx>=0 are stored, assuming u_{-k}=u_k^* _Complex double getval_sym( _Complex double* u, int kx, int ky, int K2 ){ if(kx>0 || (kx==0 && ky>0)){ return u[klookup_sym(kx,ky,K2)]; } else if(kx==0 && ky==0){ return 0; } else { return conj(u[klookup_sym(-kx,-ky,K2)]); } }